
P
os
te
d
on

14
D
ec

20
22

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
es
so
ar
.1
67
10
01
70
.0
38
33
12
4/
v
1
—

T
h
is

is
a
p
re
p
ri
n
t
a
n
d
h
a
s
n
o
t
b
ee
n
p
ee
r-
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

A Verification Suite of Test Cases for the Barotropic Solver of

Ocean Models

Siddhartha Bishnu1, Mark R. Petersen2, Bryan Quaife3, and Joseph Arthur Schoonover4

1Los Alamos National Laboratory
2Los Alamos National Laboratory (DOE)
3Florida State University
4Fluid Numerics, LLC

March 29, 2024

Abstract

The development of any atmosphere or ocean model warrants a suite of test cases to verify its spatial and temporal discretiza-

tions, order of accuracy, stability, reproducability, portability, scalability, etc. In this paper, we present a suite of shallow water

test cases designed to verify the barotropic solver of atmosphere and ocean models. These include the non-dispersive coastal

Kelvin wave; the dispersive inertia-gravity wave; the dispersive planetary and topographic Rossby waves; the barotropic tide;

and a non-linear manufactured solution. These test cases check the implementation of the linear pressure gradient term; the

linear constant or variable-coefficient Coriolis and bathymetry terms; and the non-linear advection terms. Simulation results

are presented for a variety of time-stepping methods as well as two spatial discretizations: a mimetic finite volume method

based on the TRiSK scheme, and a high-order discontinuous Galerkin spectral element method. We explain the strategies that

need to be adopted for specifying initial and non-periodic boundary conditions on hexagonal meshes. Convergence studies of

every test case are conducted with refinement in both space and time, only in space, and only in time. The convergence slopes

match the expected theoretical predictions.
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Abstract17

The development of any atmosphere or ocean model warrants a suite of test cases to18

verify its spatial and temporal discretizations, order of accuracy, stability, reproducability,19

portability, scalability, etc. In this paper, we present a suite of shallow water test cases20

designed to verify the barotropic solver of atmosphere and ocean models. These include21

the non-dispersive coastal Kelvin wave; the dispersive inertia-gravity wave; the dispersive22

planetary and topographic Rossby waves; the barotropic tide; and a non-linear manufactured23

solution. These test cases check the implementation of the linear pressure gradient term;24

the linear constant or variable-coefficient Coriolis and bathymetry terms; and the non-linear25

advection terms. Simulation results are presented for a variety of time-stepping methods26

as well as two spatial discretizations: a mimetic finite volume method based on the TRiSK27

scheme, and a high-order discontinuous Galerkin spectral element method. The experimental28

procedure for conducting these numerical experiments is detailed. It underscores several key29

considerations that vary depending on the chosen spatial discretization method. Finally,30

convergence studies of every test case are conducted with refinement in both space and31

time, only in space, and only in time. The convergence slopes match the expected theoretical32

predictions.33

Plain Language Summary34

Before running an atmosphere, ocean, or a coupled climate simulation, every model35

developer should ensure the correct implementation of each term in the governing equations36

that drive the models forward in time. This motivates the development of idealized test37

cases, each of which verifies a subset of terms in the governing equations with different38

initial and boundary conditions. Here we present a suite of six test cases for the momentum39

equation and sea surface height equation for ocean models in a single-layer configuration.40

The computed results from the ocean model can be compared to exact solutions. The41

computed solution always has a small error, but is said to converge to the exact solution42

with reduction in grid cell size and time step. If the model converges at the expected43

rate, then we know that it is solving the governing equations correctly. We show results of44

convergence tests from two models, and share the full specifications of these test cases so45

that other ocean modelers may reproduce them.46

1 Introduction47

The verification of spatial and temporal discretizations is an important step in the48

development of any computational physics model based on partial differential equations49

(PDEs). Verification suites, with tests of increasing complexity that exercise a subset of50

terms, are particularly useful to identify problems as well as to compare discretization51

methods. Analysis metrics include the order of accuracy, stability, reproducibility, portability,52

computational performance, and scalability to large core counts. Atmosphere and ocean53

models are no different in this regard. Numerous test cases (TC) have been implemented54

in these models for benchmarking their results and performance against accepted standards55

(Bishnu et al., 2023). In this introduction, we provide an overview of the most influential56

test cases for geophysical fluids, and those that inspired the development of this paper.57

Additionally, we show that the shallow water test cases presented here satisfy a need in58

ocean model verification that is not provided in previous publications.59

We start with the work of D. L. Williamson et al. (1992) that was published over three60

decades ago. They introduced a set of seven test cases for the discretized shallow water61

equations in a spherical geometry:62

(i) advection of a cosine bell with compact support around the sphere;63

(ii) a zonal geostrophically balanced flow, which is a steady state solution of the full64

non-linear shallow water equations;65
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(iii) a steady state non-linear zonal geostrophic flow, almost equivalent to (ii), except with66

a compactly supported non-zero wind field;67

(iv) forced non-linear advection of a translating low pressure center superimposed on a jet68

stream that is symmetric about the equator;69

(v) zonal flow impinging on an isolated mountain;70

(vi) Rossby-Haurwitz waves, representing exact solutions to the non-linear nondivergent71

barotropic vorticity equation; and72

(vii) a numerical experiment initialized from observed atmospheric states, with results73

compared to the finest possible resolution.74

The Williamson test cases have been adopted as verification tools by numerous atmosphere75

and ocean models, including spectral element models in spherical geometries (Taylor et al.,76

1997; Thomas & Loft, 2002) and continuous Galerkin spectral element dynamical core in77

the Community Atmosphere Model (CAM) version 5 (Dennis et al., 2012), computational78

performance in CAM Evans et al. (2019), and others (Spotz et al., 2015). The Williamson79

cases are so frequently used that they are the canonical set of tests for new geophysical80

fluid dynamical cores (Walko & Avissar, 2008; T. D. Ringler et al., 2010). Our group81

has recently used Williamson test cases to verify local time-stepping schemes (Capodaglio82

& Petersen, 2022) and to measure improvements in stability and accuracy in the TRiSK83

scheme (Calandrini et al., 2021).84

The Aqua-Planet Experiment (APE) was first proposed by Neale and Hoskins (2000)85

as a benchmark for atmospheric general circulation models (AGCMs), and its aims were86

summarized by Blackburn and Hoskins (2013). The model setup consists of an idealised87

ocean-covered Earth, thereby eliminating the effect of topography and land on atmospheric88

flow. Surface forcing is provided by sea surface temperature varying only in latitude. Such89

an intermediate APE is more complex than a dry dynamical core experiment, but simpler90

than a full-climate simulation coupled to active land, ocean, and ice models. Therefore, the91

APE bridges the gap between realistic simulation and conceptual models of atmospheric92

phenomena in the existing modeling hierarchy. Despite these simplifications, APEs have93

produced realistic climate features like transient high and low pressure systems, convectively94

coupled equatorial waves, and tropical cyclones. Blackburn et al. (2013) compared climate95

simulations with 16 atmospheric general circulation models (AGCMs) on an aquaplanet,96

with the idealised configuration designed to expose differences in the circulation simulated by97

these models. APEs were performed with the variable-resolution spectral element dynamical98

core of CAM by Zarzycki et al. (2014), and the fundamental characteristics of the aquaplanet99

climate simulated by CAM5.3 are described in Medeiros et al. (2016). Chavas and Reed100

(2019) employed APEs under uniform thermal forcing and variable global dynamical forcing101

to test existing hypotheses regarding tropical cyclone genesis and size, whereas Merlis and102

Held (2019) provided a nice review of tropical cyclone simulations with APEs. Möbis103

and Stevens (2012) determined the factors controlling the position of the Intertropical104

Convergence Zone (ITCZ) on an aquaplanet. Although the Aquaplanet Experiment (APE)105

is predominantly tailored for atmospheric models, when integrated with a global ocean106

model, it sheds light on ocean-atmosphere dynamics without the influence of land-sea107

disparities and topographical intricacies. For instance, Donohoe et al. (2014) delved into the108

impact of the ocean mixed layer depth on climate using a series of slab ocean aquaplanet109

simulations.110

The prominent test cases employed by ocean models to quantify mixing and dianeutral111

transport are:112

(i) the lock exchange or dam break test case to measure mixing in the simplest possible113

configuration (D.-P. Wang (1984), Haidvogel and Beckmann (1999), Jankowski (1999),114

Ilıcak et al. (2012), Kärnä et al. (2013), Petersen et al. (2015), Gibson et al. (2017),115

Kärnä et al. (2018));116
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(ii) the overflow test case to investigate the impact of topography on spurious mixing117

(Haidvogel and Beckmann (1999), Ilıcak et al. (2012), Petersen et al. (2015));118

(iii) the Dynamics of Overflow Mixing and Entrainment (DOME) test case to study the119

model’s ability to simulate density-driven overflows (Ezer and Mellor (2004), Legg120

et al. (2006), Q. Wang et al. (2008), Burchard and Rennau (2008), Reckinger et al.121

(2015), Gibson et al. (2017), Kärnä et al. (2018));122

(iv) the internal wave test case to examine spurious dianeutral mixing associated with123

the adjustment of an internal gravity wave in a vertically stratified fluid (Ilıcak et al.124

(2012), Petersen et al. (2015), Gibson et al. (2017));125

(v) the three-dimensional mesoscale baroclinic eddies test case at eddy-permitting grid126

resolution in the presence of rotation, to measure mixing under conditions closer to127

a realistic high-resolution global ocean models (Ilıcak et al. (2012), Petersen et al.128

(2015), Gibson et al. (2017), Kärnä et al. (2018)); and129

(vi) the spin-down of a global ocean climate model at non-eddying and eddy permitting130

grid resolutions (Ilıcak et al. (2012), Petersen et al. (2015)).131

The COmmunity MODelling Ocean (COMODO) project was funded by the French132

National Agency for Research to benchmark and improve existing ocean models and methods,133

and guide their future evolution. It consisted of the following test cases:134

(i) Stommel gyre test case of Hecht et al. (2000) for testing the conservation of tracers;135

(ii) Adapted Smolarkeiwicz test case for testing the terrain-following coordinate;136

(iii) Lock exchange test case for testing the tracer advection scheme and diapycnal mixing;137

(iv) Barotropic vortex test case for testing the tracer and momentum advection schemes,138

and the time-stepping method;139

(v) Baroclinic vortex test case for testing the tracer and momentum advection-diffusion140

schemes, the time-stepping method, and the vertical coordinate;141

(vi) Baroclinic jet test case for testing the effective resolution, the tracer and momentum142

advection-diffusion schemes, the time-stepping method, and the vertical coordinate;143

(vii) Thacker’s bowl test case for testing the wetting and drying phenomenon, the pressure144

gradient term, and the vertical coordinate;145

(viii) Two-dimensional vertical upwelling test case for testing the time-stepping method,146

the vertical coordinate, and the bottom boundary conditions;147

(ix) Internal tide test case for testing the vertical coordinate, the tracer and momentum148

advection-diffusion schemes, and the pressure gradient term;149

(x) Sea mount test case for testing the tracer and momentum advection-diffusion schemes,150

the lateral boundary conditions, and the current-topography interactions.151

The COMODO project paved the way to the successful COMMODORE workshops on the152

numerical solution techniques of PDEs that govern ocean circulation from global to coastal153

scales.154

Two simplified linear models of the stationary quasi-geostrophic equations, namely the155

Stommel (Stommel, 1948) and Stommel–Munk (Munk & Carrier, 1950) models, have been156

employed as verification tools by numerous shallow water and barotropic ocean models. The157

Stommel model can be used to test the ability of an ocean model to reproduce the western158

intensification phenomenon. The Stommel–Munk model, on the other hand, focuses on159

the wind-driven gyres and the Ekman spiral, and can be used to test the representation of160

wind-driven circulation and the response of the ocean surface layer to wind stress. Foster161

et al. (2013) and Kim et al. (2015) presented conforming finite-element methods of the162

streamfunction formulation of the stationary one-layer quasi-geostrophic equations for the163

study of the large scale wind-driven ocean circulation. The finite element discretization in164

Foster et al. (2013) employed Argyris elements, whereas Kim et al. (2015) used a B-spline165

basis. Rotundo et al. (2016) presented the error analysis of the method in Kim et al. (2015),166

and Jiang and Kim (2016) generalized the method to domains with arbitrary shaped coastal167

boundaries. Myers and Weaver (1995) presented a diagnostic barotropic finite-element ocean168
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circulation model in Cartesian and spherical coordinates, and tested it against the linear169

Stommel and Munk models, as well as the barotropic circulation in the North Atlantic170

Ocean in the presence of realistic lateral boundaries and topography. Comblen et al.171

(2010) considered continuous, discontinuous, as well as partially discontinuous finite element172

formulations for the non-conservative shallow water equations, that are second-order accurate173

in space. In addition to the linear and non-linear versions of the Stommel and Munk gyres,174

the numerical solution was benchmarked against unsteady and steady wave equations, Stokes175

flow, and the geostrophic equilibrium. Düben et al. (2012) studied the applicability of a new176

finite element in atmosphere and ocean modeling that combines a second-order continuous177

representation for the scalar field with a first-order discontinuous representation for the178

velocity field. Q. Chen and Ju (2018) proposed conservative finite-volume schemes for solving179

the inviscid and viscous quasi-geostrophic equations on coastal-conforming unstructured180

primal–dual meshes. They also performed numerical experiments with a freely evolving181

circular flow, and the intensified western boundary current. Beel et al. (2019) introduced a182

novel strong form-based meshfree collocation method to directly discretize the second-order183

Stommel model and the fourth-order Stommel–Munk model for the large-scale wind-driven184

ocean circulation simulations.185

We mention the relevant limited area, coastal, and tidal test cases in the ocean modeling186

literature, starting with Drago and Iovenitti (2000). They introduced a three-dimensional187

finite-difference model for coastal oceans and evaluated its performance against various188

scenarios, including a wind-driven current, a wind and Coriolis force balance, an Ekman189

spiral, tidal circulation, tidal flood and ebb on a beach, and a coastal jet influenced by a190

long-shore wind. Fringer et al. (2006) discussed the fundamental hydrodynamic kernel of the191

Stanford Unstructured Nonhydrostatic Terrain-following Adaptive Navier–Stokes Simulator192

(SUNTANS), a finite-volume, unstructured-grid, nonhydrostatic, parallel, coastal-ocean193

solver. They tested it against a non-hydrostatic lock exchange test case, a non-hydrostatic194

internal seiche test case, and the generation of internal waves in the Monterey Bay region.195

Santilli and Scotti (2015) presented the Stratified Ocean Model with Adaptive Refinement196

(SOMAR), a computational framework for the evolution of non-hydrostatic, baroclinic197

flows encountered in regional and coastal ocean simulations. It combines the flexibility198

of Adaptive Mesh Refinement with a set of numerical tools specifically developed to address199

the high degree of anisotropy of oceanic flows and the accompanying numerical challenges.200

The modeling framework was applied to (1) the lock exchange test case; (2) the beam201

generation test case following Jalali et al. (2014) to analyze the generation of internal202

waves; and (3) the Dubreil–Jacotin–Long (DJL) solution, which is an exact solution of203

the Euler equations. Garcia et al. (2019) validated the nonhydrostatic General Curvilinear204

Coastal Ocean Model (GCCOM) for stratified flows against the lock exchange test case; a205

three dimensional internal seiche test case; and a field-scale internal wave beams test case,206

following the experimental setup of Vitousek and Fringer (2014). Herzfeld et al. (2011)207

reviewed some realistic test cases for limited area ocean modelling, including a coastal shelf208

model application used for down-scaling; tidal response of a gulf with one open boundary209

across the mouth of the gulf; and the response of a coastal region to the passage of a tropical210

cyclone.211

Many atmosphere, ocean and climate models are equipped with test suite creation and212

verification infrastructure, in addition to the forward time-stepping core. For example, test213

cases for MPAS-Ocean (T. Ringler et al., 2013) are available in the Configuration of Model214

for Prediction Across Scales Setups (COMPASS) repository (Asay-Davis et al., 2024) and215

more recently the Polaris repository (Asay-Davis & Begeman, 2024). The test cases are often216

contained within a separate directory of the model itself, and tutorials for a subset of the test217

cases are available on the online manual e.g. MITgcm (Marshall et al., 1997), MOM (Griffies218

et al., 2005), SUNTANS (Fringer et al., 2006), or the README file of the Github repository219

of the model e.g. Oceananigans (Ramadhan et al., 2020), NEMO (Madec et al., 2023), or220

a Wikipedia page e.g. ROMS (Shchepetkin & McWilliams, 2005). Standardized test cases221

provide a method to compare the solution quality and computational speed between models,222
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and even between different languages and architectures. For example, Bishnu et al. (2023)223

uses the coastal Kelvin wave and inertia-gravity wave cases to compare Fortran-MPI against224

Julia-MPI on CPUs and GPUs.225

1.1 Contributions of this work226

The majority of test cases mentioned in the introduction of our study are primarily used227

for validation, rather than verification. Verification, in simplest terms, investigates ‘if we are228

solving the equations right,’ contrasting with validation, which scrutinizes ‘if we are solving229

the right equations.’ Verification is a methodical process that quantifies simulation errors,230

displays the convergence of the numerical solution towards established benchmarks such231

as analytical and manufactured solutions with refinement in space and time, and ensures232

software quality. In contrast, code validation delves into whether the models themselves are233

representations of the right equations, aiming to assess how well a model mirrors the real234

world from the perspective of its intended application. The core objective of validation is235

to instill confidence in the model’s predictive capability by comparing it with observed and236

experimental data. As a best practice, verification should precede validation to facilitate237

precise assessments.238

Our work with MPAS-Ocean and interactions with fellow ocean modelers has enlightened239

us to the dangers of overlooking essential verification steps in favor of more advanced240

validation exercises. For instance, bypassing proper verification can inadvertently allow241

subtle software bugs to slip through, that are challenging to detect later on. As an illustrative242

example, consider a scenario where an implementation error in the spatial discretization of243

the non-linear advection term in the continuity equation compromises the spatial order of244

accuracy of an ocean model under development. The model remains stable due to the245

diffusion terms in the governing equations and the inherent diffusion within the numerical246

scheme. It performs satisfactorily against standard validation exercises, thereby arousing no247

suspicion. If this ocean model’s predictive capability falls short compared to a more mature248

model, one might contemplate enhancing specific attributes like the discretization scheme,249

parametrizations, topographic representation, open boundary conditions, or coupling with250

other Earth system model components. While some of these modifications may still be251

necessary, without definitive evidence, we might completely overlook the possibility of252

incorrect implementation of the non-linear advection term. Its cumulative effect over long253

simulation times is far from negligible, and rectifying it may significantly improve the model’s254

predictive capability. This highlights the imperative of extensive verification exercises—the255

primary subject of this paper—before proceeding with model validation. Such meticulous256

scrutiny could have exposed the non-linear advection term’s bug early in the model’s257

developmental phase, thereby saving valuable time for the developers. Moreover, the creation258

of a verification suite, although a one-time investment, can be integrated within an automated259

nightly regression suite. This allows for regular examination every time a substantial260

modification is introduced into the model, promoting a robust and consistent development261

process.262

In this paper, we present a verification suite of shallow water test cases consisting of263

the non-dispersive coastal Kelvin wave, the dispersive inertia-gravity wave, the dispersive264

planetary and topographic Rossby waves, the barotropic tide, and a non-linear manufactured265

solution specifically designed for the barotropic mode. Our primary motivation for selecting266

these shallow water test cases stems from their routine usage in evaluating the dynamical267

core of atmosphere and ocean models. Moreover, many of these models are equipped268

with a barotropic-baroclinic time-splitting operation. This technique advances the fast,269

two-dimensional, depth-independent external gravity waves explicitly with a small barotropic270

time step or implicitly with a large one. The residual three-dimensional subsystem, which271

models slower internal gravity waves and ocean currents, is advanced using a large baroclinic272

time step. This splitting approach substantially enhances the computational efficiency of273

the models, often by orders of magnitude, when compared to employing a small time step for274
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the full three-dimensional equations, as dictated by the CFL condition for the fastest wave.275

