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Abstract

Hyperspectral remote sensing is thought to be a useful technology for assessing the condition of inland waters. However,

non-optically active water quality parameters are rarely explored in hyperspectral remote sensing applications, despite they are

highly valued in the aquatic environment condition. This study intends to evaluate the performance of non-optically active water

quality parameters using Zhuhai-1 hyperspectral imagery. Focusing on total nitrogen (TN), total phosphorus (TP), ammonia

nitrogen (NH3-N) and nitrate-nitrogen (NO3-N) in Taipu River, we constructed empirical models to evaluate the precision of

water quality inversion from OHS by comparing with Sentinel-2, and determined the sensitive bands of different water quality

parameters. The final results showed that the polynomial model based on OHS had the greatest potential in retrieving TN,

TP and NH3-N concentration, and the R2 was 0.9678, 0.7924, 0.7682 respectively. The combination of R(510)/R(820) and

R(700)/R(806), R(940)/R(820) and R(806)/R(926), R(709)/R(806) and R(746)/R(620) were most sensitive to TN, TP and

NH3-N respectively. The OHS and Sentinel-2 both had potential in retrieving NO3-N. The R2 was 0.9791 from OHS and was

0.9513 from Sentinel-2. The sensitive bands of NO3-N were R(596)/R(665) and R(466)/R(580) from OHS, and Red Eage3/Blue

and SWIR1/Blue from Sentinel-2. We also analyzed the drivers of the spatial distribution of water quality in Taipu River, the

results showed negative impacts of farmland and urban land on water quality, and beneficial impacts of forest land on water

quality. This study represented a promising step in hyperspectral remote sensing for retrieving inland non-optically active water

quality parameters utilizing Zhuhai-1.
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Abstract 8 

Hyperspectral remote sensing is thought to be a useful technology for assessing the condition 9 
of inland waters. However, non-optically active water quality parameters are rarely explored in 10 
hyperspectral remote sensing applications, despite they are highly valued in the aquatic 11 
environment condition. This study intends to evaluate the performance of non-optically active 12 
water quality parameters using Zhuhai-1 OHS hyperspectral imagery. Focusing on total nitrogen 13 
(TN), total phosphorus (TP), ammonia nitrogen (NH3-N) and nitrate-nitrogen (NO3-N) in Taipu 14 
River, we constructed empirical models to evaluate the precision of water quality inversion from 15 
OHS by comparing with Sentinel-2, and determined the sensitive bands of different water quality 16 
parameters. The final results showed that the polynomial model based on OHS had the greatest 17 
potential in retrieving TN, TP and NH3-N concentration, and the R2 was 0.9678, 0.7924, 0.7682 18 
respectively. The combination of R(510)/R(820) and R(700)/R(806), R(940)/R(820) and 19 
R(806)/R(926), R(709)/R(806) and R(746)/R(620) were most sensitive to TN, TP and NH3-N 20 
respectively. The OHS and Sentinel-2 both had potential in retrieving NO3-N. The R2 was 0.9791 21 
from OHS and was 0.9513 from Sentinel-2. The sensitive bands of NO3-N were R(596)/R(665) 22 
and R(466)/R(580) from OHS, and Red Eage3/Blue and SWIR1/Blue from Sentinel-2. We also 23 
analyzed the drivers of the spatial distribution of water quality in the Taipu River based on 24 
redundancy analysis (RDA), the results showed negative impacts of farmland and urban land on 25 
water quality, and beneficial impacts of forest land on water quality. This study represented a 26 
promising first step in hyperspectral remote sensing for retrieving inland non-optically active 27 
water quality parameters utilizing Zhuhai-1. 28 

Keywords: Zhuhai-1 satellite, non-optical parameters, water quality, Taipu River, empirical model 29 

I. INTRODUCTION 30 

The Taipu River serves as a major drinking water supply route for the Yangtze River Delta 31 
Ecology and Greenery Integration Development Demonstration Zone in China. The upstream is 32 
linked to the East Taihu Lake Water Source, while the downstream is linked to Shanghai Jinze 33 
Reservoir and the Jiashan Changbaidang Drinking Water Source Protection Area(H. Zhu, 2018). It 34 
serves as a key canal for flood discharge and shipping, moreover, serves as a source of drinkable 35 
water, which needs to meet strict criteria for water quality and ecological balance. Along the Taipu 36 
River, the dense populations and considerable industries such as chemical, textile, printing and 37 
dyeing, polyester, will deteriorate water quality(Y. Wang et al., 2021). Recently, pollution 38 
occurrences in the Taipu River have sparked considerable concern. Therefore, analyzing the 39 
spatiotemporal distribution features of the Taipu River's water quality is increasingly critical.  40 



 

 

Four significant non-optical parameters, TN, TP, NH3-N, and NO3-N, have been extensively 41 
investigated to represent the eutrophication of rivers and lakes, which will cause a critical water 42 
pollution issue in many countries like degrading functioning and endangering water security (X. 43 
Chen et al., 2018; Liang et al., 2018; Lv & Wu, 2021; Mararakanye et al., 2022). Traditionally, 44 
in-situ measurements and the collection of water samples are the major approaches for monitoring 45 
water quality. Even if these measurements are accurate for a specific area, they cannot provide a 46 
regional perspective on water quality (Ross et al., 2019; D. Sun et al., 2014). In order to represent 47 
the spatial distribution and seasonal changes in water quality components, remote sensing 48 
technology has been adopted due to the benefits of spatial and temporal coverage (Kallio et al., 49 
2001; K. Shi et al., 2018; Xu et al., 2016). Different sensors with visible and infrared wavelengths 50 
may be utilized to monitor water quality due to high-frequency data collecting and large-scale 51 
coverage.  52 

Generally, the spectral resolution of data sources for water quality retrieval can be classified 53 
into two categories: multispectral data and hyperspectral data (H. Yang et al., 2022). In the field of 54 
multispectral water quality retrieval, many scholars monitor the TN and TP using National 55 
Oceanic and Atmospheric Administration (NOAA) Advanced Very High Resolution Radiometer 56 
(AVHRR) imagery (Y. Wang et al., 2016), Landsat series data (H. Guo et al., 2022), MODIS data 57 
(Arıman, 2021), IKONOS imagery (J. Liu et al., 2015) and Sentinel-2 imagery (H. W. Guo et al., 58 
2021). The accuracy (R2) range of TN/TP in references is from 0.36 to 0.87 and 0.59 to 0.96 59 
individually. The scenes of high-resolution multispectral SPOT-5 (Satellite Pour l'Observation de 60 
la Terre) data (X. L. Wang et al., 2011), Landsat-8 OLI satellite data (C. Liu et al., 2019), 61 
Sentinel-2 imagery (Dong et al., 2020) and Unmanned Aerial Vehicle (UAV) multispectral data(B. 62 
T. Chen et al., 2021) were used to establish the relationship between the surface reflectance and 63 
NH3-N. The accuracy (R2) range of NH3-N in references is from 0.69 to 0.88. The multispectral 64 
technology has no relevant results in the monitoring of NO3-N in inland rivers. Generally, due to 65 
spectral resolution limitations, the overall precision of multispectral remote sensing water quality 66 
is relatively low. 67 

In the field of hyperspectral water quality retrieval, hyperspectral remote sensing data from 68 
the ground-based and proximal hyperspectral imager (Q. Cao et al., 2022; X. Sun et al., 2022), the 69 
handheld Analytical Spectral Devices (ASD) field spectrometer (S. Wang et al., 2022) and the 70 
UAV equipped with a hyperspectral imaging sensor (Song et al., 2014), were applied to water 71 
quality retrieval of TN and TP. The accuracy (R2) is higher than multispectral with the range of 72 
TN/TP in references from 0.59 to 0.90 and 0.73 to 0.93 individually. The ground-based 73 
hyperspectral data(Q. Cao et al., 2022) and UAV-borne hyperspectral imagery (Wang et al., 2021) 74 
were used to estimate water quality retrieval of NH3-N. The accuracy (R2) is higher than 75 
multispectral with the range from 0.83 to 0.95. The ground-based hyperspectral data was used to 76 
estimate water quality retrieval of NO3-N. The accuracy (R2) range of NO3-N in reference is 0.77. 77 
However, focusing just on the spectrum makes it challenging to understand the spatial distribution 78 
of water quality along the whole river channel (Wang et al., 2021). In addition, non-satellite 79 
remote sensing data sources that rely on aircraft measurements are more expensive and requires 80 
superb UAV operation skills. Moreover, hyperspectral satellites can also solve the problems of 81 
synonyms spectrum in multispectral data due to its numerous bands (Y. Cao et al., 2018). These 82 
days, the Orbita Hyperspectral Satellites (OHS) with fine spectral, spatial, and temporal resolution 83 