Notably, within this framework, the barotropic equations adopt the form of inhomogeneous276

rotating shallow water equations, with the source term represented by the barotropic average277

of a subset of terms within the baroclinic momentum equation. As a result, our carefully278

chosen shallow water test cases can also serve as verification tools for the barotropic solver279

integrated within these models.280

A secondary, yet substantial motivation for this research is to furnish model developers281

with a method to critically assess their code designed to numerically solve fluid dynamics282

problems, such as those pertaining to the shallow water equations or the hydrostatic primitive283

equations. Our methodology initiates with a set of governing equations, upon which we284

apply spatial and temporal discretizations. We then implement this discretized formulation285

into the code. Our approach leverages fundamental knowledge of classical geophysical286

phenomena such as non-dispersive and dispersive geophysical waves, which can be modeled287

by the code. So, we devise straightforward test cases, beginning with linear ones, and then288

progressing to non-linear ones. This ensures that we accurately capture the behaviors of289

these geophysical phenomena. After all, correctly modeling basic problems is foundational to290

successful oceanic modeling, not to mention the development of general circulation models291

(GCMs). However, securing the correct answer using a fixed spatial grid and time step292

size is insufficient. It is essential to perform refinement in spatial grid size and time step293

to demonstrate the attainment of the appropriate convergence rate. In essence, this not294

only verifies that the correct solution is achieved but also assures that it is achieved for the295

correct underlying reasons. If the correct convergence rate is not obtained, the numerical296

method or its implementation may be flawed, and any successful result could be coincidental297

rather than systematic. Our robust set of test cases is therefore an invaluable resource298

for anyone engaged in the development of a GCM. At some stage in the development299

process, the accurate resolution of the shallow water equations is almost inevitably required.300

Moreover, the present work elucidates a comprehensive process for evaluating both the301

physical and numerical correctness of the code. Through carefully chosen examples, this302

paper aims to demonstrate not only the methodology but also the underlying principles,303

thereby contributing a vital tool for future developments in the field of ocean modeling.304

Equally pivotal, and forming the third cornerstone of our paper’s objectives, is its305

pedagogical value, particularly in enriching the curriculum of geophysical fluid dynamics306

courses. This work extends beyond theoretical concepts, providing a practical, hands-on307

approach to learning. By integrating the physical characteristics of various geophysical308

waves (Sections 2.5, 2.6, 2.7, and 2.8), including equatorial waves (Section A2), with their309

numerical simulations, this work bridges the gap between theory and practice. Students can310

visualize and appreciate the dynamic evolution of these waves, enhancing their understanding311

of these complex geophysical phenomena. Moreover, the paper equips students with the312

tools and knowledge to critically evaluate the accuracy of numerical ocean models, or even313

a basic code they develop for visualizing geophysical waves. They can verify the correctness314

of the discretized equations of motion implemented in these models, by ensuring that the315

numerical solution convergences at the expected theoretical rate based on the spatial and316

temporal orders of accuracy.317

Among the cited literature, the seven cases of D. L. Williamson et al. (1992), the318

Stommel and Stommel-Munk test cases, and the COMODO barotropic vortex test case are319

specifically designed for shallow water equations. Only test cases (i)–(iv) of D. L. Williamson320

et al. (1992), the Stommel, and Stommel-Munk test cases are equipped with exact solutions.321

However, the exact solution of the fluid layer depth of test case (iii) and the exact solution322

of all the prognostic variables of test case (iv) of D. L. Williamson et al. (1992) consists323

of an integral which is difficult to evaluate analytically, and is computed using numerical324

quadrature. The exact solutions of test cases (ii) and (iii) of D. L. Williamson et al. (1992)325

as well as the Stommel and Stommel-Munk test cases are steady-state solutions. The326

remaining test cases, meant for validation rather than verification, investigate anomalous327
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mixing, coastal processes, etc., but not the accuracy of the barotropic solver in a split328

baroclinic-barotropic time stepping scheme. To properly test the accuracy of the barotropic329

solver, the existence of analytical time-dependent solutions is crucial. They serve as a330

benchmark, towards which the numerical solutions are expected to converge, when refined331

simultaneously in both space and time. The creation of our test cases arose from these332

practical needs during the development and improvement of MPAS-Ocean. Although the333

exact solutions of some of these test cases are provided in standard geophysical fluid dynamics334

textbooks e.g. Cushman-Roisin and Beckers (2011), this work contributes to the development335

of a standard verification suite by providing specific details of the initial and boundary336

conditions, error plots, and rates of convergence, that will be useful for comparison with337

other ocean models.338

The structure of this paper is organized as follows: Section 2 provides the essential339

theoretical foundation on the shallow water equations and offers a concise overview of the test340

cases, which encompass geophysical waves, barotropic tide, and a non-linear manufactured341

solution. In Section 3, we discuss the spatial and temporal discretizations applied to342

the prognostic equations. Our study employs two types of spatial discretizations: (1) a343

mimetic finite volume based on the TRiSK scheme and used in MPAS-Ocean; and (2) a344

high-order Discontinuous Galerkin Spectral Element Method implemented in the Spectral345

Element Library in Fortran (SELF). The prognostic equations are advanced using a variety346

of time-stepping methods. Section 6 presents the numerical results, including time evolution347

of the error as well as convergence plots with refinement in both space and time, only348

in space, and only in time. Conclusions are drawn in Section 7. Appendix A outlines349

an additional suite of shallow water test cases with exact solutions, consisting of a plane350

wave, diffusion, advection-diffusion, a moving shock, as well as non-dispersive and dispersive351

equatorial waves. Appendix B underscores the relevance of the shallow water test cases in the352

context of baroclinic-barotropic splitting in oceanic models, illustrating how the barotropic353

equations align with the form of inhomogeneous rotating shallow water equations. Finally,354

Appendix C delves into nuanced aspects of the numerical implementation, including the355

specification of initial and boundary conditions on hexagonal meshes, and the interpolation356

of the numerical solution or the error to the coarsest mesh for refinement only in space.357

2 A Verification Suite of Shallow Water Test Cases358

We have developed a verification suite for shallow water cases, starting with linear359

test cases before advancing to non-linear ones. With each test case, we incrementally360

introduce a new layer of complexity, enabling us to verify the implementation of every361

term in the equations governing barotropic motion and the shallow water core in ocean362

models. The linear test cases, consisting of the linear geophysical waves and the barotropic363

tide, are tailored to verify the pressure gradient, Coriolis, and linearized advection terms.364

Conversely, the non-linear test cases, encompassing the non-linear planetary and topographic365

Rossby waves, along with the manufactured solution, prove instrumental for examining the366

non-linear advection terms. The source term in the manufactured solutions can exemplify367

the barotropic average of the baroclinic terms found on the right-hand side of the barotropic368

equations.369

Although lacking exact solutions, we have incorporated the Rossby waves into our370

verification suite for several compelling reasons. First, these comprehensive test cases, in371

their non-linear form, verify the implementation of each and every term in the non-linear372

shallow water equations. Second, they feature non-trivial variations in the meridional373

gradient of the Coriolis parameter and the bottom topography (Section 2.4). Third, Rossby374

wave test cases illustrate that exact solutions are not a prerequisite for verifying the model’s375

spatial and temporal orders of accuracy. This can be achieved by plotting the norm of376

the differences between numerical solutions over successive pairs of spatial and temporal377

resolutions, refined at a constant ratio, instead of the actual error norm (Section 4.5).378
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Finally, these test cases significantly contribute to the educational aspect of our research379

(Section 1.1).380

Building on the rationale for including Rossby waves in our verification suite, it is381

important to clarify that the second reason does not diminish the value of test cases with382

exact solutions. In fact, the actual error norm of the numerical solution, defined only383

for these test cases, converges under the simultaneous spatial and temporal refinement384

(Section 4.3). Additionally, it is worth noting that for certain test cases and specific385

resolution ranges, the norm of differences between numerical solutions over a pair of spatial386

or temporal resolution, may be minimal and susceptible to overshadowing by round-off387

errors. This scenario underscores the need for additional test cases, preferably those with388

exact solutions, to ensure comprehensive verification (Section 6.1, bullet point 10).389

Before delving into detailed descriptions of the various test cases, we provide a brief390

theoretical overview of equations representing shallow water and barotropic flows.391

2.1 The Shallow Water Equations392

The non-linear rotating shallow water equations, representing the shallow water core393

of ocean models, can be expressed compactly as394

ut + u · ∇u+ fk × u = −g∇(h+ b) + ν∇2u, (1a)

ht +∇ · (hu) = 0, (1b)

where u(x, y, t) = u(x, y, t)i+v(x, y, t)j is the velocity vector, h(x, y, t) is the shallow water395

layer thickness above the bottom topography b(x, y) originating at z = 0, η(x, y, t) is the396

surface elevation, f is the Coriolis parameter, g is the acceleration due to gravity, and ν is397

the horizontal viscosity. The subscripts denote partial differentiation, and i, j, and k are398

the unit vectors in the x, y and z directions. If H represents the mean depth of the fluid at399

rest, then the surface elevation η(x, y, t) at any point in time satisfies400

η(x, y, t) = h(x, y, t) + b(x, y)−H, (2)

Using (2) and replacing the non-linear advection term in (1a) with the right-hand side of401

the vector identity402

u · ∇u = (∇× u)× u+∇|u|2
2

= {k · (∇× u)}k × u+∇|u|2
2
, (3)

we obtain the vector-invariant form of the momentum equation403

ut +∇K + (ζ + f)u⊥ = −g∇η + ν∇2u. (4)

Here u⊥ = k × u, K = |u|2/2 is the kinetic energy, and ζ = k · (∇ × u) is the relative404

vorticity.405

2.2 The Barotropic Equations406

The barotropic equations of an ocean model can be expressed in vector-invariant form407

ut + fu⊥ = −g∇η + ν∇2u+G, (5a)

ηt +∇ · (htotalu) = 0, (5b)

where htotal =
∑N
k=1 hk is the total depth equivalent to the sum of individual layer thicknesses408

hk, u =
(∑N

k=1 hku
)
/htotal is the barotropic velocity, and G is the barotropic average409

of specific baroclinic terms. Typically, the diffusion term ν∇2u is encapsulated within410

G, and it does not explicitly feature in the barotropic momentum equation (5a), except411

in some variants such as Blumberg and Mellor (1987). A comprehensive demonstration412
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of the barotropic-baroclinic splitting procedure, alongside a derivation of the barotropic413

equations of motion using MPAS-Ocean as a case study, can be found in Appendix B. In an414

analytical comparison against the shallow water equations (1), it becomes evident that the415

barotropic equations (5) essentially mirror the form of (1), albeit with some key differences:416

the exclusion of the non-linear advection term and the introduction of the source term G417

in the momentum equation, and the substitution of the shallow water velocity and layer418

thickness by the barotropic velocity u and the total depth htotal respectively.419

The shallow water and barotropic equations can be succinctly expressed as the following420

set of equations:421

ut +∇K︸︷︷︸
(1)

+ ζu⊥
︸︷︷︸
(2)

+ f0u
⊥

︸ ︷︷ ︸
(3)

+β0yu
⊥

︸ ︷︷ ︸
(4)

= − g∇η︸︷︷︸
(5)

+ ν∇2u︸ ︷︷ ︸
(6)

+ G︸︷︷︸
(7)

, (6a)

ηt +∇ · (Hu)︸ ︷︷ ︸
(8)

+∇ · (ηu)︸ ︷︷ ︸
(9)

−∇ · (bu)︸ ︷︷ ︸
(10)

= 0, (6b)

where the Coriolis parameter f has been decomposed into its leading-order components:422

f0, the base Coriolis parameter at a reference latitude, and β0y, where β0 is the meridional423

gradient of f . The non-linear advection term in the continuity equation has been split into424

three parts using (2). Each term in (6), excluding the temporal derivatives, is labeled for425

convenient referencing in test cases that verify its numerical implementation.426

2.3 Shallow Water Equations in Cartesian Coordinates427

The inviscid rotating shallow water equations in Cartesian coordinates are428

ut + uux + vuy − fv = −g(h+ b)x, (7a)

vt + uvx + vvy + fu = −g(h+ b)y, (7b)

ht + (hu)x + (hv)y = 0. (7c)

Inserting (2) into (7), we obtain429

ut + uux + vuy − fv = −gηx, (8a)

vt + uvx + vvy + fu = −gηy, (8b)

ηt + (hu)x + (hv)y = 0. (8c)

The geophysical waves consisting of the coastal Kelvin wave, the inertia-gravity wave, and430

the planetary and topographic Rossby waves are solutions to the linearized rotating inviscid431

shallow water equations, obtained by dropping the non-linear terms in (8) as432

ut − fv = −gηx, (9a)

vt + fu = −gηy, (9b)

ηt + {(H − b)u}x + {(H − b)v}y = 0. (9c)

In the case of a flat bottom, b(x, y) = 0, h(x, y, t) = H + η(x, y, t), and (9) reduces to433

ut − fv = −gηx, (10a)

vt + fu = −gηy, (10b)

ηt +H (ux + vy) = 0. (10c)

In the subsequent subsections, we review the exact solutions associated with the various434

test cases, which we have numbered 1–6 for convenient reference. The derivations of these435

exact solutions, particularly for some of the geophysical wave test cases, can be found in436

standard textbooks on geophysical fluid dynamics (GFD), such as those by Vallis (2017),437

Cushman-Roisin and Beckers (2011), Pedlosky (1987), and Gill (2016).438
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2.4 Summary of Shallow Water Test Cases439

The test cases presented in the following sections, summarized in Table 1, assess the440

numerical implementation of various terms within the rotating shallow water equations.441

Each of them incorporates the Coriolis force, which imparts rotation to the shallow water.442

The Coriolis term is constant, rendering the domain of motion to be an f-plane for all but443

the planetary Rossby wave test case, where the Coriolis term is a linear function of y and444

the domain of wave motion is a beta-plane. The topographic Rossby wave test case uniquely445

features a sloping bottom as a linear function of y, while others possess a flat bottom.446

With the meridional gradient of the Coriolis parameter and the bottom topography being447

non-trivial for the planetary and the topographic Rossby waves respectively, the shallow448

water systems for these solutions are variable-coefficient. In contrast, the systems for other449

test cases remain constant-coefficient. The non-linear planetary and topographic Rossby450

waves, along with the manufactured solution test case verify the implementation of the451

non-linear advection terms. In fact, the non-linear Rossby wave test cases check every452

term in the non-linear homogeneous shallow water equations. On the other hand, the453

coastal Kelvin wave, inertia-gravity wave, linear Rossby waves, and the barotropic tide are454

solutions to the linearized form of these equations, thus their governing PDEs are stripped of455

non-linear terms. Table 1 concisely captures the assumptions underpinning the geophysical456

waves, the barotropic tide, and the non-linear manufactured solution. This table details the457

nature of the simplified PDEs for the shallow water equations, applied boundary conditions,458

and the specific terms from (6) that are tested. In the context of convergence studies, where459

extensive simulation times are unnecessary, the diffusion terms for the non-linear Rossby460

wave test cases are discretionary and are denoted with an asterisk.461

Table 1. Summary of assumptions for the geophysical waves, barotropic tide, and non-linear

manufactured solution, detailing the nature of the corresponding simplified PDEs for the shallow

water equations, their applied boundary conditions, and the specific terms tested from (6), with

optional ones indicated by an asterisk.

Coriolis Bottom Numerical Boundary Terms Verified
Parameter Topography PDE Conditions in Equation (6)

1. Coastal Kelvin Constant Flat Linear, Homogeneous, Non-Periodic in x (3), (5),
Wave (f-plane) Bottom Constant-Coefficient Periodic in y (8)

2. Inertia-Gravity Constant Flat Linear, Homogeneous, Periodic in x (3), (5),
Wave (f-plane) Bottom Constant-Coefficient Periodic in y (8)

3a. Planetary Linear in y Flat Linear, Homogeneous, Radiation or (3), (4), (5),
Rossby Wave (beta-plane) Bottom Variable-Coefficient No-Normal Flow (8)

3b. Planetary Linear in y Flat Non-Linear, Homogeneous, Radiation or (1), (2), (3), (4), (5),
Rossby Wave (NL) (beta-plane) Bottom Variable-Coefficient No-Normal Flow (6)∗, (8), (9)

4a. Topographic Constant Linear in y, Linear, Homogeneous, Radiation or (3), (5)
Rossby Wave (f-plane) Sloping Bottom Variable-Coefficient No-Normal Flow (8), (10)

4b. Topographic Constant Linear in y, Non-Linear, Homogeneous, Radiation or (1), (2), (3), (5),
Rossby Wave (NL) (f-plane) Sloping Bottom Variable-Coefficient No-Normal Flow (6)∗, (8), (9), (10)

5. Barotropic Constant Flat Linear, Homogeneous, Non-Periodic in x, (3), (5)
Tide (f-plane) Bottom Constant-Coefficient Non-Periodic in y (8)

6. Manufactured Constant Flat Non-Linear, Inhomogeneous, Periodic in x, (1), (2), (3), (5),
Solution (f-plane) Bottom Constant-Coefficient Periodic in y (7), (8), (9)

2.5 Test Case 1: Coastal Kelvin Wave462

A Kelvin wave is a lateral disturbance that requires the presence of a topographic463

boundary e.g. the oceanic coast or a waveguide e.g. the equator. As the name implies,464

the coastal Kelvin wave belongs to the topographic boundary category and is therefore a465
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In the case of a flat bottom, b(x, y) = 0, h(x, y, t) = H + ⌘(x, y, t), and (9) reduces to

ut � fv = �g⌘x, (10a)

vt + fu = �g⌘y, (10b)

⌘t + H (ux + vy) = 0. (10c)

In the subsequent subsections, we review the exact solutions associated with the various368

test cases, which we have numbered 1–6 for convenient reference. The derivations of these369

exact solutions, particularly for some of the geophysical wave test cases, can be found in370

standard textbooks on geophysical fluid dynamics (GFD), such as those by Vallis (2017),371

Cushman-Roisin and Beckers (2011), Pedlosky (1987), and Gill (2016).372

2.4 Test Case 1: Coastal Kelvin Wave373

A Kelvin wave is a lateral disturbance that requires the presence of a topographic374

boundary e.g. the oceanic coast or a waveguide e.g. the equator. As the name implies,375

the coastal Kelvin wave belongs to the topographic boundary category and is therefore a376

common phenomenon along coastlines. It travels with the coast on its right in the Northern377

Hemiphere and with the coast on its left in the Southern Hemisphere. Its amplitude378

decreases exponentially away from the coast with a decay scale equal to the barotropic379

Rossby radius of deformation. This is why the coastal Kelvin wave appears to be ‘trapped’380

near the coast. It is non-dispersive which causes the coastal Kelvin wave to preserve its381

initial profile as it propagates in the alongshore direction over time.382

Figure 1. Time evolution of the exact surface elevation of TC1, the non-dispersive coastal Kelvin

wave, in the entire domain (first row), and along the coastline (second row), with dashed and dotted

lines representing component wave modes, and the solid line representing the resultant wave.

Following the derivation in Cushman-Roisin and Beckers (2011), if the coastline is
aligned along the y-axis (x = 0) and we specify u = 0 throughout the domain, we arrive at
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common phenomenon along coastlines. It travels with the coast on its right in the Northern466

Hemiphere and with the coast on its left in the Southern Hemisphere. Its amplitude467

decreases exponentially away from the coast with a decay scale equal to the barotropic468

Rossby radius of deformation. This is why the coastal Kelvin wave appears to be ‘trapped’469

near the coast. It is non-dispersive which causes the coastal Kelvin wave to preserve its470

initial profile as it propagates in the alongshore direction over time.471

Following the derivation in Cushman-Roisin and Beckers (2011), if the coastline is472

aligned along the y-axis (x = 0) and we specify u = 0 throughout the domain, we arrive at473

the physically feasible general solution474

u = 0, (11)

v =
√
gHF (y + ct)e−x/R, (12)

η = −HF (y + ct)e−x/R. (13)

Here R = c/f =
√
gH/f is the barotropic Rossby radius of deformation, a length scale where475

rotational effects are considered important. From (12) and (13), we observe that R is also a476

measure of the trapping distance of the Kelvin wave from the coast. The dispersion relation477

of a coastal Kelvin wave mode with angular frequency ω and meridional wavenumber ky478

is ω = cky, where the wave speed c =
√
gH is independent of ky, a characteristic of479

non-dispersive waves.480

In our numerical simulations, we choose a sinusoidal meridional profile defined by481

F (y) = η̂ sin(kyy). In addition, we designate the exact solution to be a superposition482

of two wave modes, with the second mode having twice the amplitude and wavenumber483

components compared to the first, i.e., η̂(2) = 2η̂(1) and k
(2)
y = 2k

(1)
y . Here, η̂(1) = 10−4

484
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m, k
(1)
y = 2π/Ly, and Ly denotes the meridional extent of the domain. For this test case485

and subsequent ones, we set f0 = 10−4 s−1, g = 10 m s−2 and H = 103 m, yielding486

c =
√
gH = 100 m s−1 and R = c/f0 = 106 m. As elaborated in Section 2.7, f0 is identical487

to the Coriolis parameter f on an f-plane, but corresponds to its leading-order component488

on a beta-plane. The zonal extent is specified as Lx = 5R = 5 × 106 m, ensuring the wave489

amplitude diminishes to virtually zero just west of the open eastern boundary. For all test490

cases, the meridional extent is set as Ly =
√
3/2Lx when modeled with the TRiSK-based491

finite volume method, and as Ly = Lx when discretized with the discontinuous Galerkin492

spectral element method (DGSEM). Figure 1 presents the temporal evolution of the exact493

surface elevation of the coastal Kelvin wave. The first row illustrates the surface elevation494

throughout the entire domain, while the second row depicts the surface elevation along the495

coastline. Here, dashed and dotted lines denote the component wave modes, with the solid496

line indicating the resultant wave. Both component wave modes propagate at identical497

phase speeds, a fact that can be confirmed by tracking the crest or trough of the first wave498

mode and one crest or trough of the second wave mode, and observing that their relative499

positions do not vary over time. This phenomenon leads to the maintenance of the original500

resultant profile without distortion, a characteristic anticipated for a non-dispersive wave.501

2.6 Test Case 2: Inertia-Gravity Wave502

As discussed in Cushman-Roisin and Beckers (2011), by eliminating the requirement of503

a lateral boundary and the constraint u = 0, we can assume a Fourier series solution to (10)504

of the form505 

η
u
v


 = Re







η̂
û
v̂


 ei(kxx+kyy−ωt)



 , (14)

and arrive at the dispersion relation506

ω
{
ω2 −

(
c2k2 + f2

)}
= 0, (15)

where k =
√
k2x + k2y. The root ω = 0 corresponds to the steady geostrophic state and the507

remaining two roots ω = ±ω̂, where ω̂ =
√
c2k2 + f2, correspond to oppositely-travelling508

inertia-gravity waves with super-inertial frequency (ω > f). Since the zonal and meridional509

phase speeds, given by cx = ω/kx and cy = ω/ky, are functions of the wavenumber510

components kx and ky, the inertia-gravity wave is dispersive. To arrive at a particular511

solution consisting of only the inertia-gravity wave mode ω̂, we replace ω by ω̂ and insert512

(14) in (10), which results in513

−iω̂û− fv̂ = −ikxgη̂, (16a)

−iω̂v̂ + fû = −ikygη̂, (16b)

−iω̂η̂ + iH (kxû+ ky v̂) = 0. (16c)

We can now solve any two equations of (16) to obtain514

û =
gη̂

ω̂2 − f2
(ω̂kx + ifky) , (17)

v̂ =
gη̂

ω̂2 − f2
(ω̂ky − ifkx) , (18)

and demonstrate that these values of û and v̂ satisfy the third equation as well. Therefore,515

the particular solution consisting of only the inertia-gravity wave mode ω̂ is516

η = Re
{
η̂ei(kxx+kyy−ω̂t)

}
, (19)

u = Re

{
gη̂

ω̂2 − f2
(ω̂kx + ifky) e

i(kxx+kyy−ω̂t)
}
, (20)

v = Re

{
gη̂

ω̂2 − f2
(ω̂ky − ifkx) e

i(kxx+kyy−ω̂t)
}
, (21)
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Figure 2. Same as Figure 1, but for TC2, the high-frequency dispersive inertia-gravity wave,

with the second row depicting the time evolution of the exact surface elevation and its component

wave modes (represented by solid, dashed, and dotted lines respectively) along the south-west to

north-east diagonal of the domain.

We can now solve any two equations of (16) to obtain

û =
g⌘̂

!̂2 � f2
(!̂kx + ifky) , (17)

v̂ =
g⌘̂

!̂2 � f2
(!̂ky � ifkx) , (18)

and demonstrate that these values of û and v̂ satisfy the third equation as well. Therefore,
the particular solution consisting of only the inertia-gravity wave mode !̂ is

⌘ = Re
n
⌘̂ei(kxx+kyy�!̂t)

o
, (19)

u = Re

⇢
g⌘̂

!̂2 � f2
(!̂kx + ifky) ei(kxx+kyy�!̂t)

�
, (20)

v = Re

⇢
g⌘̂

!̂2 � f2
(!̂ky � ifkx) ei(kxx+kyy�!̂t)

�
, (21)

which simplifies to

⌘ = ⌘̂ cos(kxx + kyy � !̂t), (22)

u =
g⌘̂

!̂2 � f2
{!̂kx cos(kxx + kyy � !̂t) � fky sin(kxx + kyy � !̂t)} , (23)

v =
g⌘̂

!̂2 � f2
{!̂ky cos(kxx + kyy � !̂t) + fkx sin(kxx + kyy � !̂t)} . (24)

We once again specify the exact solution in our numerical simulations to be the sum405

of two wave modes, whose amplitudes and wavenumbers satisfy ⌘̂(2) = 2⌘̂(1), k
(2)
x = 2k

(1)
x ,406
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which simplifies to517

η = η̂ cos(kxx+ kyy − ω̂t), (22)

u =
gη̂

ω̂2 − f2
{ω̂kx cos(kxx+ kyy − ω̂t)− fky sin(kxx+ kyy − ω̂t)} , (23)

v =
gη̂

ω̂2 − f2
{ω̂ky cos(kxx+ kyy − ω̂t) + fkx sin(kxx+ kyy − ω̂t)} . (24)

We once again specify the exact solution in our numerical simulations to be the sum518

of two wave modes, whose amplitudes and wavenumbers satisfy η̂(2) = 2η̂(1), k
(2)
x = 2k

(1)
x ,519

and k
(2)
y = 2k

(1)
y , where η̂(1) = 0.1 m, Lx = 107 m, k

(1)
x = 2π/Lx, and k

(1)
y = 2π/Ly. The520

domain extents Lx and Ly are chosen carefully to ensure that the ratio f/ck ranges between521

0.5 and 1.0 for these wave modes, so that both the gravity and the rotational forces play522

important roles in their generation. The first row of Figure 2 exhibits the surface elevation523

in the entire domain, and the second row depicts the surface elevation along the south-west524

to north-east diagonal. With the phase speed now being a function of the wavenumber,525

the component wave modes represented by dashed and dotted lines propagate at different526

phase speeds (as manifested by the temporal variation in the relative position of the crest527

or trough of the first wave mode with respect to a crest or trough of the second wave mode).528

This leads to modification of the resultant wave profile (represented by a solid line) with529

time, a characteristic that aligns with the behavior of a dispersive wave.530
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2.7 Test Case 3: Planetary Rossby Wave531

Planetary Rossby waves are low-frequency dispersive waves that feel the rotation of532

the Earth. They owe their existence to the variation of the Coriolis parameter f = 2Ω sin θ533

with the latitude θ, where Ω denotes Earth’s rotational rate. A Taylor expansion of f534

around a reference latitude θ0, limited to the first two terms, results in f = f0 + β0y.535

Here, f0 = 2Ω sin θ0, β0 = 2(Ω/a) cos θ0, and a represents Earth’s radius. A geophysical536

wave motion’s domain is termed a beta-plane if the β term is included, and an f-plane537

if not. The beta-plane approximation is applicable when β0y ≪ f0 across the domain,538

implying β = β0L ≪ f0, where L indicates the meridional extent of the domain and β is a539

dimensionless planetary number. For Earth’s mid-latitudes, typical values are f0 ≈ 10−4 s−1
540

and β0 ≈ 2× 10−11 m−1 s−1, which we adopt in our numerical simulations as well.541
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and k
(2)
y = 2k

(1)
y , where η̂(1) = 1, k

(1)
x = 2π/Lx, and k

(1)
y = 2π/Ly. The domain extent407

Lx and Ly are chosen carefully to ensure that the ratio f/ck ranges between 0.5 and 1.0408

for these wave modes, so that both the gravity and the rotational forces play important409

roles in their generation. The first row of Figure 2 exhibits the the surface elevation in410

the entire domain, and the second row depicts the surface elevation along the south-west411

to north-east diagonal. With the phase speed now being a function of the wavenumber,412

the component wave modes represented by dashed and dotted lines propagate at different413

phase speeds (as manifested by the temporal variation in the relative position of the crest414

or trough of the first wave mode with respect to a crest or trough of the second wave mode).415

This leads to modification of the resultant wave profile (represented by a solid line) with416

time, a characteristic that aligns with the behavior of a dispersive wave.417
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Figure 3. Time evolution of the numerical surface elevation of TC3, the low-frequency dispersive

planetary Rossby wave, in the entire domain (first row) and along the merdional section through

the domain center (second row), advanced with Williamson’s low-storage third-order Runge-Kutta

time-stepping method, and spatially discretized with DGSEM using 10 elements and polynomial

basis functions of order 7 in each horizontal direction.

2.6 Test Case 3: Planetary Rossby Wave418

Planetary Rossby waves are low-frequency dispersive waves that feel the rotation of419

the Earth. They owe their existence to the variation of the Coriolis parameter f = 2Ω sin θ420

with the latitude θ, where Ω denotes Earth’s rotational rate. A Taylor expansion of f421

around a reference latitude θ0, limited to the first two terms, results in f = f0 + β0y.422

Here, f0 = 2Ω sin θ0, β0 = 2(Ω/a) cos θ0, and a represents Earth’s radius. A geophysical423

wave motion’s domain is termed a beta-plane if the β term is included, and an f-plane424

if not. The beta-plane approximation is applicable when β0y � f0 across the domain,425

implying β = β0L� f0, where L indicates the meridional extent of the domain and β is a426
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Figure 3. Time evolution of the numerical surface elevation of TC3, the low-frequency dispersive

planetary Rossby wave, in the entire domain (first row) and along the zonal section through the

domain center (second row), advanced with Williamson’s low-storage third-order Runge-Kutta

time-stepping method, and spatially discretized with DGSEM using 10 elements and polynomial

basis functions of order 7 in each horizontal direction.

Planetary Rossby waves represent a slow evolution of steady geostrophic flows, with the542

velocity field consisting of a leading-order geostrophic term and an ageostropic perturbation543

term. Following the derivation in Cushman-Roisin and Beckers (2011), if the velocities are544

approximated solely by the geostrophic terms and inserted into the momentum equations,545

a first-order velocity approximation is obtained. Applying these velocities to the continuity546

equation (10c) yields a constant-coefficient equation, the Fourier series solution of which547

results in the dispersion relation548

ω = − β0R
2kx

1 +R2
(
k2x + k2y

) . (25)
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For shorter waves, where the length scale L(∼ 1/kx ∼ 1/ky) ≲ R, we find ω ∼ β0L.549

Longer waves, with L(∼ 1/kx ∼ 1/ky) ≳ R, yield ω ∼ β0R
2/L ≲ β0L. In both cases,550

under the assumption β0L ≪ f0, we obtain ω ≪ f0, affirming the subinertial nature of the551

planetary Rossby wave. The zonal and meridional phase speeds, represented by cx = ω/kx552

and cy = ω/ky, are clearly functions of the wavenumber components kx and ky, thereby553

attributing to the wave’s dispersive nature. Moreover, the zonal phase speed is invariably554

negative, with higher potential vorticity on the right of the propagation direction, resulting555

in a phase propagation in westward, northwestward, or southwestward directions.556

Our attempt to simulate the planetary Rossby wave using the shallow water equations557

presents a unique challenge. Since the shallow water equations admit a spectrum of wave558

solutions, it is impossible to only extract the low-frequency planetary Rossby waves as a559

numerical solution. To simulate the low-frequency planetary Rossby waves, we numerically560

solve the linear but variable-coefficient shallow water equations on a beta-plane. We specify561

the initial surface elevation as a Gaussian blob at the center of the domain, and obtain the562

initial velocities using the pressure gradient force and geostrophic balance:563

η(x, y, t = 0) = η̂e−{(x−x0)
2/(2R2

x)+(y−y0)2/(2R2
y)}, (26)

u(x, y, t = 0) =
g

f0R2
y

(y − y0)η̂e
−{(x−x0)

2/(2R2
x)+(y−y0)2/(2R2

y)}, (27)

v(x, y, t = 0) = − g

f0R2
x

(x− x0)η̂e
−{(x−x0)

2/(2R2
x)+(y−y0)2/(2R2

y)}. (28)

Here η̂ = 0.01 m represents the surface elevation amplitude, (x0, y0) represents the center564

of the domain with zonal extent Lx = 106 m, and the decay scales Rx and Ry amount to565

10% of the zonal and meridional extents of the domain. Time integration results in the566

evolution of this ‘geostrophic’ monopole on the beta-plane. Since we are not equipped with567

the time-dependent exact solutions, we demonstrate high-resolution numerical solutions in568

Figure 3 obtained using (a) a high-order discontinuous Galerkin spectral element method569

(DGSEM) in space with 10 elements and polynomial basis functions of order 7 in each570

horizontal direction, resulting in seventh-order spatial accuracy, and (b) the low-storage571

third-order Runge-Kutta method of J. Williamson (1980) in time. The first row illustrates572

the time evolution of the numerical surface elevation in the entire domain, and the second573

row depicts the same along the zonal section through the domain center. Right after574

initialization, some gravity waves radiate out of the monopole towards the domain boundaries.575

We impose radiation boundary conditions by setting the external state to a motionless576

fluid with no free surface height variation (u = v = 0, η = 0), leading to the eventual577

propagation of the gravity waves out of the domain. Alternatively, if solid wall or no-normal578

flow boundary conditions were applied, these gravity waves would continue propagating579

along the domain boundaries as coastal Kelvin waves. On a much slower time scale on580

the order of the diurnal motion of the Earth, we observe the monopole itself propagating581

in the direction of the planetary Rossby waves, with increasing potential vorticity to the582

right of the propagation direction. The monopole can be considered to be a superposition583

of infinite wave modes with different wavelengths, each of which propagates according to584

the dispersion relation (25). Due to the dispersive nature of the planetary Rossby wave, the585

wave modes with different wavelengths propagate with different phase speeds, resulting in586

a distortion of the initial Gaussian profile of the monopole with time (as observed in the587

plots of Figure 3).588

The non-linear advection terms can also be turned on, along with appropriate diffusion589

terms to ensure a stable solution over prolonged simulation times. It is worth mentioning590

that the inclusion of non-linear and diffusion terms verifies the implementation of every term591

in the non-linear homogeneous shallow water equations. While we present the numerical592

solution for the linear version of the planetary Rossby wave test case, the non-linear solutions593

have also been thoroughly examined. In our convergence analyses, aimed at verifying the594

spatial and temporal orders of accuracy, both the linear and non-linear versions of the595
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planetary Rossby wave were solved. As extensive simulation times are not required for596

these convergence studies, the activation of diffusion terms is optional for this purpose.597

2.8 Test Case 4: Topographic Rossby Wave598

The topographic Rossby wave arises because of variations of the bottom topography.599

Following the derivation in Cushman-Roisin and Beckers (2011), we only consider a bottom600

topography with a small slope of constant magnitude in the meridional direction. If α0601

denotes the bottom slope, the topography is b(x, y) = −α0y. Using (2), the thickness of the602

shallow water layer at any point in time is603

h(x, y, t) = H + η(x, y, t)− b(x, y) = H + α0y + η(x, y, t). (29)
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according to the dispersion relation (25). Due to the dispersive nature of the planetary457

Rossby wave, the wave modes with different wavelengths propagate with different phase458

speeds, resulting in a distortion of the initial Gaussian profile of the monopole with time459

(as observed in the plots of Figure 3).460

The non-linear advection terms can also be turned on, along with appropriate diffusion461

terms to ensure a stable solution over prolonged simulation times. It is worth mentioning462

that the inclusion of non-linear and diffusion terms verifies the implementation of every term463

in the non-linear homogeneous shallow water equations. While we present the numerical464

solution for the linear version of the planetary Rossby wave test case, the non-linear solutions465

have also been thoroughly examined. In our convergence analyses, aimed at verifying the466

spatial and temporal orders of accuracy, both the linear and non-linear versions of the467

planetary Rossby wave were solved. As extensive simulation times are not required for468

these convergence studies, the activation of diffusion terms is optional for this purpose.469

2.7 Test Case 4: Topographic Rossby Wave470

The topographic Rossby wave arises because of variations of the bottom topography.
Following the derivation in Cushman-Roisin and Beckers (2011), we only consider a bottom
topography with a small slope of constant magnitude in the meridional direction. If α0

denotes the bottom slope, the topography is b(x, y) = −α0y. Using (2), the thickness of the
shallow water layer at any point in time is

h(x, y, t) = H + η(x, y, t)− b(x, y) = H + α0y + η(x, y, t). (29)
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Figure 4. Same as Figure 3, but for TC4, the topographic Rossby wave.