 

 

are available. However, the applicability of monitoring inland water quality parameters utilizing 84 
OHS data has not been well investigated, particularly for the non-optically active water quality 85 
parameters.  86 

The study aims to retrieve TN, TP, NH3-N and NO3-N concentrations in the Taipu River from 87 
OHS data, as well as to investigate the performance of the empirical model based on the single 88 
band and band ratio. In the study, the case study area and relevant data sets were introduced 89 
initially. Then, the waterbody was extracted and the cloud and dark surface in the images were 90 
detected and removed. Next, we presented four empirical band arithmetic algorithms (linear, 91 
logarithmic, exponential and polynomial) for TN, TP, NH3-N and NO3-N retrieval. The 92 
performances on the Sentinel-2A multispectral image and OHS hyperspectral images were 93 
compared and the sensitive features were investigated respectively. The optimal model with the 94 
best-performed image were used to create maps of water quality concentration in the Taipu River. 95 
The results will be explained and discussed then. Finally, we draw some conclusions. 96 

II MATERIALS 97 

A. Study Sites and in Situ Data 98 

The Taipu River is a part of the Taihu Lake Basin's river network. Additionally, it is also 99 
strongly connected to the surrounding water network, which comprises 205 small to medium-sized 100 
lakes, and is impacted by the influx of tributaries on both sides of the river. The length and width 101 
of the Taipu River are 57.2 kilometers and 200 meters, respectively. The flow rate is 0.6 m/s on 102 
average, and the flow is about 300 m3/s (Yao et al., 2015). Along this canal are tens of thousands 103 
of textile factories as well as 95 centralized sewage disposal facilities. (Yao et al., 2014). 104 
Therefore, Taipu River is a typical area for water quality research.  105 

As shown in Figure 1, a total of 12 in-situ samples of water quality parameters were collected 106 
in Taipu River. The field measurements include total nitrogen (TN), total phosphorus (TP), 107 
ammonia nitrogen (NH3-N) and nitrate-nitrogen (NO3-N). The samples are all concentrated at the 108 
intersection of the major streams and regional functional zones. The sampling points were 109 
measured on July 7, 2021, since the synchronized OHS and Sentinel-2 images corresponded to the 110 
Taipu River field experiments were acquired in July 6, 2021 and July 7, 2021 respectively. 111 



 

 

 112 

Figure 1 Map of sampling sites for water quality inversion of Taipu River 113 

B. Remote Sensing Data 114 

The Zhuhai-1 mission, developed by Zhuhai Orbita Control Engineering Ltd. 115 
(https://www.myorbita.net/), was China's first commercial microsatellite constellation. The 116 
Zhuhai-1 mission includes 34 microsatellites: 12 video satellites (OVS-1/2/3/4), two high spatial 117 
resolution satellites (OUS), two radar satellites (SAR), eight infrared satellites (OIS), and ten 118 
hyperspectral satellites (OHS)(Qin et al., 2022). The Orbita Hyperspectral Satellites (OHS) 119 
comprise 32 bands with a wavelength range of 400 to 1000 nm, a spatial resolution of 10 m, and a 120 
spectral resolution of 2.5 nm. To date, the single OHS has a temporal resolution of 6 days, and the 121 
combined temporal resolution of 8 OHSs is reduced to about 1 day(Zhong et al., 2021). The OHS 122 
has significant promise for monitoring inland water quality due to its high spatial, spectral, and 123 
temporal resolutions. The preprocessing of OHS includes band combination, radiometric 124 
calibration, atmospheric correction, and orthorectification, which converts the raw images into 125 
surface reflectance with precise geometric positioning, laying the groundwork for the subsequent 126 
inversion of water quality parameters. All the preprocessing steps are completed in ENVI 5.3. 127 