The requirement of a gentle bottom slope implies α = α0L/H � 1, where α is a471

dimensionless parameter similar to the planetary number, and L is the horizontal length472
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Figure 4. Same as Figure 3, but for TC4, the topographic Rossby wave.

The requirement of a gentle bottom slope implies α = α0L/H ≪ 1, where α is a604

dimensionless parameter similar to the planetary number, and L is the horizontal length605

scale of motion. Just like the planetary Rossby waves, the velocity field of their topographic606

analogues consist of a leading-order geostrophic term, and a much smaller ageostrophic607

correction term. The ageostrophic terms, driving the motion of these waves, are O (α)608

relative to the geostrophic ones, resulting in subinertial wave frequencies ω ∼ αf ≪ f .609

Again, assuming the velocities to consist entirely of the geostrophic terms and inserting610

them into the momentum equations, we arrive at a first-order approximation of the velocities,611

which upon insertion into the continuity equation results in a constant-coefficient equation,612

the Fourier series solution of which results in the dispersion relation613

ω =
α0gkx

f
{
1 +R2

(
k2x + k2y

)} . (30)
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The zonal and meridional phase speeds, given by cx = ω/kx and cy = ω/ky, depend on the614

wavenumber, rendering the topographic Rossby waves dispersive. Since cx has the same sign615

as α0f , in the northern hemisphere (where f > 0), the topographic Rossby waves propagate616

with the shallower side on their right. Similar to planetary Rossby waves, the potential617

vorticity increases towards the right of the direction of the zonal phase propagation.618

Figure 4 illustrates high-resolution numerical solutions for the topographic Rossby wave,619

modeled using DGSEM and RK3. The horizontal domain extents, the spatial and temporal620

resolutions, as well as the initial and boundary conditions have been configured to match621

their counterparts for the planetary Rossby wave test case (Section 2.7). The bottom slope622

is chosen to be α0 = β0H0/f0, with β0 = 2× 10−11 m−1 s−1, f0 = 10−4 s−1 and H0 = 1000623

m. As a result, the depth increases northward, and the different modes of the dispersive624

topographic Rossby wave, each associated with a unique wavenumber, exhibit the same625

phase speeds as their planetary analogues, though they travel in the opposite direction, i.e.,626

eastward. Due to the variation of phase speed with wavenumber, the initial profile is no627

longer maintained, as evidenced by the plots in Figure 4. Just like the planetary Rossby wave628

test case, our presentation focuses on the linear solution. However, we have also explored629

the non-linear solution, which effectively tests every term in the homogeneous non-linear630

shallow water equations. During our convergence studies, we address both variants of the631

topographic Rossby wave.632

2.9 Test Case 5: Barotropic Tide633

Following the analysis of barotropic tides in Clarke and Battisti (1981) and Clarke634

(1991), we consider a simple model of the continental shelf, with constant depth h from the635

coast at x = 0 to the edge of the shelf at x = L, where the depth abruptly increases to H636

and remains so in the deep sea. By combining equations (10a), (10b) and (10c), we arrive637

at the single equation638

∇2ηt −
1

c2
(
ηttt + f2ηt

)
= 0, (31)

for modeling sinusoidal barotropic tides with c2 = gh on the continental shelf and c2 = gH639

on the coast. Assuming the continental shelf is long and straight, and applying scaling640

analysis and no-normal flow boundary condition at the coast, we arrive at the complete641

solution642

η = η̂ cos(kx) cos(ωt), (32)

u =
η̂gωk

ω2 − f20
sin(kx) sin(ωt), (33)

v =
η̂gf0k

ω2 − f20
sin(kx) cos(ωt), (34)

where ω =
√
ghk2 + f20 . Rewriting (32) as643

η =
1

2
η̂ cos(kx− ωt) +

1

2
η̂ cos(kx+ ωt), (35)

we can interpret the surface elevation as the sum of two waves perpendicular to the coast644

but travelling in opposite directions. Tidal resonance occurs when the ratio of coastal to645

deep sea level is infinite, i.e. when646

η(0)

η(L)
=

1

cos(kL)
= ±∞, (36)

which occurs when647

L =

(
m+

1

2

)
π

k
=

(
m+

1

2

)
π

√
gh

ω2 − f2
, (37)

for a non-negative integer m.648
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scale of motion. Just like the planetary Rossby waves, the velocity field of their topographic473

analogues consist of a leading-order geostrophic term, and a much smaller ageostrophic474

correction term. The ageostrophic terms, driving the motion of these waves, are O (↵)475

relative to the geostrophic ones, resulting in subinertial wave frequencies ! ⇠ ↵f ⌧ f .476

Again, assuming the velocities to consist entirely of the geostrophic terms and inserting
them into the momentum equations, we arrive at a first-order approximation of the velocities,
which up on insertion into the continuity equation results in a constant-coe�cient equation,
the Fourier series solution of which results in the dispersion relation

! =
↵0gkx

f
�
1 + R2

�
k2

x + k2
y

� . (30)

The zonal and meridional phase speeds, given by cx = !/kx and cy = !/ky, depend on the477

wavenumber, rendering the topographic Rossby waves dispersive. Since cx has the same sign478

as ↵0f , in the northern hemisphere (where f > 0), the topographic Rossby waves propagate479

with the shallower side on their right. Similar to planetary Rossby waves, the potential480

vorticity increases towards the right of the direction of the zonal phase propagation.481

Figure 5. Time evolution of the exact surface elevation of TC5, the barotropic tide, in the entire

domain (first row), and along any zonal section (second row).

Figure 4 illustrates high-resolution numerical solutions for the topographic Rossby wave,482

modeled using DGSEM and RK3. The spatial resolution, time-step size, as well as the initial483

and boundary conditions have been configured to match their counterparts for the planetary484

Rossby wave test case (Section 2.6). The bottom slope is chosen to be ↵0 = �0H0/f0,485

with �0 = 2 ⇥ 10�11m�1s�1, f0 = 10�4s�1 and H0 = 1000 m. As a result, the depth486

increases northward, and the di↵erent modes of the dispersive topographic Rossby wave,487

each associated with a unique wavenumber, exhibit the same phase speeds as their planetary488

analogues, though they travel in the opposite direction, i.e., eastward. Due to the variation489
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Figure 5. Time evolution of the exact surface elevation of TC5, the barotropic tide, in the entire

domain (first row), and along any zonal section (second row).

Figure 5 depicts the time evolution of the barotropic tide in the entire domain (first649

row) with zonal extent Lx = 2.5 × 105 m, and along any zonal section (second row). The650

exact surface elevation is chosen to be a superposition of two standing wave modes, each of651

which is the sum of two wave modes of equal amplitude and phase speed but traveling in652

opposite directions. Each of these component modes is uniform in the meridional direction.653

Their wavelengths, λ(1) = 2π/k(1) and λ(2) = 2π/k(2), amount to 4/5-th and 4/9-th of the654

zonal extents of the domain, which satisfy the conditions for tidal resonance. The surface655

elevation amplitudes are designated as η̂(1) = 0.2 m and η̂(2) = 2η̂(1). The second row656

of Figure 5 shows the resultant barotropic tide as a solid green line, while its underlying657

standing wave modes are indicated by solid red and blue lines. The individual components658

of each standing wave mode are represented by dashed and dotted lines of the same color.659

2.10 Test Case 6: Non-linear Manufactured Solution660

The method of manufactured solutions (MMS) has been applied to a wide variety of661

scientific and engineering codes involving the numerical solution of linear and non-linear662

PDEs. MMS can be used to generate PDEs with exact solutions so that the order of663

accuracy of numerical methods can be investigated. The basic idea of MMS is to choose664

such an exact solution, u = ue, and insert it in the left-hand side of the governing PDE665

L(u) = 0, where u represents the dependent variable. This gives rise to a source term666

f = L(ue), which is only a function of space and time, and the coefficients appearing in667

the PDE. The modified PDE L(u) = f is then discretized as L∆(u∆) = f∆, and solved to668

obtain the numerical solution u∆, where the subscript ∆ represents the set of discretization669

parameters.670
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PDEs. MMS can be used to generate PDEs with exact solutions so that the order of510

accuracy of numerical methods can be investigated. The basic idea of MMS is to choose511

such an exact solution, u = ue, and insert it in the left-hand side of the governing PDE512

L(u) = 0, where u represents the dependent variable. This gives rise to a source term513

f = L(ue), which is only a function of space and time, and the coe�cients appearing in514

the PDE. The modified PDE L(u) = f is then discretized as L�(u�) = f�, and solved to515

obtain the numerical solution u�, where the subscript � represents the set of discretization516

parameters.517

Detailed investigations of MMS against benchmark solutions with su�ciently complex
structure were conducted by Salari and Knupp (2000) and Roache (2002). Within the
geophysical literature, test case (iv) of D. L. Williamson et al. (1992) belongs to the
category of MMS. More recently, Kärnä et al. (2018) presented a steady-state baroclinic
manufactured solution in one vertical and one horizontal dimension. In contrast, we propose
a time-dependent barotropic manufactured solution in the horizontal plane,

u = ⌘̂ cos(kxx + kyy � !t), (38a)

v = 0, (38b)

⌘ = ⌘̂ sin(kxx + kyy � !t), (38c)

which solves the non-linear rotating inviscid shallow water equations

ut + uux + vuy � fv = �g⌘x + su, (39a)

vt + uvx + vvy + fu = �g⌘y + sv, (39b)

⌘t + {(H + ⌘)u}x + {(H + ⌘)v}y = s⌘. (39c)

Figure 6. Same as Figure 12, but for TC6, the non-linear manufactured solution, with the

second row depicting the time evolution of the exact surface elevation along the south-west to

north-east diagonal of the domain.
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Figure 6. Same as Figure 5, but for TC6, the non-linear manufactured solution, with the second

row depicting the time evolution of the exact surface elevation along the south-west to north-east

diagonal of the domain.

Detailed investigations of MMS against benchmark solutions with sufficiently complex671

structure were conducted by Salari and Knupp (2000) and Roache (2002). Within the672

geophysical literature, test case (iv) of D. L. Williamson et al. (1992) belongs to the673

category of MMS. More recently, Kärnä et al. (2018) presented a steady-state baroclinic674

manufactured solution in one vertical and one horizontal dimension. In contrast, we propose675

a time-dependent barotropic manufactured solution in the horizontal plane,676

u = η̂ cos(kxx+ kyy − ωt), (38a)

v = 0, (38b)

η = η̂ sin(kxx+ kyy − ωt), (38c)

which solves the non-linear rotating inviscid shallow water equations677

ut + uux + vuy − fv = −gηx + su, (39a)

vt + uvx + vvy + fu = −gηy + sv, (39b)

ηt + {(H + η)u}x + {(H + η)v}y = sη. (39c)

Inserting the exact solution (38) into the left-hand side of (39), we obtain the source terms678

su = η̂ {(−f + gkx) cosϕ+ ω sinϕ− η̂(kx + ky) sin(2ϕ)/2} , (40a)

sv = η̂ {(f + gky) cosϕ+ ω sinϕ− η̂(kx + ky) sin(2ϕ)/2} , (40b)

sη = η̂ {−H(kx + ky) sinϕ− ω cosϕ+ η̂(kx + ky) cos(2ϕ)} , (40c)

where the phase ϕ = kxx+ kyy−ωt. As expected, the source terms undergo modification if679

the governing equations being discretized assume a different form. For instance, if we employ680
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the discontinuous Galerkin Spectral Element Method (DGSEM), outlined in Section 3.2, for681

spatial discretization, one option is to start out with the conservative form of the non-linear682

rotating shallow water equations. The conservative form can be obtained by adding the683

depth-multiplied momentum equations (7a) and (7b) to the continuity equation (7c). The684

resulting equations are685

(hu)t + (hu2 + gh2/2)x + (huv)y − fhv = −ghbx, (41a)

(hv)t + (huv)x + (hv2 + gh2/2)y + fhu = −ghby, (41b)

ht + (hu)x + (hv)y = 0. (41c)

The source terms transition to686

shu = η̂H {(gkx − f) cosϕ+ ω sinϕ}
+ η̂2 [sin(2ϕ) {−H(kx + ky) + (gkx − f)/2} − ω cos(2ϕ)]

+ η̂3(kx + ky)
{
− sin(2ϕ) sinϕ+ cos3 ϕ

}
, (42a)

shv = η̂H {(gky + f) cosϕ+ ω sinϕ}
+ η̂2 [sin(2ϕ) {−H(kx + ky) + (gky + f)/2} − ω cos(2ϕ)]

+ η̂3(kx + ky)
{
− sin(2ϕ) sinϕ+ cos3 ϕ

}
, (42b)

sh = η̂ {−H(kx + ky) sinϕ− ω cosϕ+ η̂(kx + ky) cos(2ϕ)} , (42c)

where the water depth is simplified to h(x, y, t) = H + η(x, y), and the right-hand side of687

(41a) and (41b) is reduced to zero due to the presence of a flat bottom (b = 0). Figure 6688

depicts the time evolution of the manufactured solution across the entire domain (first row)689

and along the south-west to north-east diagonal (second row). The relevant parameters are690

Lx = 107 m and η̂ = 0.01 m. The wavenumbers are defined by kx = 2π/Lx and ky = 2π/Ly.691

The angular frequency is ω = c
√
k2x + k2y, with c =

√
gH = 100 m s−1 representing the speed692

of shallow water gravity waves.693

While we have utilized (38) to ‘manufacture’ our solution for this non-linear test case,694

any smooth solution in space and time can serve the purpose, provided that the source695

terms are accurately defined. For instance, the exact solutions of the coastal Kelvin wave,696

inertia-gravity wave, and the barotropic tide, which solve the linearized homogeneous form697

of (39), can be employed to ‘manufacture’ our solution and verify the implementation of698

non-linear terms. In these cases, the source terms are essentially the non-linear terms of (39)699

computed with the exact solutions, and can be expressed as:700

su = [uux + vuy]exact , (43a)

sv = [uvx + vvy]exact , (43b)

sη = [(ηu)x + (ηv)y]exact . (43c)

3 Spatial and Temporal Discretizations701

To generate the numerical solutions, we have developed a rotating shallow water solver702

in an object-oriented Python environment (Bishnu, 2024a). This tool employs two forms of703

spatial discretizations: first, a mimetic finite volume method based on the TRiSK framework704

(Thuburn et al., 2009; T. D. Ringler et al., 2010), and second, a high-order discontinuous705

Galerkin spectral element method (DGSEM). The primary motivation for selecting these two706

spatial discretization methods originates from their widespread application in operational707

ocean models. These models generally adopt708

(a) finite volume methods (LeVeque, 2002; Eymard et al., 2003; Versteeg & Malalasekera,709

2007; Patankar, 2018); or710

(b) finite element (Zienkiewicz et al., 2005; Bathe, 2006; Hughes, 2012; D. L. Logan, 2022)711

or spectral element (Patera, 1984; Maday & Patera, 1989; Karniadakis & Sherwin,712

2005; D. A. Kopriva, 2009) methods.713
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Finite volume methods (FVMs) serve as a highly efficient method for solving PDEs.714

By partitioning the computational domain into a finite set of control volumes, FVMs715

approximate the integral form of the governing equations over these volumes. This method’s716

distinct advantage lies in its conservation of quantities of interest, making it a preferred717

choice for problems bound by conservation laws, typical in fields such as fluid dynamics and718

heat transfer. Many ocean models like Oceananigans (Ramadhan et al., 2020), MITgcm719

(Marshall et al., 1997), MOM (Griffies et al., 2005), ROMS (Shchepetkin & McWilliams,720

2005), NEMO (Madec et al., 2023), FVCOM (C. Chen et al., 2006), and MPAS-Ocean721

(T. Ringler et al., 2013) utilize FVMs for spatial discretization.722

The finite element method (FEM), on the other hand, offers a versatile solution to tackle723

complex problems, often formulated as PDEs in engineering and mathematical physics.724

The computational domain, divided into a mesh of simpler elements (like 2D triangles725

or 3D tetrahedra), forms the foundation of FEM. The methodology hinges on computing726

approximate solutions at the element nodes, thereby minimizing an associated error function.727

This results in highly accurate solutions within the approximations’ constraints, making728

FEM particularly useful for problems involving structural analysis, heat transfer, fluid flow,729

mass transport, and electromagnetic fields.730

A specialized class of the FEMs is the spectral element method (SEM), discussed in731

detail in Section 3.2. In contrast to the classical FEMs that predominantly use low, fixed732

order polynomials (typically linear or quadratic) as basis functions, SEMs leverage the733

flexibility of adjustable polynomial order, enabling exponential convergence rates in smooth734

problems. SEMs, typically using quadrilateral (2D) or hexahedral (3D) elements, are adept735

at managing complex geometries. The numerical solution derived using SEM parallels those736

produced by FEM, facilitating comparable methods for conducting convergence studies and737

interpreting the resulting plots. This is especially true if the underpinning method is a738

discontinuous Galerkin (DG) method (Hesthaven & Warburton, 2007). The DG method739

allows for the solution to be discontinuous between elements, thereby making it particularly740

effective for problems characterized by sharp gradients or shocks, as encountered in fluid741

dynamics or electromagnetism. Software based on SEM showcases excellent compatibility742

with GPU-accelerated hardware, a technology that is now dominant in the world’s fastest743

supercomputers (Strohmaier & Dongarra, 2023). Therefore, we anticipate a surge in the744

development of high-order methods like SEMs in research software in the years to come.745

Currently, among functional ocean models, FESOM (Danilov et al., 2004; Q. Wang et al.,746

2014) and NUMO (Kopera et al., 2018, 2023) employ FEM and SEM respectively for spatial747

discretization.748

We discuss in subsequent sections a few key considerations depending on the spatial749

discretization technique in use. For instance, in Section 6, we explore the significance of750

conducting self-refinement convergence tests only in space and only in time, the underlying751

reasons for which may vary between FVMs and SEMs. Moreover, we delve into numerical752

implementation details in Appendix C, some of which are pertinent to FVMs and some753

to SEMs. Regardless of these disparities, we demonstrate the robustness of our numerical754

recipe in verifying the spatial and temporal orders of accuracy across both types of spatial755

discretization.756

We now provide a brief description of the TRiSK-based FVM and DGSEM used in our757

numerical experiments.758

3.1 TRiSK-Based Mimetic Finite Volume Method759

The mimetic finite volume spatial discretization based on the TRiSK scheme was first760

proposed by Thuburn et al. (2009) to ensure that geostropic modes remain stationary and761

Coriolis terms remain energy conserving on arbitrarily structured C-grids. It was then762

generalized by T. D. Ringler et al. (2010) to model the non-linear rotating shallow water763

equations while guaranteeing the evolution of mass, velocity, and potential vorticity in a764
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consistent and compatible manner, and the conservation of total energy within the time765

truncation error. This mimetic finite volume method was chosen to horizontally discretize766

the primitive equations of MPAS-Ocean while invoking the hydrostatic, incompressible,767

and Boussinesq approximations on a staggered C-grid. Even though the grid cells of768

MPAS-Ocean are near hexagons consisting of five or more sides, the MPAS framework769

supports cells with any number of sides with the algorithm and code remaining identical for770

cells of all shapes and sizes. Since this horizontal discretization guarantees conservation of771

mass, potential vorticity, and energy, it makes MPAS-Ocean a suitable candidate to simulate772

mesoscale eddies.773

The spatial domain is assumed to be tessellated by two meshes, a primal mesh and a774

dual mesh. Each corner of a primary mesh cell is uniquely associated with a center of a dual775

mesh cell and vice versa. For a regular hexagonal mesh, each corner of a primary mesh cell776

coincides with a vertex of a dual mesh cell and vice versa. A line segment connecting two777

primal mesh cell centers is uniquely associated with a line segment connecting two dual mesh778

cell centers. In case of a regular hexagonal mesh, these two line segments are perpendicular779

bisectors of each other. In case of an irregular hexagonal mesh, these two line segments can780

still intersect orthogonally, but not necessarily at their midpoints. As mentioned before, the781

two prognostic variables for the rotating shallow water equations are the surface elevation,782

η, defined at the primal cell centers, and the normal velocity ue defined at the primal cell783

edges. The divergence of a two-dimensional vector quantity is defined at the position of784

η, while the two-dimensional gradient of a scalar quantity is defined at the position of ue785

and oriented along its direction. The curl of a vector quantity is defined at the vertices of786

the primal cells. Finally, the tangential velocity u⊥
e along a primal cell edge is computed787

diagnostically using a flux mapping operator from primal to dual mesh, which essentially788

takes a weighted average of the normal velocities on the edges of the cells sharing that edge.789

Interested readers may refer to Thuburn et al. (2009) and T. D. Ringler et al. (2010) for an790

extensive discussion on the mesh specifications, the elements of the discrete system along791

with their positioning and their connectivities, and the formulation of the discrete spatial792

and flux-mapping operators.793

3.2 Discontinuous Galerkin Spectral Element Method794

Spectral element methods belong to the category of multidomain spectral methods.795

In spectral element methods, the physical domain is divided into smaller, non-overlapping796

elements, as illustrated in Figure 7. Within each element, functions are approximated by797

Lagrange interpolating polynomials. The interpolation knots are Gauss-type Quadrature,798

often Legendre-Gauss or Legendre-Gauss-Lobatto (D. A. Kopriva, 2009; D. Kopriva &799

Gassner, 2010; Gassner et al., 2016). Each element is mapped to a reference element,800

and the mapping and metric terms are also approximated by Lagrange interpolation.801

With Discontinuous Galerkin Spectral Element Methods, the weak form of the equations802

are solved within each element. As explained in standard finite and spectral element803

textbooks like Donea and Huerta (2003), Hughes (2012), Zienkiewicz et al. (2005), Bathe804

(2006), Reddy (2019), D. L. Logan (2022), Karniadakis and Sherwin (2005), Canuto et al.805

(2007b), and D. A. Kopriva (2009), the weak form is obtained by multiplying the original806

“strong form” of the PDE by a test function and then integrating over the domain. In this807

context, a test function is a mathematical tool that facilitates the derivation of the weak808

form of the PDE. This weak form requires the solution to be differentiable to a lower order809

compared to the strong form, and is generally easier to solve numerically. The test function810

is chosen to have certain properties, such as being zero on the boundaries of the domain811

or being part of a certain function space. Integration by parts is subsequently applied to812

the product of the PDE and the test function to reduce the order of the derivatives. This813

process transitions the problem into an integral representation wherein the solution satisfies814

the PDE in an averaged “weak” sense rather than at every single point, as mandated by815

the strong form. In case of DGSEM, the test functions are specified as each of the Lagrange816
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Figure 7. Depiction of a physical domain divided into elements that are then each mapped

to a reference computational element. Within each element, solution variables and the coordinate

mapping are approximated by Lagrange interpolating polynomials.

the primitive equations of MPAS-Ocean while invoking the hydrostatic, incompressible,607

and Boussinesq approximations on a staggered C-grid. Even though the grid cells of608

MPAS-Ocean are near hexagons consisting of five or more sides, the MPAS framework609

supports cells with any number of sides with the algorithm and code remaining identical for610

cells of all shapes and sizes. Since this horizontal discretization guarantees conservation of611

mass, potential vorticity, and energy, it makes MPAS-Ocean a suitable candidate to simulate612

mesoscale eddies.613

The spatial domain is assumed to be tessellated by two meshes, a primal mesh and a614

dual mesh. Each corner of a primary mesh cell is uniquely associated with a center of a dual615

mesh cell and vice versa. For a regular hexagonal mesh, each corner of a primary mesh cell616

coincides with a vertex of a dual mesh cell and vice versa. A line segment connecting two617

primal mesh cell centers is uniquely associated with a line segment connecting two dual mesh618

cell centers. In case of a regular hexagonal mesh, these two line segments are perpendicular619

bisectors of each other. In case of an irregular hexagonal mesh, these two line segments can620

still intersect orthogonally, but not necessarily at their midpoints. As mentioned before, the621

two prognostic variables for the rotating shallow water equations are the surface elevation,622

⌘, defined at the primal cell centers, and the normal velocity ue defined at the primal cell623

edges. The divergence of a two-dimensional vector quantity is defined at the position of624

⌘, while the two-dimensional gradient of a scalar quantity is defined at the position of ue625

and oriented along its direction. The curl of a vector quantity is defined at the vertices of626

the primal cells. Finally, the tangential velocity u?
e along a primal cell edge is computed627

diagnostically using a flux mapping operator from primal to dual mesh, which essentially628

takes a weighted average of the normal velocities on the edges of the cells sharing that edge.629

Interested readers may refer to Thuburn et al. (2009) and T. D. Ringler et al. (2010) for an630

extensive discussion on the mesh specifications, the elements of the discrete system along631

with their positioning and their connectivities, and the formulation of the discrete spatial632

and flux-mapping operators.633
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interpolating polynomials. Additionally, continuous integrals in the weak formulation are817

replaced by discrete quadrature. For computational efficiency, the quadrature points are818

chosen to match the interpolation points which also provides spectral accuracy. To couple819

neighboring elements, approximate Riemann solvers are used to exchange properties, such820

as mass and momentum. For hyperbolic systems, like the shallow water equations, the821

Riemann solver is chosen to be consistent with the underlying equations while also providing822

dissipation to stabilize the numerical method (Gassner et al., 2016; Ranocha, 2016). To823

exchange momentum and mass fluxes between neighboring elements and approximate the824

numerical flux at the element boundaries, we employ the upwind local Lax-Friedrichs Riemann825

solver of Rusanov (1961).826

DGSEM allows for spatial refinement through two distinct approaches: increasing the827

polynomial order while keeping the number of elements constant, known as p-refinement, or828

alternatively, increasing the number of elements with a constant polynomial order, termed829

h-refinement. In Section 6.2, the leading order error terms of DGSEM are employed to830

illustrate how p-refinement achieves exponential convergence, while h-refinement effectively831

captures the spatial order of accuracy.832

For the linear test cases, the weak form of the linear constant- or variable-coefficient833

shallow water equations (9c) is solved in Cartesian coordinates. However, for non-linear test834

cases, including the manufactured solution, and the non-linear planetary and topographic835

Rossby waves, we start with the conservative form (41) of the non-linear shallow water836

equations (7), and then solve the weak form of these equations.837

3.3 Time-Stepping Methods838

We advance the numerical solution using the following set of time-stepping methods:839

List 1. Standard predictor-corrector and multistep time-stepping methods840

RK2: explicit midpoint method, belonging to the second-order Runge-Kutta family841

RK3: low-storage third-order Runge-Kutta method of J. Williamson (1980)842

RK4: low-storage fourth-order Runge-Kutta method of Carpenter and Kennedy (1994)843
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AB2: second-order Adams-Bashforth method844

AB3: third-order Adams-Bashforth method845

AB4: fourth-order Adams-Bashforth method846

List 2. Time-stepping methods popular in ocean modeling847

FB: forward-backward or Implicit Euler method848

LF TR: leapfrog trapezoidal method849

LF AM3: leapfrog Adams-Moulton method850

FB RK2: forward-backward method with RK2 feedback851

GenFB AB2–AM3: generalized forward-backward method with AB2–AM3 step852

GenFB AB3–AM4: generalized forward-backward method with AB3–AM4 step853

Shchepetkin and McWilliams (2005) perform a detailed stability analysis of each of the854

time-stepping methods of List 2. The parameters of all of these methods can be optimized to855

attain a specific order of accuracy, maximize the stability range, and minimize the magnitude856

of the local truncation error. By considering all variations of these parameters discussed in857

Shchepetkin and McWilliams (2005), the total number of time-stepping methods of List 2858

exceeds 20. Even though we have tested the numerical solution against all of these methods,859

we present the convergence plots for only the methods of List 1.860

4 A Primer on Truncation Error and Order of Accuracy861

We furnish the necessary background on truncation error and how it is related to the862

numerical solution’s spatial and temporal orders of accuracy. We consider situations where863

the orders of accuracy of the local truncation error and the global error agree, as encountered864

in a wide variety of computational physics domains including atmosphere and ocean models.865

When solving PDEs, especially in the context of physics and engineering, it is often866

impossible or highly impractical to obtain an analytical solution. Instead, numerical methods867

are employed, and this involves discretizing the domain of the problem, i.e., breaking it down868

into small discrete segments or elements. The process of discretization inherently introduces869

approximations, primarily due to the omission of higher-order derivative terms, culminating870

in truncation errors. For time-dependent PDEs that model transient phenomena, like the871

unsteady heat conduction or fluid flow, both spatial and temporal discretizations are used,872

resulting in truncation errors associated with both space and time approximations. As873

the simulation progresses, these errors accumulate, leading to an increasingly pronounced874

divergence between the numerical and exact solutions.875

The order of accuracy of the truncation error corresponds to the rate at which this error876

diminishes relative to the size of the discretization. A higher order signifies a more rapid877

shrinkage of error with finer discretization. For example, a second-order accurate method878

in space anticipates an error reduction by n2 for every refinement of the spatial grid by a879

factor of n.880

Truncation errors play a pivotal role in determining the accuracy of a numerical solution.881

Striking the right balance is essential: one must pick a method or grid resolution that offers882

adequate accuracy without overburdening computational resources. While refining the grid883

often curtails truncation errors, it simultaneously escalates the computational demands and884

may exacerbate other anomalies, such as round-off errors. In the world of numerical PDE885

solutions, a deep comprehension of truncation errors, their origins, and their ramifications886

is indispensable. This knowledge guides the choice of optimal methods, grid scales, and887

bolsters confidence in the accuracy of derived solutions.888
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4.1 Truncation Error, Consistency, Stability, and Convergence889

The local truncation error, τ , is the residual after substituting the exact solution into890

the difference equation, obtained by discretizing the original differential equation. For891

time-marching or initial value problems involving ordinary differential equations (ODEs),892

hyperbolic and parabolic PDEs, some textbooks define the local truncation error as the893

error incurred in a single time step ∆t starting with the exact solution at the beginning894

of the time step. If τ̂ represents the local truncation error based on this definition, it is895

straightforward to demonstrate that τ = τ̂ /∆t (Bishnu, 2021).896

A numerical method is called consistent if the local truncation error, τ , over a single897

time step, reduces to zero with the refinement of the spatial and temporal grids, sometimes898

under additional constraints. Mathematically,899

lim
∆→0

τ = lim
∆→0

τ̂

∆t
= 0, (44)

where ∆ represents the set of discretization parameters for the spatial and temporal grids.900

Numerical stability in the context of solving time-marching ODEs and PDEs involves901

analyzing how various types of errors—those from initial conditions, boundary conditions,902

round-off errors, and notably discretization or truncation errors—propagate in space and903

time as the numerical method is employed. In the realm of ODEs, the stability of a method904

largely depends on the chosen time step size, with the objective being to prevent errors from905

growing exponentially or becoming unbounded as time progresses. This concept extends to906

PDEs as well, but with an added layer of complexity. Here, stability is influenced not just907

by the time step size, but also by its relationship with spatial step sizes. This relationship908

is often scrutinized using the Courant-Friedrichs-Lewy (CFL) condition, a crucial criterion909

in the stability analysis of numerical methods for hyperbolic PDEs. The Von Neumann910

stability analysis emerges as another pivotal technique, particularly adept at determining911

the stability of numerical schemes applied to linear PDEs. By assessing the growth of Fourier912

modes in the numerical solution, this method provides a deeper understanding of how errors913

might amplify over iterations. The stability of a numerical method is crucial to ensure that914

the computed solution remains reliable and bounded over time. An unstable method can915

lead to solutions that diverge dramatically from the exact solution, even if the method is916

consistent, rendering the numerical approach ineffective for practical applications.917

The numerical solution is said to converge to the exact solution if the global truncation918

error, or simply the global error, τ̂G, defined as the difference between the exact and919

numerical solutions at a time horizon, reduces to zero with the refinement of the spatial and920

temporal grids. If the time horizon is specified as T = n∆t, τ̂G encapsulates the cumulative921

effect of τ̂ over n time steps. For a broad spectrum of numerically stable methods, barring922

exceptions like superconvergent and subconvergent ones (Levine, 1985; Ferreira & Grigorieff,923

1998; Barbeiro et al., 2005), τ̂G is typically one order of ∆t smaller than τ̂ and of the same924

order of accuracy as τ . So, if (44) holds for a stable numerical scheme, it is indicative925

of convergence. This concept aligns with the first half of the Lax Equivalence Theorem926

(Lax & Richtmyer, 1956), asserting that a consistent finite difference method for a linear927

initial value problem converges if and only if it is stable. For numerical methods such as928

finite volume, finite and spectral element methods, the Lax Equivalence Theorem does not929

directly apply in its classical form, as these methods have different formulations compared930

to finite difference methods. However, the underlying principles of consistency, stability,931

and convergence are still crucial in these methods.932

4.2 Truncation Error of Hyperbolic and Parabolic PDEs933

In Bishnu (2021), we determined the full expression for the local truncation error of934

numerical solutions of hyperbolic and parabolic PDEs advanced with Method of Lines time935

integrators. These integrators are characterized by their separate treatment of space and936

–26–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

time discretizations: they initially discretize the spatial variables to reduce the PDE to937

a system of ODEs, which are then solved using standard ODE integration techniques.938

By employing theoretical analysis and symbolic algebra computations, we obtained exact939

expressions for the coefficients of the generic local truncation error940

τ = O (∆xα) + ∆tO (∆xα) + ∆t2O (∆xα) + · · ·+∆tβ−1O (∆xα) +O
(
∆tβ

)
, (45)

where ∆x and ∆t denote the cell width and time step size, and α and β represent the941

spatial and temporal orders of accuracy. The right-hand side of (45) is applicable not942

only to the numerical solution of hyperbolic and parabolic PDEs in one spatial dimension,943

but also extends to higher-dimensional cases, provided a uniform grid is employed. This944

is exemplified in Section 6.2, where, in the context of a two-dimensional hexagonal mesh,945

the two primary grid scales are identified: the distance ∆x between adjacent cell centers,946

and the side length ∆y of a hexagonal cell. In a uniform hexagonal mesh, ∆x and ∆y947

remain constant, and exhibit a proportional relationship, which paves the way for the local948

truncation error to assume the form (45).949

The derivation of (45) is replete with mathematical complexities. While we forgo950

a detailed breakdown here, interested readers can refer to Bishnu (2021) which provides951

thorough explanations and numerous illustrative examples. Nevertheless, we will touch952

upon the core rationale behind this specific form of the local truncation error. Delving953

into the steps of any Method of Lines time integrator, we note that time derivatives or954

tendency terms are evaluated either at fractional time steps in the case of predictor-corrector955

methods or at prior time levels for multistep methods. For an ODE (or a PDE with no956

spatial discretization error), these tendencies are exact. However, for a general PDE, these957

tendencies accrue spatial discretization errors of O (∆xα), which manifest as coefficients of958

the various powers of ∆t.959

The coefficients of ∆xα in the terms ∆tO (∆xα), ∆t2O (∆xα), . . ., ∆tβ−1O (∆xα) of960

(45) contain higher order spatial derivatives of the solution, coefficients of the PDE and961

source terms (Bishnu, 2021). Consequently, the terms ∆tkO (∆xα) for k = 1, 2, . . . , β − 1962

are typically much smaller in magnitude compared to the first and last terms of (45),963

assuming forms O (∆xα) and O
(
∆tβ

)
, and representing the leading-order spatial and964

temporal discretization errors. This disparity enables us to succinctly approximate (45)965

as966

τ = O (∆xα) +O
(
∆tβ

)
. (46)

It is worth emphasizing that (45) and (46) hold true for a broad spectrum of hyperbolic967

or parabolic PDEs, irrespective of whether they are linear or non-linear. This applicability968

spans various spatial discretizations and time-stepping techniques within the Method of969

Lines framework. To bring these theoretical assertions to life, we undertook convergence970

studies on both linear and non-linear advection equations, as well as diffusion equations,971

detailed in Bishnu (2021). These studies employed finite difference and finite volume spatial972

discretizations, coupled with predictor-corrector and multistep time-stepping methods. In973

the present paper, we solidify our findings, showcasing convergence plots for linear and974

non-linear shallow water test cases using the TRiSK-based mimetic finite volume and975

high-order discontinuous Galerkin spectral element methods.976

4.3 Convergence at Constant Ratio of Time Step to Cell Width977

Assume that our numerical scheme is stable, and the global error, τ̂G, is of the same978

order of accuracy as the local truncation error, τ , conforming to the form (46). Then a979

simultaneous refinement in space and time, maintaining a constant ratio of γ = ∆t/∆x,980

simplifies the global error to981

τ̂G = O (∆xα) +O
(
γβ∆x

β
)
= O (∆xα) +O

(
∆xβ

)
≈ O

(
∆xmin(α,β)

)
, (47)
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in the asymptotic regime, where the error is dominated by the larger of ∆xα and ∆tβ , rather982

than their coefficients. Given a spatial discretization of order α, the asymptotic convergence983

rate clearly cannot exceed α. To attain this convergence rate, we need a time-stepping984

method of order β such that β ≥ α. For optimal computational efficiency within a given985

family of time-stepping methods, the preferred choice would be β = α.986

4.4 Refinement Only in Space or Only in Time987

If refinement is performed only in space while employing a stable numerical scheme,988

convergence of the global error cannot be guaranteed due to the presence of the O
(
∆tβ

)
989

term. A similar situation arises with refinement only in time, where the O (∆xα) term acts990

as an impediment to the convergence of the global error. In other words, under only spatial991

or temporal refinement, the local truncation error does not necessarily reduce to zero. As992

a result, our numerical solution may not even be consistent. In such situations, in light of993

the Lax Equivalence Theorem (Lax & Richtmyer, 1956), convergence becomes impossible.994