Sentinel-2 Level-1C (L1C) MSI data could be downloaded from Sentinels Scientific Data 128 
Hub (https://scihub.copernicus.eu/). Sentinel-2 comprises 13 spectral bands with a wavelength 129 
range of 430 to 2190 nm. The 5 days revisit time of the twin Sentinel-2 satellites is crucial because 130 
of the water quality changes caused by weather condition. The spatial resolution of Sentinel-2 is 131 
10m, 20m and 60m, which means even small river and lakes can be studied(Toming et al., 2016). 132 
The Sen2Cor plug-in in the SNAP (SeNtinel Application Platform) toolbox was used for 133 
atmospheric correction to obtain the reflectance level images. The images then resampled to 20m 134 
resolution utilizing the Sentinel-2 Resampling technique also provided by SNAP Toolbox(J. Shi et 135 
al., 2022). Table 1 summarized the key technological characteristics of the OHS and Senitnel-2. 136 



 

 

Table 1 Center Wavelength and Spatial Resolution of OHS and Sentinel-2 137 

 OHS Sentinel-2 
Channel Center 

wavelength 
(nm) 

Band 

Number 

Spatial 

resolution 
(m) 

Center 

wavelength 
(nm) 

Band 

Number 

Spatial 

resolution 
(m) 

Blue 

443 B01 

10 490 b2 10 466 B02 

490 B03 

Green 

500 B04 

10 560 b3 10 

510 B05 

531 B06 

550 B07 

560 B08 

Red 

580 B09 

10 665 b4 10 

596 B10 

620 B11 

640 B12 

665 B13 

Red Edge1 

670 B14 

10 705 b5 20 
686 B15 

700 B16 

709 B17 

Red Edge2 
730 B18 

10 740 b6 20 
746 B19 

Red Edge3 

760 B20 

10 783 b7 20 776 B21 

780 B22 

NIR 

（Sentinel-2） 

806 B23 

10 842 b8 10 820 B24 

833 B25 

Narrow NIR 

（Sentinel-2） 

850 B26 

10 865 b8a 20 865 B27 

NIR (OHS) 

880 B28 

10 — — — 

896 B29 

910 B30 

926 B31 

940 B32 

SWIR1 
— — — 

1610 b11 20 

SWIR2 
— — — 

2190 b12 20 



 

 

III. METHODS 138 

A. Waterbody Extraction 139 

The water mask of Taipu River was derived from a vector dataset, the Open Street Map 140 
(OSM). OSM contains a huge amount of objects related to water and it is widely used in 141 
environmental applications including the extraction of rivers, lakes, and shoreline boundaries for 142 
hydrological analysis(Donchyts et al., 2016; Marshak et al., 2020). In this study, we merged all the 143 
OSM vectors in Taipu River into a single layer and corrected the typographic errors through the 144 
visual interpretation process of the OHS image. All the steps are performed in ArcMap 10.7. 145 

B. Cloud Detection and Dark Surface Detection 146 

The spectral bands of optical sensors are substantially impacted by clouds(Irish et al., 2006), 147 
in addition, the calculation of spectral indices might suffer from their existence(Huete et al., 2002). 148 
Therefore, identifying clouds in optical images is often a prerequisite for their use(Z. Zhu et al., 149 
2015). There was no cloud in the OHS image but sparse cloud in the Sentinel-2 image. Fmask 4.0 150 
was applied to detect cloud for Sentinel-2 image by integrating auxiliary data, new cloud 151 
probabilities, and novel spectral-contextual features, which outperformed Sen2Cor 2.5.5 in terms 152 
of overall accuracy by 7%(Qiu et al., 2019).  153 