4.5 Verification of the Spatial or Temporal Order of Accuracy995

While asymptotic convergence may not be achievable with only spatial or temporal996

refinement, we can still verify the spatial and temporal orders of accuracy. For refinement997

only in space at constant ∆t, the global error at a specific time horizon and a spatial location998

xj can be expressed as999

(τ̂G)j = O (∆xα) +O
(
∆tβ

)
= ζ∆xα + ζβ+1∆t

β , (48)

where the coefficients ζ and ζβ+1 are independent of ∆x. If ζ∆xα ≫ ζβ+1∆t
β , we can1000

calculate the spatial order of convergence by refining ∆x with ∆t held constant. For a1001

general setting, however, we need to use an alternate method. This is achieved by comparing1002

two uniform meshes with cell widths ∆xi and ∆xi+1, with ∆xi+1 < ∆xi. Then we can write1003

(
τ̂Gx

i

)
j
≈ ζ∆xαi + ζβ+1∆t

β , (49a)
(
τ̂Gx

i+1

)
j
≈ ζ∆xαi+1 + ζβ+1∆t

β . (49b)

Assuming
(
τ̂Gx

i+1

)
j
<
(
τ̂Gx

i

)
j
, we define1004

(
∆τ̂Gx

i,i+1

)
j
≡
(
τ̂Gx

i

)
j
−
(
τ̂Gx

i+1

)
j
= ζ

(
∆xαi −∆xαi+1

)

= ζ∆xαi+1

{(
∆xi

∆xi+1

)α
− 1

}
> 0. (50)

Defining p = ∆xi+1/∆xi < 1 to be the ratio between the two mesh sizes, we can write1005

(
∆τ̂Gx

i,i+1

)
j
= ζ∆xαi+1

(
p−α − 1

)
. (51)

Upon taking the logarithm of both sides, we obtain1006

log
(
∆τ̂Gx

i,i+1

)
j
= θ + α log (∆xi+1) , (52)

where θ = log {ζ (p−α − 1)} is constant. To compute the spatial order of accuracy, we first1007

choose a sequence of M grids with ∆xi+1/∆xi = p for i = 1, 2, . . . ,M −1, and all satisfying1008

a CFL condition. After interpolating the error to the coarsest mesh with spacing ∆x1, we1009

plot the norm of the difference between successive global errors
(
∆τ̂Gx

i,i+1

)
norm

against the1010

cell width ∆xi+1 on a log-log scale, for i = 1, 2, . . . ,M − 1. The slope of the best-fit line1011

gives us the spatial order of accuracy.1012
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Proceeding in a similar fashion, we can ascertain the temporal order of accuracy.1013

Specifically, we refine the time step while preserving the spatial resolution and plot the1014

norm of the difference between successive global errors. Since the spatial resolution remains1015

unchanged, there is no need for the interpolation step.1016

It is worth noting that the exact solution is independent of both the spatial resolution1017

and the time step. So, for refinement only in time, if un+1
j represents the solutions at time1018

level tn+1, and (ûi)
n+1
j represents its numerical counterpart obtained with time step ∆ti,1019

we can write1020

(
∆τ̂Gt

i,i+1

)n+1

j
≡
(
τ̂Gt

i

)n+1

j
−
(
τ̂Gt

i+1

)n+1

j
=
{
un+1
j − (ûi)

n+1
j

}
−
{
un+1
j − (ûi+1)

n+1
j

}

= (ûi+1)
n+1
j − (ûi)

n+1
j ≡ (∆ûi,i+1)

n+1
j . (53)

Therefore, if we calculate the difference (∆ûi,i+1)
n+1
j between numerical solutions (ûi)

n+1
j1021

and (ûi+1)
n+1
j obtained with time steps ∆ti and ∆ti+1 for i = 1, 2, . . . ,M−1, at every mesh1022

point xj and time level tn+1, and then compute its norm
(
∆ûGti,i+1

)n+1

norm
and plot it against1023

∆ti+1, we can achieve convergence at a rate matching the temporal order of accuracy. In the1024

event of performing only a spatial refinement, it is necessary to first interpolate the numerical1025

solution to the coarsest mesh. Subsequently, the same steps can be followed to achieve1026

convergence aligned with the spatial order of accuracy. This methodology offers a practical1027

advantage by eliminating the need to engage with exact or manufactured solutions, thereby1028

streamlining the process and enhancing its applicability. In our own numerical experiments,1029

we adopt this approach for verifying the spatial and temporal orders of accuracy for the1030

planetary and topographic Rossby wave test cases, which are not equipped with exact1031

solutions.1032

One should recognize that these unconventional convergence exercises primarily aim1033

to verify the correct implementation of the spatial and temporal discretizations. The error1034

norm of the numerical solution under only spatial or temporal refinement is not expected to1035

converge in the asymptotic regime. It is only when the time step and the cell width undergo1036

simultaneous refinement, while maintaining their ratio, that we can expect convergence of1037

the global error norm.1038

4.6 Beyond Method of Lines Time Integrators1039

We reiterate that the full expression (45) for the local truncation error was specifically1040

derived for Method of Lines time integrators in Bishnu (2021). This formulation does1041

not universally apply to time integrators that concurrently handle spatial and temporal1042

discretizations, and are applicable exclusively to PDEs. Notable exceptions, such as the1043

Lax-Wendroff method, do exist. Nevertheless, if the specific form of the local truncation1044

error is known beforehand, the principles, methodologies, and anticipated outcomes for1045

performing space-time, space-only, or time-only convergence studies, as discussed in Sections1046

4.3 to 4.5, may be extended to time integrators beyond Method of Lines, with appropriate1047

adjustments.1048

5 Numerical Dispersion, Numerical Dissipation, and Spurious Oscillations1049

Numerical dispersion and numerical dissipation are intrinsic challenges that arise when1050

approximating PDEs using numerical methods. These phenomena are particularly impactful1051

in wave-propagation problems, with dispersion errors influencing the propagation speed of1052

disturbances and dissipation errors impacting the strength.1053

Numerical dispersion commonly manifest in conservation laws when the dominant1054

truncation error stems from odd-order derivatives, causing a misrepresentation of the wave’s1055

phase speed. Dispersion errors are observed not only in finite difference and finite volume1056
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methods, but also in high-order methods like single- and multi-domain SEMs. It is crucial1057

to underscore that even though high-order methods like DGSEM boast increased accuracy,1058

they are not immune to dispersion, especially at element boundaries with discontinuous1059

solutions. Here, the choice of basis functions and the employed Riemann solver play pivotal1060

roles. Even with high-order polynomial approximations, phase errors may arise as waves1061

cross multiple elements.1062

Numerical dissipation or diffusion, usually linked with even-order derivatives in the1063

truncation error, signifies the artificial attenuation of the solution introduced by numerical1064

methods. For example, first-order upwind schemes inherently dampen waves. So, while1065

physically a wave might maintain its amplitude, numerically it could wane over time due1066

to this effect. In the context of DGSEM, the primary source of artificial damping is the1067

Riemann solvers at element boundaries. While the polynomial representation within an1068

element may be non-dissipative, the Riemann solvers, which facilitate information exchange1069

between elements, can introduce dissipation. This can lead to a slight reduction in amplitude1070

over extended simulation times. As detailed in Section 5.1 with the local Lax-Friedrichs1071

Riemann solver as an example, such damping effects, although vital for maintaining numerical1072

stability, do not necessarily compromise the spatial order of accuracy. The terms “numerical1073

dissipation” and “numerical diffusion” are often used interchangeably to address this damping1074

effect, especially when dealing with sharp gradients or discontinuities. However, “numerical1075

dissipation” typically emphasizes the removal of high-frequency components, especially in1076

the context of stabilizing a numerical solution. In contrast, “numerical diffusion” underscores1077

the artificial smoothing of particular features in the solution.1078

Spurious oscillations represent another significant challenge in the numerical simulation1079

of physical phenomena, particularly when the mathematical models involve discontinuities1080

or steep gradients. These non-physical oscillations are most noticeable as “wiggles” or1081

“overshoots” in the vicinity of abrupt changes, such as shock waves or material interfaces,1082

and are indicative of the numerical method struggling to reconcile the sharp variations1083

in the solution’s profile. High-order numerical methods like SEMs, while offering enhanced1084

accuracy over smoother parts of the solution, are particularly susceptible to this phenomenon,1085

a manifestation of the well-documented “Gibbs phenomenon”. Spurious oscillations are1086

especially troublesome as they do not dissipate over time. Instead, they may intensify if1087

the numerical scheme lacks the necessary stability features, potentially compromising the1088

entire solution. However, the numerical community has developed several strategies to1089

suppress these oscillations, thus enhancing the fidelity of simulations. The introduction of1090

numerical dissipation, for example, can help to damp out these oscillations by smoothing the1091

solution in a controlled manner. Artificial viscosity is another effective tool, subtly altering1092

the equations to increase the physical diffusion, which helps to eliminate non-physical1093

fluctuations. Moreover, the implementation of carefully designed limiters can specifically1094

target and neutralize spurious oscillations without significantly distorting the true solution.1095

5.1 The Dissipative Local Lax-Friedrichs Riemann Solver and the Spatial1096

Order of Accuracy of DGSEM1097

The numerical flux obtained using the local Lax-Friedrichs (LLF) Riemann solver can1098

be expressed as1099

FLLF =
1

2
{f (UL) + f (UR)} −

|λ|
2

(UL − UR) . (54)

Here, UL and UR represent the left and right states, respectively. The parameter |λ| signifies1100

the maximum characteristic speed of the Riemann problem, commonly estimated as the1101

magnitude of the maximum eigenvalue or wave speed across UL and UR. The central flux1102

1
2 {f (UL) + f (UR)} is essentially the average of the fluxes from the left and right. On its1103

own, it is a second-order central scheme, prone to spurious oscillations near discontinuities.1104

The dissipative term |λ|
2 (UL − UR) acts to dampen those oscillations. It is proportional to1105
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the jump in the solution, so it is stronger (more dissipative) where the solution has steep1106

gradients or discontinuities.1107

In spectral element methods including DGSEM, the solution within each element is1108

approximated by high-order polynomials. Hence, flux computation at boundaries does not1109

solely rely on boundary values, as seen in many lower-order finite volume methods. Instead,1110

the polynomial approximation of the internal solution is interpolated to the boundaries,1111

ensuring high-order accuracy right upto the edge. Fluxes are then computed using these1112

interpolated values from neighboring elements, with the LLF Riemann solver subsequently1113

applied. It is crucial to note that the LLF solver’s primary role in this context is not flux1114

computation but determining the upwind direction based on eigenvalues and introducing the1115

necessary dissipation for numerical stability. The high-order accuracy of the spectral element1116

method stems from its polynomial representation, not the Riemann solver. In simpler terms,1117

the LLF Riemann solver does not cause first-order accuracy in finite volume methods. It is1118

the low-order approximations of the left and right states, UL and UR, used as inputs. With1119

DGSEM, both UL and UR are spectrally accurate, resulting in much smaller jumps. As1120

such, while the Lax-Friedrichs method is intrinsically first order, the LLF Riemann solver1121

does not degrade the DGSEM’s overall accuracy.1122

Numerous works, such as Hussaini and Zang (1987), Boyd (1988), Cockburn and Shu1123

(1989), Cockburn and Shu (1998), Hesthaven and Warburton (2007), Canuto et al. (2007b),1124

Canuto et al. (2007a), and D. A. Kopriva et al. (2017) extensively explore spectral methods1125

and their synergy with Riemann solvers. These studies imply that various Riemann solvers1126

can integrate with spectral methods without compromising their inherent accuracy. Our1127

convergence plots demonstrate that even with the LLF Riemann solver, we achieve the1128

anticipated high-order accuracy typical of spectral element methods. Nonetheless, while the1129

LLF Riemann solver might not diminish the accuracy order, it is known to introduce more1130

dissipation than other Riemann solvers, potentially impacting the quality of the solution in1131

terms of sharpness of features or the preservation of certain scales.1132

6 Numerical Experiments1133

We first outline the experimental procedure used to conduct these numerical experiments1134

and verify the spatial and temporal orders of accuracy of the barotropic solver or the1135

dynamical core of ocean models. We believe that this recipe will serve as a valuable resource1136

to ocean modelers by ensuring that their respective ocean models actually converge at the1137

expected order of accuracy. We proceed by plotting the time evolution of numerical errors,1138

studying their nature, and creating convergence plots for each test case, with refinement in1139

both space and time, only in space, and only in time.1140

This comprehensive approach, involving three flavors of convergence tests, may seem1141

overly detailed at first glance. However, it is chosen for a number of reasons. Consider1142

an ocean model employing a low-order finite volume method for spatial discretization.1143

The standard practice in ocean modeling is to conduct convergence studies by refining1144

in both space and time, i.e., by simultaneously reducing the time step and cell width while1145

maintaining their ratio (and the Courant number) constant. However, if a time-stepping1146

method of order higher than the spatial discretization is used, a convergence plot with1147

refinement in both space and time will always converge at the spatial order of accuracy in1148

the asymptotic regime, thereby hindering the verification of the temporal order of accuracy.1149

This is further compounded by the fact that the leading-order spatial error term’s coefficient1150

is typically a few orders of magnitude larger than that of the leading-order temporal error1151

term, a phenomenon we will refer to as leading-order coefficient discrepancy from here1152

onward. Consequently, order reduction is seldom observed before reaching the asymptotic1153

regime, and the convergence rate invariably mirrors the (low) spatial order of accuracy.1154

Moreover, ocean models being typically characterized by their spatial discretization, may1155

allow users to choose from multiple time-stepping methods. During the integration of a1156
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novel time-stepping method into a fully functional ocean model, a developer might want to1157

verify solely its order of accuracy, underscoring the necessity for self-refinement tests only1158

in time.1159

In contrast, consider an ocean model where the spatial order of accuracy far surpasses1160

its temporal counterpart. With refinement in both space and time, order reduction may1161

be observed as the numerical solution error is expected to progress through three distinct1162

regimes: spatial discretization error dominance (first regime), temporal discretization error1163

dominance (second regime which overlaps with the beginning of the asymptotic regime1164

where ∆xα and ∆tβ in (46) exert dominance over their respective coefficients), and finally,1165

round-off error dominance (third regime). However, in practice, for the selected sets of1166

discretization parameters ∆x and ∆t, the error might not traverse all three regimes. If1167

the round-off error takes over before the time integration error, verification of the temporal1168

accuracy order becomes impossible. Similarly, if the leading-order coefficient discrepancy is1169

insufficient, the first regime may be bypassed in favor of the second and third regimes even1170

at relatively low resolutions, preventing the verification of the spatial order of accuracy. This1171

demonstrates the necessity for self-refinement tests in both space and time. To mitigate the1172

impact of round-off errors in spectral element discretizations, it is crucial to avoid excessively1173

high polynomial orders during convergence studies. Last but not the least, self-refinement1174

tests in space can ensure that code modifications, such as incorporating a new time-stepping1175

method, do not inadvertently introduce bugs that detrimentally affect the spatial order of1176

accuracy.1177

We now outline the experimental procedure for numerical experiments and convergence1178

studies below. After addressing the initial steps for spatial operators and their convergence,1179

which are common to all test cases, the procedure for individual test cases remains consistent.1180

6.1 Experimental Procedure1181

1. Construct the mesh for discretizing the numerical solution. This mesh will also be1182

used for visualization of the exact and numerical solutions, and the associated error.1183

Create a set of meshes with different spatial resolutions for conducting convergence1184

studies in both space and time, and only in space. For convergence studies only in1185

time, a single spatial mesh suffices.1186

2. Specify a smooth function in space, which can be selected from the initial condition of1187

a test case. Evaluate both the exact and numerical spatial operators of this function1188

on the mesh, then plot these operators alongside their error. Ensure that the error1189

norm is considerably smaller than the operator norm, by at least several orders of1190

magnitude for high-order spectral element methods and a few orders for low-order1191

finite volume methods. Conduct convergence tests of these spatial operators with1192

spatial refinement to confirm that their convergence slopes align with the expected1193

spatial order of accuracy.1194

3. Identify an exact or manufactured solution if applicable, keeping in mind that for finite1195

volume methods, the exact solutions pertain to cell- and edge-averaged quantities1196

rather than cell- or edge-centered ones. Consult Section C1 in Appendix C for1197

an insightful explanation on initializing these quantities on non-rectilinear meshes,1198

utilizing the hexagonal meshes of MPAS-Ocean as an illustrative example.1199

4. Given a characteristic wave speed, choose an appropriate Courant number that is1200

consistent with the CFL condition for both the spatial and temporal discretizations.1201

Regarding the specification of the characteristic wave speed, consider the following1202

examples. For the coastal Kelvin and inertia-gravity wave test cases, define the1203

characteristic wave speed as the phase speed of the faster wave mode. For the1204

Rossby wave test cases, set the characteristic wave speed as the phase speed of the1205

fastest gravity waves emitted by the initially Gaussian monopole. For explicit time1206

integration methods, the CFL condition mandates that the Courant number must be1207

less than one to ensure stability. This requirement becomes even more stringent with1208
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explicit multistep time-integration methods, such as Adams-Bashforth, where the1209

region of absolute stability narrows with higher orders, necessitating an even smaller1210

Courant number. Based on this choice, determine the time step. Initialize the model1211

using the exact solution at t = 0. Implement boundary conditions that mirror the1212

exact solution over time. Likewise, define space- and time-dependent source terms1213

for manufactured solutions. For detailed guidelines on setting boundary conditions1214

and source terms on non-rectilinear meshes, refer to Sections C1 and C2 in Appendix1215

C, again using the hexagonal meshes of MPAS-Ocean as a reference. Run the model1216

forward in time to obtain the numerical solution. At intervals equivalent to integral1217

multiples of the time step, print and plot both the exact and numerical solutions,1218

along with the associated error, to study their temporal evolution.1219

5. Employ visual inspection (sometimes humorously referred to as the ‘eyeball norm’)1220

to assess the numerical solution for approximate physical and numerical accuracy,1221

examining, for instance, whether geophysical waves propagate at their theoretically1222

expected phase speeds. If errors significantly amplify along the boundaries compared1223

to the domain’s interior, reevaluate the implementation of boundary conditions or the1224

plotting of boundary values. As with the spatial operators, the error norm should1225

be substantially smaller than the solution norm, with the difference being more1226

pronounced for high-order spectral element methods than low-order finite volume1227

methods.1228

6. After achieving satisfactory preliminary results, initiate comprehensive convergence1229

studies, with refinements in both space and time, only in space, and only in time.1230

Revisit the beginning of this section for the underlying reasoning behind these different1231

flavors of convergence tests and specific strategies tailored for low- and high-order1232

spatial discretizations. For refinement in both space and time, adjust the time step in1233

direct proportion to the cell width, ensuring that their ratio and the Courant number1234

remain constant. When refining only in space, determine the time step for the finest1235

mesh using the Courant number. Employ this stringent time step across all spatial1236

resolutions. For convergence tests with refinement only in time, calculate the largest1237

time step based on the Courant number for the singular spatial mesh in use.1238

7. The refinement ratio between successive pairs of spatial or temporal resolutions does1239

not necessarily need to be an integer. This flexibility is particularly advantageous for1240

convergence tests only in space, the most computationally intensive type. Following1241

that in computational demand is the convergence test in both space and time, and1242

finally the convergence test only in time. The error norm in a convergence test is1243

calculated at a specific time horizon. This horizon is always reached if:1244

(a) refinement is performed only in space, implying a constant time step value;1245