Taipu River, the urban surface water, is easily affected by noise in heterogeneous urban 154 
scenes, such as soil, roadways and cloud shadows(X. Yang et al., 2018). The water index, AWEIsh, 155 
was calculated to enhance the difference between water and non-water bodies(X. Yang et al., 156 
2018). The AWEIsh tends to have positive values for water bodies, whereas negative values for 157 
soil and cloud shadows. The empirical threshold of 0.214 was adopted in this study. The 158 
waterbody of Sentinel-2 was conducted by combination of cloud detection result and non-water 159 
dark surfaces .The result of cloud/cloud shadow removal is presented in Figure 2. 160 

 161 

Figure 2 Water mask for the true color composite image (Red, green and blue bands) of Sentinel-2 scenarios (water 162 
mask in blue). 163 

C. Water Quality Inversion 164 

The water quality inversion are following three steps. First, from each sample point in the 165 

Taipu River, the mean value of 3×3 cloud-free pixels were calculated for avoiding noise 166 

effectively. Then, the single band and band ratio of OHS and Sentinel-2 were selected to create the 167 
effective spectral information expression and to provide a framework for the qualitative and 168 
quantitative assessment of water quality. Finally, linear regression model was established by linear, 169 
logarithmic, exponential and polynomial, which was constructed by Formulas (1)-(4). Model 170 
inversion was mainly realized through MATLAB 2021a. 171 



 

 

𝐿𝑖𝑛𝑒𝑎𝑟 ∝  𝑎 × 𝑅௥௦ + 𝑏        (1) 172 𝐿𝑜𝑔𝑎𝑟𝑖𝑡ℎ𝑚𝑖𝑐 ∝  𝑎 × 𝑙𝑜𝑔ଵ଴𝑅௥௦ + 𝑏      (2) 173 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 ∝  𝑎 × 𝑒௕×ோೝೞ       (3) 174 𝑃𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙 ∝  𝑎 × 𝑅௥௦ሺ𝜆ሻ + 𝑏 × 𝑅௥௦ + 𝑐     (4) 175 

where 𝑅௥௦ represents band or band ratio of remote sensing images and a, b and c are the fitting 176 
coefficients. 177 

D. Validation and Evaluation 178 

The predictive performance of the linear regression model is primarily determined by the 179 
square of the correlation coefficient (R2) and the Root Mean Squared Error (RMSE), which are 180 
calculated between the measured values and predicted values. The best models for assessing water 181 
quality are those with the highest R2 value and the lowest RMSE. The followings are the equations 182 
of measurements: 183 𝑅𝑀𝑆𝐸 = ඥ∑ ሺ𝑦௜ − 𝑦௜ᇱሻଶ௡௜ୀଵ /𝑛       (5) 184 𝑅ଶ = 1 − ∑ ሺ𝑦௜ − 𝑦௜ᇱሻଶ௡௜ୀଵ / ∑ ሺ𝑦௜ − 𝑦ത௜ሻଶ௡௜ୀଵ       (6) 185 

where 𝑦௜ and 𝑦௜ᇱ are the observed and predicted value for the ith observation; 𝑦ത௜ is the average 186 
observed value; n is the number of validation samples. 187 

IV. RESULTS 188 

A. Analysis of Measured Water Quality 189 

The statistics of the measured water quality in this experiment are listed in Table 2, which 190 
summarizes the measured water quality parameters in this experiment. The range of TN 191 
concentrations was from 0.972 to 2.192 mg/L, and the mean (± standard deviation) was 1.457 ± 192 
0.371 mg/L. According to the “Surface Water Environmental Quality Standard” (GB 3838-2002) 193 
in China, the average value of TN met the requirement of water class IV. The range of TP 194 
concentrations was from 0.03 to 0.14 mg/L, and the mean (± standard deviation) was 0.075 ±0.034 195 
mg/L. The average value of TP met the requirement of water class III. The range of NH3-N 196 
concentrations was from 0.25 to 1.45 mg/L, and the mean (± standard deviation) was 0.537 ±0.307 197 
mg/L. The average value of NH3-N met the requirement of water class III. Overall the water 198 
quality was below Class IV. Tthe overall water quality of the Taipu River tends to be the same as 199 
previous years. 200 

Table 2 Summary of water quality concentrations of Taipu River sampling points. 201 