(b) the time horizon equates to an integral number of the largest time step, and the1246

refinement ratio is integral e.g doubling each time.1247

This may not hold true for convergence tests with refinement in both space and time1248

or only in time when the refinement ratio is not an integer. Nonetheless, a clever1249

approach can circumvent this issue. By selecting a rational refinement ratio, r = p/q1250

for p > q and p, q ∈ Z+, and denoting s as the number of different resolution sets, we1251

can define the time horizon as T = N∆tlargest, with N = qt, t ∈ Z+ and t ≥ s. As1252

lengthy simulation times are generally unnecessary for convergence tests, t does not1253

need to greatly exceed s. For example, with r = 3/2 and s = 5, we can choose N to1254

be powers of 2 equal to or greater than 32. This ensures that the time horizon aligns1255

with integral multiples of every time step used in the study, obviating the need for1256

adjustments that could lead to errors.1257

8. For refinement in both space and time, employ a test case with either an exact or a1258

manufactured solution, and plot the actual error norm at a designated time horizon1259

against either the cell width or the total number of cells. For refinement only in space1260

or only in time, plot the norm of the difference between1261

(a) the numerical solutions; or1262

(b) the error (for test cases equipped with exact solutions);1263
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against the cell width (or number of cells) or the time step (or number of time steps)1264

for successive pairs of spatial and temporal resolutions.1265

9. Analyze whether the convergence slope:1266

(a) aligns with the spatial or temporal order of accuracy when refining only in space1267

or only in time;1268

(b) corresponds to the lesser of the spatial and temporal orders of accuracy when1269

refining in both space and time.1270

If the above observations hold true, our results are satisfactory. However, deviations1271

from these patterns may point to issues such as:1272

(a) a bug within the numerical implementation of spatial or temporal discretizations;1273

(b) the asymptotic regime not yet reached by the spatial and temporal resolutions,1274

suggesting a need for broader resolution sets in convergence studies.1275

(c) the dominance of round-off errors, a common issue in high-order spectral element1276

methods, which can be remedied by reducing the polynomial order.1277

10. In scenarios where machine precision constraints may preclude reaching the asymptotic1278

regime, separate spatial and temporal convergence tests are crucial. It is also vital to1279

diversify test cases, given that error magnitudes can vary based on the exact solution1280

and its gradients.1281

The above procedure sets the stage for a rigorous numerical study that can adapt to different1282

scenarios, accounting for the particularities and complexities inherent to both finite volume1283

and spectral element methods, and offering flexibility in convergence testing and verification.1284

6.2 Numerical Solutions and Convergence Plots1285

Based on our experimental procedure, we begin by testing the convergence of the various1286

spatial operators. For the TRiSK-based mimetic finite volume method, these encompass the1287

gradient, divergence, curl, kinetic energy, and Laplacian operators as well as the interpolation1288

or flux-mapping operator. This last operator is used to obtain the tangential velocity on1289

an edge from the normal velocities on the edges of the cells sharing that edge. In contrast,1290

for DGSEM, the only pertinent spatial operators are the zonal and meridional gradient1291

operators.1292

We opt for a smooth spatial test function, which, along with its gradient and Laplacian,1293

is expressed as:1294

η = η̂ sin

(
2πx

Lx

)
sin

(
2πy

Ly

)
, (55a)

∇η = ηxi+ ηyj

= 2πη̂

{
1

Lx
cos

(
2πx

Lx

)
sin

(
2πy

Ly

)
i+

1

Ly
sin

(
2πx

Lx

)
cos

(
2πy

Ly

)
j

}
, (55b)

∇2η = ∇ · ∇η = −
{(

2π

Lx

)2

+

(
2π

Ly

)2
}
η. (55c)

By defining the surface elevation via (55a), the components of the geostrophic velocity field1295

emerge as u = −g/fηy and v = g/fηx, where g = 10 m s−2 and f = 10−4 s−1. If an1296

edge’s normal forms an angle θ with the positive direction of the zonal axis, the velocity1297

field components in the normal (n) and tangential (t = k × n) directions are represented1298

as un = Nu = u cos θ + v sin θ and ut = T u = v cos θ − u sin θ. The vertical component of1299

the curl of the velocity field, the kinetic energy, and the Laplacian of the normal velocity at1300
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the edges are defined as1301

ζ = k · ∇ × u = k · ∇ × (ui+ vj) = vx − uy =
g

f
∇2η, (56a)

K =
1

2
|u|2 =

1

2
(u2 + v2) =

g2

2f2
(
η2x + η2y

)
, (56b)

∇2un =
g

f
∇2 (−ηy cos θ + ηx sin θ) = − g

f
∇2T ∇η =

g

f

{(
2π

Lx

)2

+

(
2π

Ly

)2
}
T ∇η. (56c)

It is worth noting that although our test function was defined by (55), any function exhibiting1302

smooth spatial variation in both zonal and meridional directions, such as the initial conditions1303

for the geophysical waves or the manufactured solution, would have served the purpose.1304
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scenarios, accounting for the particularities and complexities inherent to both finite volume1001

and spectral element methods, and o↵ering flexibility in convergence testing and verification.1002

6.2 Numerical Solutions and Convergence Plots1003

Based on our experimental procedure, we begin by testing the convergence of the various1004

spatial operators. For the TRiSK-based mimetic finite volume method, these encompass the1005

gradient, divergence, curl, kinetic energy, and Laplacian operators as well as the interpolation1006

or flux-mapping operator. This last operator is used to obtain the tangential velocity on1007

an edge from the normal velocities on the edges of the cells sharing that edge. In contrast,1008

for DGSEM, the only pertinent spatial operators are the zonal and meridional gradient1009

operators.1010

We opt for a smooth spatial test function, which, along with its gradient and Laplacian,
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Figure 8. Convergence of TRiSK-based spatial and flux-mapping operators applied to the test

function (59) on a uniform MPAS-Ocean mesh.
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function (55) on a uniform MPAS-Ocean mesh.

Figure 8 displays the convergence plots for the TRiSK-based spatial operators, which1305

are all second-order accurate as expected. These studies were carried out on uniform planar1306

hexagonal MPAS-Ocean meshes. These meshes have an equal number of cells, say N , in1307

both zonal and meridional directions. Each row is offset by half a cell width, and the1308

configuration ensures that the regular hexagons’ parallel sides align with the meridional1309

direction. Given that ∆x denotes the distance between cell centers, the side length of these1310

hexagonal cells is 1/
√
3∆x. Consequently, the leading-order spatial discretization error term1311

for the second-order TRiSK scheme can be represented as O
(
∆x2

)
. With the zonal domain1312

extent set to Lx = N∆x, maintaining a constant Lx while increasing N means a log-log1313

plot of the error norm against N will display a slope identical in magnitude to that against1314

∆x. Hence, in our plots, we designate the x-axis as the cell count N , a choice enhancing1315

visualization as refinement progresses in the positive x-direction.1316
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By defining the surface elevation via (59a), the components of the geostrophic velocity field
emerge as u = �g/f⌘y and v = g/f⌘x, where g = 10 ms�2 and f = 10�4 s�1. If an
edge’s normal forms an angle ✓ with the positive direction of the zonal axis, the velocity
field components in the normal (n) and tangential (t = k ⇥ n) directions are represented
as un = Nu = u cos ✓ + v sin ✓ and ut = T u = v cos ✓ � u sin ✓. The vertical component of
the curl of the velocity field, the kinetic energy, and the Laplacian of the normal velocity at
the edges are defined as

⇣ = k · r ⇥ u = k · r ⇥ (ui + vj) = vx � uy =
g

f
r2⌘, (60a)

K =
1

2
|u|2 =

1

2
(u2 + v2) =

g2

2f2

�
⌘2

x + ⌘2
y

�
, (60b)

r2un =
g

f
r2 (�⌘y cos ✓ + ⌘x sin ✓) = � g

f
r2T r⌘ =

g

f

(✓
2⇡

Lx

◆2

+

✓
2⇡

Ly

◆2
)

T r⌘. (60c)

Moreover, it is worth noting that although our test function was defined by (59), any1011

function exhibiting smooth spatial variation in both zonal and meridional directions, such1012

as the initial conditions for the geophysical waves or the manufactured solution, would have1013

served the purpose.1014

Figure 9. Convergence of weak forms of the zonal and meridional gradient operators of DGSEM

applied to the test function (59) for polynomial orders 3, 4, and 5.

Figure 8 displays the convergence plots for the TRiSK-based spatial operators, which1015

are all second-order accurate as expected. These studies were carried out on uniform planar1016

hexagonal MPAS-Ocean meshes. These meshes have an equal number of cells, say N , in1017

both zonal and meridional directions. Each row is o↵set by half a cell width, and the1018

configuration ensures that the regular hexagons’ parallel sides align with the meridional1019

direction. Given that �x denotes the distance between cell centers, the side length of these1020

hexagonal cells is 1/
p

3�x. Consequently, the leading-order spatial discretization error term1021

for the second-order TRiSK scheme can be represented as O
�
�x2

�
. With the zonal domain1022

extent set to Lx = N�x, maintaining a constant Lx while increasing N means a log-log1023

plot of the error norm against N will display a slope identical in magnitude to that against1024

�x. Hence, in our plots, we designate the x-axis as the cell count N , a choice enhancing1025

visualization as refinement progresses in the positive x-direction.1026

Figure 9 displays the convergence plots for the weak forms of DGSEM’s zonal and
meridional gradient operators, utilizing the Bassi-Rebay method (Bassi & Rebay, 1997) to
approximate functions at the element boundaries. Notably, the convergence slopes align
with the orders of the polynomial basis functions. Although not depicted here, additional
convergence tests were performed on the strong form of these gradient operators, yielding
identical results. In our spectral element meshes, we specified the number of elements N ,
the length of each element �x, and the order of the polynomial basis functions p to be the
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Figure 9. Convergence of weak forms of the zonal and meridional gradient operators of DGSEM

applied to the test function (55) for polynomial orders 3, 4, and 5.

Figure 9 displays the convergence plots for the weak forms of DGSEM’s zonal and1317

meridional gradient operators, utilizing the Bassi-Rebay method (Bassi & Rebay, 1997) to1318

approximate functions at the element boundaries. Notably, the convergence slopes align1319

with the orders of the polynomial basis functions. Although not depicted here, additional1320

convergence tests were performed on the strong form of these gradient operators, yielding1321

identical results. In our spectral element meshes, we specified the number of elements N ,1322

the length of each element ∆x, and the order of the polynomial basis functions p to be the1323

same in both the zonal and meridional directions. For complete functions, the leading-order1324

spatial error term for our DGSEM solution takes the form1325

ε = k1 exp (−k2p)∆xp, (57)

where k1 and k2 are constants. Equation (57) follows from the in-depth error analysis of1326

DGSEMs in spectral element textbooks by Karniadakis and Sherwin (2005), Hesthaven and1327

Warburton (2007), and Canuto et al. (2007b). Taking the logarithm of both sides of (57)1328

gives1329

ln ε = ln k1 − k2p+ p ln∆x = k3 − p (k2 − ln∆x) . (58)

We recall from Section 3.2 that a spatial refinement in DGSEM can be performed in1330

two ways: by increasing p while maintaining a constant N (p-refinement), or vice versa1331

(h-refinement, where h denotes the cell width ∆x). Equation (58) shows that p-refinement1332

is expected to yield a straight line with negative slope of magnitude k2 − ln∆x on a log-log1333

graph, demonstrating exponential convergence. In contrast, an h-refinement should render1334

a straight line with a slope of magnitude p, akin to finite difference or finite volume methods.1335

Moreover, p-refinement is not applicable in the context of the TRiSK-based finite volume1336

method, for which the effective polynomial order remains fixed at second order. To ensure1337

a consistent and clear presentation, we have chosen to display the spatial convergence plots,1338

employing h-refinement, for both DGSEM and TRiSK in a sequential and organized manner.1339

The Courant number, critical for the stability of numerical simulations, can be defined1340

for two-dimensional advective problems as1341

C = ∆t

(
cx
∆x

+
cy
∆y

)
, (59)

where cx and cy are wave speeds, while ∆x and ∆y denote grid scales in the zonal and1342

meridional directions respectively. For DGSEM, employing rectangular elements with side1343

lengths ∆x and ∆y, the Courant number modifies to1344

C = ∆t


 cx

∆x
P 2

x

+
cy
∆y
P 2

y


 = ∆t

(
P 2
x

cx
∆x

+ P 2
y

cy
∆y

)
, (60)
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where Px and Py represent the orders of the polynomial basis function in the zonal and1345

meridional directions respectively. Given that the internal grid of each spectral element has1346

higher density towards the edges, the measures ∆x/P 2
x and ∆y/P 2

y offer close estimates for1347

the smallest internal grid spacings adjacent to these edges. In uniform planar hexagonal1348

MPAS-Ocean meshes, where ∆x indicates the distance between neighboring cell centers,1349

and in DGSEM meshes using spectral elements with side lengths ∆x and polynomial order1350

P in both horizontal directions, the CFL condition can be concisely represented as1351

C = λ∆t/∆x, where λ =

{
cx +

2√
3
cy for TRiSK,

cx + cy for DGSEM.
(61)

In our simulations, we specify cx and cy to be the zonal and meridional components of the1352

phase speed for the manufactured wave solution; the phase speed of the faster wave mode1353

for the coastal Kelvin and inertia-gravity waves; and the phase speed of the component1354

waves of the standing wave mode with faster components for the barotropic tide.1355

In each horizontal direction, let N represent the number of hexagonal cells for TRiSK1356

and the count of spectral elements for DGSEM. Additionally, let P symbolize the polynomial1357

order in each direction for DGSEM. For the TRiSK-based approach, we utilize a structured1358

planar hexagonal MPAS-Ocean mesh with N = 100. The spectral element mesh for DGSEM1359

is defined by N = 5 and P = 10 in all test cases except for the Rossby waves, resulting in1360

10th order spatial accuracy. For the Rossby wave test cases, we specify N = 10 and P = 7,1361

yielding a 7th order spatial accuracy. The zonal domain extent, Lx is specified as 5×106 m,1362

107 m, 106 m, 2.5× 105 m, and 107 m for the coastal Kelvin wave, the inertia-gravity wave,1363

the Rossby waves, the barotropic tide and the manufactured solution test cases respectively.1364

The distance between the adjacent hexagonal cell centers for TRiSK, as well as the side1365

lengths of the spectral elements for DGSEM are given by ∆x = Lx/N . For DGSEM, the1366

smallest grid spacings near element boundaries are approximately ∆x/P 2. The meridional1367

domain extent Ly is set to
√
3/2Lx for TRiSK, resulting in a “measure” for the meridional1368

grid scale ∆y = Ly/N =
√
3/2∆x. For DGSEM, Ly, ∆y, and the meridional grid spacings1369

mirror their zonal counterparts. By leveraging (61) to maintain the Courant number, C,1370

near 0.5, we specify the time step, ∆t, in the coastal Kelvin wave, inertia-gravity wave,1371

barotropic tide, and manufactured solution test cases to be 200 s, 100 s, 10 s, and 1801372

s respectively for TRiSK, and 50 s, 25 s, 2.5 s, and 30 s respectively for DGSEM. For1373

the Rossby wave test cases, a particularly small ∆t = 0.5 s is selected for both TRiSK1374

and DGSEM to meet the CFL condition for the fastest gravity waves, ensuring numerical1375

stability.1376

The numerical solutions being visually indistinguishable from their exact counterparts,1377

we limit our presentation to the time evolution of surface elevation errors for the coastal1378

Kelvin wave, inertia-gravity wave, barotropic tide, and the non-linear manufactured solution,1379

as shown in Figures 10, 11, 12, and 13. These solutions are advanced with Williamson’s1380

low-storage third-order Runge-Kutta time-stepping method, and spatially discretized with1381

TRiSK and DGSEM. The error stemming from these two types of spatial discretizations is1382

depicted in the first and second rows of Figures 10—13. At first glance, we notice that the1383

TRiSK error is three orders of magnitude less than the solution magnitude for the linear1384

coastal Kelvin wave, inertia-gravity wave, and barotropic tide test cases. It is two orders of1385

magnitude less for the non-linear manufactured solution test case. Conversely, the DGSEM1386

error is six orders of magnitude less than the solution error for the coastal Kelvin wave and1387

barotropic tide test cases, and eight orders of magnitude less for the inertia-gravity wave1388

and manufactured solution test cases.1389

In our analysis of the temporal evolution of the coastal Kelvin wave error for both1390

TRiSK and DGSEM (Figure 10), it is evident that the error modes propagate not only1391

meridionally from north to south in line with the wave direction, but also zonally from west1392

to east. Even though the exact tendency of the zonal velocity in the linear rotating shallow1393

water equations (10) is zero, due to a balance between the exact Coriolis and pressure1394
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same in both the zonal and meridional directions. For complete functions, the leading-order
spatial error term for our DGSEM solution takes the form

" = k1 exp (�k2p)�xp, (61)

where k1 and k2 are constants. Taking the logarithm of both sides gives

ln " = ln k1 � k2p + p ln�x = k3 � p (k2 � ln�x) . (62)

With DGSEM, the spatial refinement can be performed in two ways: by increasing p while1027

maintaining a constant N (p-refinement), or vice versa (h-Refinement, where h denotes the1028

cell width �x). Equation (62) shows that p-refinement is expected to yield a straight line1029

with negative slope of magnitude k2 � ln�x on a log-log graph, demonstrating exponential1030

convergence. In contrast, an h-refinement should render a straight line with a slope of1031

magnitude p, akin to finite di↵erence or finite volume methods. Moreover, p-refinement is1032

not applicable in the context of the TRiSK-based finite volume method, for which the1033

e↵ective polynomial order remains fixed at second order. To ensure a consistent and1034

clear presentation, we have chosen to display the spatial convergence plots, employing1035

h-refinement, for both DGSEM and TRiSK in a sequential and organized manner.1036

Figure 10. Time evolution of the surface elevation error of TC1, the Coastal Kelvin Wave,

spatially discretized with the TRiSK-based mimetic finite volume method (first row), and DGSEM

using 5 elements and polynomial basis functions of order 10 in each horizontal direction (second

row).

The numerical solutions being visually indistinguishable from their exact counterparts,1037

we limit our presentation to the time evolution of surface elevation errors for the coastal1038

Kelvin wave, inertia-gravity wave, barotropic tide, and the non-linear manufactured solution,1039

as shown in Figures 10, 11, 12, and 13. These solutions are advanced with Williamson’s1040

low-storage third-order Runge-Kutta time-stepping method, and spatially discretized with1041

the TRiSK-based mimetic finite volume method and DGSEM. The error stemming from1042

these two types of spatial discretizations is depicted in the first and second rows of Figures1043
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Figure 10. Time evolution of the surface elevation error of TC1, the coastal Kelvin wave,

spatially discretized with the TRiSK-based mimetic finite volume method (first row), and DGSEM

using 5 elements and polynomial basis functions of order 10 in each horizontal direction (second

row).
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Figure 11. Same as Figure 10, but for TC2, the high-frequency dispersive inertia-gravity wave,

showing TRiSK (first row), and DGSEM (second row).