 TN (mg/L) TP (mg/L) NH3-N (mg/L) NO3-N (mg/L) 
Maximum 2.192 0.14 1.45 1.257 
Minimum 0.972 0.03 0.25 0.001 
Mean 1.457 0.075 0.537 0.415 
Standard deviation 0.371 0.034 0.307 0.42 

B. Model Performance based on OHS and Sentinel-2 202 



 

 

As shown in Table 3, the polynomial model had the best accuracy for modeling TN, TP, 203 
NH3-N, and NO3-N concentrations based on OHS, and their R2 was 0.9678, 0.7924, 0.7682 and 204 
0.9791, the corresponding RMSE was 0.0520 mg/L, 0.0135 mg/L, 0.051 mg/L and 0.0566 mg/L. 205 
The combination of green/NIR and Red edge1/NIR bands exhibited significant relationships with 206 
TN. The combination of NIR(940nm)/NIR(820nm) and NIR(806nm)/NIR(926nm) bands 207 
exhibited significant relationships with TP. The combination of Red edge1/NIR and Red 208 
edge2/Red bands exhibited significant relationships with NH3-N. The combination of 209 
Red(596nm)/Red(665nm) and Blue/Red bands exhibited significant relationships with NO3-N. 210 
From Figure 3, a strong linear relationship was shown between the measured and the predicted 211 
concentrations of TN, TP, NH3-N and NO3-N, which also indicated that polynomial model had 212 
good prediction accuracy and was appropriate for OHS remote sensing inversion. 213 

Table 3 Statistics (R2 and RMSE) for TN, TP, NH3-N and NO3-N concentrations based on OHS image. 214 

 Model Band ratio R2 RMSE (mg/L) 

TN 

Linear B03/B05 0.6897 0.1616 
Exp B02/B09 0.6946 0.1603 
Log B03/B05 0.6892 0.1617 

Polynomial 
B05/B24、B16/B23 

0.9678 0.0520 

TP 

Linear B24/B23 0.4028 0.0228 
Exp B24/B23 0.4159 0.0226 
Log B24/B23 0.3898 0.0231 

Polynomial 
B32/B24、B23/B31 

0.7924 0.0135 

NH3-N 

Linear B23/B21 0.3055 0.0883 
Exp B25/B27 0.3479 0.0856 
Log B03/B05 0.2923 0.0891 

Polynomial 
B17/B23、B19/B11 

0.7682 0.051 

NO3-N 

Linear B10/B16 0.7458 0.1974 
Exp B10/B16 0.757 0.193 
Log B10/B16 0.7356 0.2013 

Polynomial 
B10/B13、B02/B09 

0.9791 0.0566 
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inversion results exclude negative values and values outside the 95th percentile. The inversion 238 
results showed that the maximum value of TN in the Taipu River is 1.66 mg/L, and the minimum 239 
value is 0.0067 mg/L, which is basically consistent with the in-situ measurements (TN max = 240 
2.192 mg/L, TN min = 0.972 mg/L). The maximum value of TP in the Taipu River is 0.15 mg/L, 241 
and the minimum value is 0.001 mg/L, which is basically consistent with the in-situ measurements 242 
(TP max = 0.14 mg/L, TP min = 0.03 mg/L). The maximum value of NH3-N in the Taipu River is 243 
5.2 mg/L, and the minimum value is 0.001 mg/L, which is higher than in-situ measurements 244 
(NH3-N max = 1.45 mg/L, NH3-N min = 0.25 mg/L). However, the mean value of NH3-N is 245 
0.7718 mg/L, which indicates the NH3-N concentration is low in the Taipu River. The maximum 246 
value of NO3-N in the Taipu River is 1.32 mg/L, and the minimum value is 0.001 mg/L, which is 247 
basically consistent with the in-situ measurements (NO3-N max = 1.257 mg/L, NO3-N min = 248 
0.001 mg/L). 249 

The spatial distribution of TN and NO3-N shows a general trend of deterioration in the water 250 
quality of the Taipu River from upstream to downstream. The TP and NH3-N concentration in 251 
Taipu River is evenly distributed. It also can be seen that the water quality parameter of TN in the 252 
upper reaches is class III and in the lower reaches is class IV. Moreover, the water quality 253 
parameter of TP is class III, and the water quality classification results for NH3-N is class IV. 254 



 

 

 255 

Figure 5 Spatial patterns of TN (a), TP (b), NH3-N (c) and NO3-N (d) in Taipu River. 256 

V. DISCUSSION 257 

A. Driving Forces of Water Quality in the Taipu River 258 

As the Figure 6 showed, the upper reaches of the Taipu River is occupied mainly by cropland; 259 
the middle reaches of the Taipu River is occupied mainly by impervious surface; the lower reaches 260 
of the Taipu River is dominated by forest. In this study, 38 random points was selected evenly 261 
distributed along the Taipu River to analyze the drivers of the water quality. The land cover 262 
percentage was calculated from 1km buffer.  263 



 

 

 264 

Figure 6 1km buffer zones and land cover types in the Taipu River. 265 

Diagrams derived from redundancy analysis using water quality parameters (red solid lines) 266 
and land cover metrics (black solid lines) from 1km buffers were shown in Figure 7. The angles 267 
between lines indicate the degree of correlation between individual variables, and the stronger the 268 
correlation, the smaller the angle. In addition, the acute angle between the two lines indicates a 269 
positive correlation, the obtuse angle indicates a negative correlation. The length of the lines 270 
represented the contribution of each land cover index to the water quality variables. Obviously, the 271 
narrow angles between TN and cropland indicated that cropland was primarily responsible for the 272 
negative effects on TN concentration. In particular, there has been a rise in the usage of herbicides 273 
and fertilizers in the last decades. Therefore, rapidly rising amounts of relevant pollutants have 274 
entered the river through precipitation and runoff (Xu et al., 2016). The narrow angles between 275 
three of the indicators (TP, NH3-N, and NO3-N) and built area indicated that built area was 276 
primarily responsible for the negative effects on TP, NH3-N, and NO3-N. Pollution from built area 277 
is a result of urban functions. Built-up areas are extremely likely to have a negative impact on the 278 
river's water quality due to the discharge of residential and industrial sewage (Wilson & Weng, 279 
2010). The large angle between the four water quality parameters and forest indicated that forest 280 
was primarily responsible for the beneficial effects on all the water quality parameters. Due to 281 
plant roots' capacity to absorb nitrogen, phosphorus, and organic matter, as well as soil microbes' 282 
ability to decompose organic matter, the forest has a good purifying effect on water quality than 283 
built area and cropland . 284 



 

 

 285 

Figure 7 Redundancy analysis diagram in 1km buffer zones and proportion of land use/cover types in the Taipu 286 
River. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version 287 
of this article.) 288 

B. Sensitive Bands of Non-optical Parameters between OHS and Sentinel-2 289 

In recent years, hyperspectral technology has become increasingly mature, and it offers new 290 
options for water environmental monitoring. In hyperspectral remote sensing, spectral signatures 291 
are usually high dimensional, which supports the identification of elements or the measurement of 292 
concentrations (Krutz et al., 2019). Therefore, hyperspectral remote sensing technology is more 293 
suitable for complex inland bodies of water with non-optical characteristics. The OHS 294 
hyperspectral dataset which consists of 2.5nm spectral intervals, represents the target with 295 
continuous spectrum throughout the visible and NIR regions. It is more helpful for extracting the 296 
subtle spectral differences between water quality parameters (Zhang et al., 2021). In this study, 297 
Sentinel-2 and OHS were direct compared to provide more evidence on the potential of the 298 
hyperspectral data to retrieve water quality. By comparing the results in Table 3 and Table 4, it was 299 
found that the hyperspectral dataset generated higher accuracy models than the multispectral 300 
dataset in all cases. It is also shown that the feature bands of water quality retrieval were all 301 
comprise by ratio bands, which can reduce the impact of environmental factors to increase the 302 
accuracy of the analysis. The combination of green-NIR ratio and Red edge-NIR ratio were most 303 
sensitive to TN. The combination of NIR(940nm)-NIR(820nm) ratio and 304 
NIR(806nm)-NIR(926nm) ratio were most sensitive to TP. The combination of Red edge-NIR 305 
ratio and Red edge-Red ratio were most sensitive to NH3-N. The combination of 306 
Red(596nm)-Red(665nm) ratio and R Blue-Red ratio were most sensitive to NO3-N. It is also 307 
mentioned that the combination of Red edge-Blue ratio and SWIR1-Blue ratio derived from 308 
Sentinel-2 image also showed promising results of NO3-N estimation. That means the SWIR 309 



 

 

spectral region (OHS is not available) is critical for detecting NO3-N concentration.  310 

C. Limitations of the Models 311 

The empirical method uses statistical regression models to link remotely sensed data (single 312 
bands or band ratios) to in-situ water quality parameters. It is widely used in remote sensing 313 
studies for inland water quality inversion, because it is simple and can be refined by selecting 314 
more sensitive spectral bands to improve water quality retrieval accuracy(Li et al., 2017). The 315 

results of empirical model indicated that TN、TP、NH3-N and NO3-N are highly correlated with 316 

OHS spectral data with R2 ranging from 0.76 to 0.79. The Artificial Intelligence (AI) mode (AIM) 317 
concentrates on learning-from-data algorithms and, as a result, generates highly representative 318 
features to make linear and non-linear predictions for new unseen data. AIM can also outperform 319 
traditional empirical models, which rely heavily on band selection and band combinations. Many 320 
researchers have used the AIM mode in water quality retrieval, such as neural networks (NN), 321 
support vector machines (SVM), and deep learning (DL), and achieved relatively satisfying results 322 
(Chebud et al., 2012; Leong et al., 2019; Pyo et al., 2019). Although the AIM has demonstrated 323 
some apparent improvements in assessing water quality, there is an overfitting problem when the 324 
sample is not adequate. The AIM cannot be employed in this study since the number of sampling 325 
points is limited. The comparison between the empirical model and the AIM is put forward for 326 
future research studies.  327 

VI. CONCLUSION 328 

Hyperspectral remote sensing, especially Zhuhai-1 satellite, is an emerging area for 329 
monitoring non-optically active water quality parameters, which requires a significant amount of 330 
investigation and development in terms of both methods and applications. In this study, we 331 
examined four empirical models (linear, logarithmic, exponential and polynomial) for inversion of 332 
water quality parameters from the newly available hyperspectral OHS imagery and Sentinel-2 333 
imagery in Taipu River. The evaluation results indicated that OHS performed better than 334 
Sentinel-2 for estimating TN, TP, NH3-N and NO3-N. This study also demonstrated that the 335 
polynomial model based on band ratios performed best for estimating water quality parameters. 336 
The band ratios of R(510)/R(820) and R(700)/R(806) performed the best retrieval of TN with R2 = 337 
0.9678. The band ratios of R(940)/R(820) and R(806)/R(926) performed the best retrieval of TP 338 
with R2 = 0.7924. The band ratios of R(709)/R(806) and R(746)/R(620) performed the best 339 
retrieval of NH3-N with R2 = 0.7682. The band ratios of R(596)/R(665) and R(466)/R(580) 340 
performed the best retrieval of NO3-N with R2 = 0.9791. It is worth mentioning that the band ratio 341 
of Red Eage3/Blue and SWIR1/Blue of Sentinel-2 also performed well for NO3-N inversion with 342 
R2 = 0.9513.  343 

The OHS-based empirical models were found acceptable and applicable in estimating water 344 
quality parameters of Taipu River. The spatial distribution of TN and NO3-N shows a general trend 345 
of deterioration in the water quality of the Taipu River from upstream to downstream. The TP and 346 
NH3-N concentration is evenly distributed, while all the values of water quality were relatively 347 
low across the whole Taipu River. The RDA was applied to analyze the drivers of the spatial 348 
distribution of water quality in the Taipu River. The results demonstrated that the proportion of 349 
built-up area was significantly positively correlated with TP, NH3-N and NO3-N, and cropland was 350 



 

 

significantly positively correlated with TN. The proportion of forest was significantly negatively 351 
correlated with TN, TP, NH3-N and NO3-N. In future studies, the AI models will be investigated to 352 
unlock the new opportunities of OHS data in large-scale area water quality inversion. 353 
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