Figure 12. Same as Figure 10, but for TC5, the Barotropic Tide test case, showing TRiSK

(first row), and DGSEM (second row).
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Figure 11. Same as Figure 10, but for TC2, the high-frequency dispersive inertia-gravity wave,

showing error for TRiSK (first row), and DGSEM (second row).
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Figure 11. Same as Figure 10, but for TC2, the high-frequency dispersive inertia-gravity wave,

showing TRiSK (first row), and DGSEM (second row).

Figure 12. Same as Figure 10, but for TC5, the Barotropic Tide test case, showing TRiSK

(first row), and DGSEM (second row).
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Figure 12. Same as Figure 10, but for TC5, the barotropic tide test case, showing error for

TRiSK (first row), and DGSEM (second row).
manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Figure 13. Same as Figure 10, but for TC6, the Manufactured Solution test case, showing

TRiSK (first row), and DGSEM (second row).

10—13. For the TRiSK-based approach, a structured planar hexagonal MPAS-Ocean mesh1044

is employed, comprising 100 cells in every direction. As for DGSEM, we utilized a spectral1045

element mesh, designed with 5 elements and polynomial basis functions of order 10 in both1046

directions, resulting in 10th order spatial accuracy. At first glance, we notice that the1047

TRiSK error is three orders of magnitude less than the solution magnitude for the linear1048

coastal Kelvin wave, inertia-gravity wave, and barotropic tide test cases. It is two orders of1049

magnitude less for the non-linear manufactured solution test case. Conversely, the DGSEM1050

error is six orders of magnitude less than the solution error for the coastal Kelvin wave and1051

barotropic tide test cases, and eight orders of magnitude less for the inertia-gravity wave1052

and manufactured solution test cases.1053

In our analysis of the temporal evolution of the coastal Kelvin wave error for both1054

TRiSK and DGSEM (Figure 10), it is evident that the error modes propagate not only1055

meridionally from north to south in line with the wave direction, but also zonally from west1056

to east. Even though the exact tendency of the zonal velocity in the linear rotating shallow1057

water equations (10) is zero, due to a balance between the exact Coriolis and pressure1058

gradient terms in (10a), its numerical counterpart is not. Referring to our discussion in1059

Section 4.2, the spatial discretization error in the pressure gradient term of (10a) is of order1060

O (�x↵). This non-zero error gives rise to a discernible numerical zonal velocity, serving1061

as a catalyst for the error modes to propagate in both zonal and meridional directions.1062

Moreover, the western boundary, characterized by high gradients and the imposition of a1063

no-normal flow condition, act as an incubator for error. As the simulation progresses, the1064

errors originating from this boundary permeate the interior domain. Notably, these error1065

modes propagate at speeds resembling the shallow water gravity wave speed, a reflection1066

of the system’s inherent physics. Such behavior underscores the principle that errors in1067

numerical simulations tend to mirror the dynamics of the governing equations. This, in1068

conjunction with the zonal error propagation, may account for the prominent west-to-east1069

movement of errors observed. A distinctive front-like feature is observed migrating from1070
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Figure 13. Same as Figure 10, but for TC6, the non-linear manufactured solution test case,

showing error for TRiSK (first row), and DGSEM (second row).
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gradient terms in (10a), its numerical counterpart is not. Referring to our discussion in1395

Section 4.2, the spatial discretization error in the pressure gradient term of (10a) is of order1396

O (∆xα). This non-zero error gives rise to a discernible numerical zonal velocity, serving1397

as a catalyst for the error modes to propagate in both zonal and meridional directions.1398

Moreover, the western boundary, characterized by high gradients and the imposition of a1399

no-normal flow condition, act as an incubator for error. As the simulation progresses, the1400

errors originating from this boundary permeate the interior domain. Notably, these error1401

modes propagate at speeds identical to the shallow water gravity wave speed, a reflection1402

of the system’s inherent physics. Interested readers may consult Figure A1 in Appendix A,1403

which depicts the exact solution plots for a plane wave test case traveling at the gravity wave1404

speed. They will observe a notable similarity between these plots and the aforementioned1405

error modes. Such behavior underscores the principle that errors in numerical simulations1406

tend to mirror the dynamics of the governing equations. This, in conjunction with the zonal1407

error propagation, may account for the prominent west-to-east movement of errors observed.1408

A distinctive front-like feature is observed migrating from west to east. Our interpretation1409

suggests that this front represents the initial “boundary layer” of error, emanating from the1410

western boundary. As this layer advances eastward, it collides with the pre-existing errors,1411

predominantly moving southward. This intricate dance between the boundary-induced and1412

interior error modes gives birth to the observed “front”.1413

We recall that the prescribed exact solutions for both the coastal and inertia-gravity1414

waves are constructed as a superposition of two wave modes. The second mode possesses1415

twice the amplitude and wavenumber relative to the first. Owing to the inherently dispersive1416

nature of the inertia-gravity wave, these modes propagate with different phase speeds. This1417

disparity in propagation speeds is manifested by the temporal variation of the solution’s1418

amplitude and the width of its positive and negative “bands” (Figure 2). Intriguingly,1419

the error exhibits analogous behavior. Given the absence of physical boundaries combined1420

with the imposition of periodic boundary conditions, the error advances coherently in the1421

direction of the solution (Figure 11). This observation again underscores that the system’s1422

underlying physics significantly shapes the error’s dynamics, mirroring the solutions of the1423

governing equations.1424

The barotropic tide test case serves as a benchmark for evaluating an ocean model’s1425

proficiency in simulating standing waves, a critical feature for coastal applications. While1426

an initial assessment based on error magnitude (Figure 12) and convergence rate (Figure 18)1427

suggests promising results for both TRiSK and DGSEM, a closer examination of the DGSEM1428

error plots uncovers patterns that could be attributed to either spurious oscillations or1429

numerical dispersion. On the other hand, the inherent dissipation of TRiSK damp outs1430

potential oscillations and dispersive errors that the more accurate DGSEM tends to pick1431

up. It is worth noting that despite these subtle numerical artifacts observed in DGSEM,1432

which were discernible only upon meticulous examination, the error magnitude for DGSEM1433

remains significantly lower than that of TRiSK at equivalent or even lower spatial resolution.1434

Finally, interpreting the error dynamics of the non-linear manufactured solution test1435

case (Figure 13) can be notably challenging. Nonlinearities inherently introduce a range of1436

complex interactions and dependencies between different solution features. While in linear1437

settings numerical artifacts like dispersion and oscillations may have predictable patterns, in1438

non-linear contexts these patterns can be distorted, merged, or even amplified in unexpected1439

ways. The intricacies of non-linear interactions can often cloak or overshadow the typical1440

behaviors we associate with numerical errors. As a result, even when we observe smooth1441

error fields as in Figure 13, these might be the consequence of numerous intertwined effects1442

which, in isolation, would appear differently. This complexity not only complicates our1443

ability to decipher the source or nature of errors but also underscores the importance1444

of supplementing visual error assessments with quantitative tools like convergence plots1445

(Figure 19) in non-linear scenarios.1446
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ways. The intricacies of nonlinear interactions can often cloak or overshadow the typical1122

behaviors we associate with numerical errors. As a result, even when we observe smooth1123

error fields as in Figure 13, these might be the consequence of numerous intertwined e↵ects1124

which, in isolation, would appear di↵erently. This complexity not only complicates our1125

ability to decipher the source or nature of errors but also underscores the importance1126

of supplementing visual error assessments with quantitative tools like convergence plots1127

(Figure 18) in nonlinear scenarios.1128

Figure 14. Convergence plots of TC1, the non-dispersive coastal Kelvin wave, discretized with

the TRiSK-based finite volume method (first row) and DGSEM (second row), for refinement in

space and time (first column), refinement in space (second column), and refinement in time (third

column). The average slope, s, is shown in each legend.

Figures 14, 15, 17, and 18 show the convergence plots of the surface elevation error for
the coastal Kelvin wave, the inertia-gravity wave, the barotropic tide, and the non-linear
manufactured solution, respectively. The refinement is performed by keeping �t / �x (first
column), only refining in space (second column), and only refining in time (third column).
The numerical solutions in the first rows of these figures have been discretized with the
TRiSK-based mimetic finite volume method, while the ones in the second row have been
discretized with DGSEM. Figure 16 shows the convergence plots of the numerical solution
of planetary and topographic Rossby waves discretized with DGSEM, for refinement only
in space (first column) and only in time (second column). As highlighted in point 9(c) of
the experimental procedure outlined in Section 6.1, employing an exceedingly high-order
DGSEM for convergence studies may not be optimal. This is attributed to the prevalence of
round-o↵ errors during spatial refinement, which manifest before the resolutions attain the
asymptotic regime. To mitigate this, we exclusively utilize fourth-order polynomial basis
functions, thereby ensuring that our DGSEM remains fourth-order accurate in space. The
actual time-stepping methods corresponding to their abbreviated notations in the legends
of the convergence plots can be obtained from List 1. The slope of the best fit line for each
time-stepping method is denoted by s. Letting ⌘ = �t/�x denote the ratio of the time step
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Figure 14. Convergence plots of TC1, the non-dispersive coastal Kelvin wave, discretized with

TRiSK (first row) and DGSEM (second row), for refinement in space and time (first column),

refinement in space (second column), and refinement in time (third column). The slope of the

best-fit line, s, is shown in each legend.
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Figure 15. Same as Figure 14, but for TC2, the dispersive inertia-gravity wave.

Figure 16. Convergence plots of the dispersive planetary Rossby waves (TC3, first row), and

topographic Rossby waves (TC4, second row) discretized with DGSEM, for refinement in space

(first column), and refinement in time (second column).
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Figure 15. Same as Figure 14, but for TC2, the dispersive inertia-gravity wave.
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Figure 15. Same as Figure 14, but for TC2, the dispersive inertia-gravity wave.

Figure 16. Convergence plots of the solution di↵erence norm of TC3a, the linear dispersive

planetary Rossby wave, discretized with the TRiSK-based finite volume method (first row) and

DGSEM (second row), for refinement in space (first column), and refinement in time (second

column). The average slope, s, is shown in each legend.
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Figure 16. Convergence plots of the solution difference norm of TC3a, the linear dispersive

planetary Rossby wave, discretized with TRiSK (first row) and DGSEM (second row), for refinement

in space (first column), and refinement in time (second column). The slope of the best-fit line, s,

is shown in each legend.
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Figure 17. Same as Figure 16, but for TC4a, the linear dispersive topographic Rossby wave.

Figure 18. Convergence plots of TC5, the barotropic tide, discretized with the TRiSK-based

finite volume method (first row) and DGSEM (second row), for refinement in space and time (first

column), refinement in space (second column), and refinement in time (third column).
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Figure 17. Same as Figure 16, but for TC4a, the linear dispersive topographic Rossby wave.
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Figure 17. Convergence plots of TC5, the Barotropic Tide, discretized with the TRiSK-based

finite volume method (first row) and DGSEM (second row), for refinement in space and time (first

column), refinement in space (second column), and refinement in time (third column).

Figure 18. Same as Figure 17, but for TC6, the non-linear manufactured solution.
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Figure 18. Convergence plots of TC5, the barotropic tide, discretized with TRiSK (first row)

and DGSEM (second row), for refinement in space and time (first column), refinement in space

(second column), and refinement in time (third column).
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Figure 17. Convergence plots of TC5, the Barotropic Tide, discretized with the TRiSK-based

finite volume method (first row) and DGSEM (second row), for refinement in space and time (first

column), refinement in space (second column), and refinement in time (third column).

Figure 18. Same as Figure 17, but for TC6, the non-linear manufactured solution.

–40–

Figure 19. Same as Figure 18, but for TC6, the non-linear manufactured solution.
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We have examined the plots produced by DGSEM on low-resolution spectral element1447

meshes. Coarsening was executed by diminishing the polynomial order (p-coarsening) as1448

well as the number of elements (h-coarsening). To maintain brevity, we have opted not to1449

include these results in this paper. However, interested readers can download the output1450

files for each test case detailed in the main paper and in Appendix A from Bishnu (2024a),1451

and review the low p- and h-resolution plots in the designated subdirectories of the DGSEM1452

output directory. These subdirectories exist for all test cases equipped with exact solutions,1453

and contain the numerical solution and error plots. The spectral element mesh used in the1454

low p-resolution simulations was configured with 5 elements and polynomial basis functions1455

of order 4 in each horizontal direction. In contrast, the mesh for the low h-resolution1456

simulations was designed with 2 elements and polynomial basis functions of order 10 in each1457

direction. The low-resolution plots reveal an increase in numerical dispersion and dissipation1458

effects (Section 5). Notably, numerical dispersion often becomes more pronounced in coarser1459

meshes, where the fidelity of the physical phenomena’s representation is compromised due1460

to the lower resolution. This manifests as significant alterations in wave speeds and wave1461

shapes, leading to attenuation of the signal in some parts of the domain and amplification1462

in others. While these dispersive effects are imperceptible in the high-resolution DGSEM1463

solution of the physically non-dispersive Kelvin wave, they become conspicuous in the low1464

resolution solution, particularly with lower than three elements and third-order polynomial1465

basis functions in each direction. It alters the phase speed of the component waves of1466

different wavelengths, thereby distorting the resultant wave’s initial profile as the simulation1467

progresses. Concurrently, the utilization of the LLF Riemann solver—implemented to1468

dampen spurious oscillations at the spectral elements’ boundaries—introduces its own brand1469

of error, that of a dissipative nature. A coarser mesh exacerbates this error, as there are1470

fewer elements to absorb the impact of these dissipative effects. It is manifested by the1471

errors assuming predominantly higher magnitudes along the element boundaries.1472

Figures 14, 15, 18, and 19 show the convergence plots of the surface elevation error for1473

the coastal Kelvin wave, the inertia-gravity wave, the barotropic tide, and the non-linear1474

manufactured solution, respectively. The refinement is performed by keeping ∆t ∝ ∆x1475

(first column), only refining in space (second column), and only refining in time (third1476

column). The numerical solutions in the first rows of these figures have been discretized1477

with the TRiSK-based mimetic finite volume method, while the ones in the second row1478

have been discretized with DGSEM. Given the absence of exact solutions for the planetary1479

and topographic Rossby wave test cases, we cannot ascertain their error, which is essential1480

for convergence studies with both spatial and temporal refinement. Consequently, we plot1481

the norm of the differences between numerical solutions over successive pairs of spatial and1482

temporal resolutions, refined at a constant ratio, to verify the spatial and temporal orders of1483

accuracy (Section 4.5). Figures 16 and 17 showcase these convergence plots for the planetary1484

and topographic Rossby waves respectively, discretized with TRiSK (first row) and DGSEM1485

(second row), for refinement only in space (first column) and only in time (second column).1486

For refinement in both space and time, we utilize the Courant number formulation in (61)1487

to first determine the time step ∆t on the coarsest mesh, and then reduce this maximum ∆t1488

proportional to ∆x for the remaining meshes. Similarly, by leveraging (61), we determine1489

(a) the largest ∆t at a fixed spatial resolution for refinement only in time, and (b) the ∆t1490

on the finest mesh for refinement only in space, ensuring it meets the CFL condition for1491

the remaining meshes where it is also implemented. The time horizon is specified using1492

the largest ∆t as stipulated in point 7 of the experimental procedure of Section 6.1. The1493

actual time-stepping methods corresponding to their abbreviated notations in the legends1494

of the convergence plots can be obtained from List 1. The slope of the best fit line for each1495

time-stepping method is denoted by s.1496

The convergence slopes agree with the theoretical predictions in Bishnu (2021). As1497

highlighted in point 9(c) of the experimental procedure outlined in Section 6.1, employing1498

an exceedingly high-order DGSEM for convergence studies may not be optimal. This is1499

attributed to the prevalence of round-off errors during spatial refinement, which manifest1500
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before the resolutions attain the asymptotic regime. To mitigate this, we only utilize1501

fourth-order polynomial basis functions. The observed convergence slopes of approximately1502

four in the spatial-only refinement plots for DGSEM confirm their fourth-order spatial1503

accuracy. When refining in both space and time, we note that the asymptotic order of1504

convergence matches the minimum of the spatial and temporal orders of accuracy. Since1505

asymptotic convergence is observed with the second-order TRiSK scheme for refinement1506

in both space and time, third- and fourth-order Runge-Kutta and Adams-Bashforth time1507

integrators do not result in higher than second-order convergence rates. For this reason,1508

it is imperative to perform convergence studies only in space and only in time, and plot1509

the differences in the numerical solution or the error between successive pairs of spatial1510

and temporal resolutions to capture the true spatial and temporal orders of accuracy. The1511

second and third columns of Figures 14, 15, 18, and 19 can attest to this statement. The1512

slope s is reported at resolutions where asymptotic convergence is observed. For example,1513

for the coastal Kelvin wave test case discretized in space with a fourth-order DGSEM1514

and advanced with the second-order accurate time stepping methods RK2 and AB2, only1515

second-order accuracy is observed in the asymptotic regime. Similarly, as errors approach1516

machine precision, which often happens with high-order methods, these errors near machine1517

epsilon are excluded from the slope calculations. Finally, we note that when refining in1518

both space and time, the convergence often appears faster than the theoretical asymptotic1519

convergence rate—this occurs, for example, with the coastal Kelvin wave test. In these1520

examples, even though the time stepping methods RK3 and AB3 are third-order accurate,1521

the fourth-order accuracy is observed because the resolutions do not reach the asymptotic1522

regime, and the spatial error dominates at the chosen time step sizes. This underscores yet1523

another important reason for conducting the self-refinement convergence tests only in space1524

and only in time to verify the spatial and temporal orders of accuracy. It is worth noting that1525

for temporal refinement using TRiSK and fourth-order Runge-Kutta and Adams-Bashforth1526

methods, round-off errors overshadow the norm of the solution difference. As such, we1527

have excluded these particular convergence plots from our presentation. Finally, we obtain1528

expected convergence rates with the non-linear planetary and topographic Rossby waves1529

(test cases 3b and 4b), so we do not present these results here.1530

7 Conclusion and Future Work1531

We have designed a verification suite of shallow water test cases for ocean model1532

development. Each of these test cases verifies the implementation of a subset of terms1533

in the prognostic momentum and continuity equations e.g. the linear pressure gradient1534

term, the linear constant- or variable-coefficient Coriolis and bathymetry terms, and the1535

non-linear advection terms. The test cases constitute standard geophysical waves including1536

the non-dispersive coastal Kelvin wave, the high-frequency dispersive inertia-gravity wave,1537

the low-frequency dispersive planetary and topographic Rossby waves, the barotropic tide,1538

and a non-linear manufactured solution. Appendix A includes the non-dispersive equatorial1539

Kelvin wave and the dispersive equatorial Yanai, Rossby and inertia-gravity waves, as well1540

as four non-geophysical test cases: the plane Gaussian wave, the diffusion equation, the1541

advection-diffusion equation, and the viscous Burgers’ equation.1542

We have developed a shallow water solver in object-oriented Python (Bishnu, 2024a),1543

employing two types of spatial discretizations—TRiSK representing low-order mimetic finite1544

volume methods (FVMs), and DGSEM epitomizing high-order finite or spectral element1545

methods (SEMs)—and numerous time-stepping methods. It was used as a platform to1546

run the shallow water test cases, and conduct convergence studies for each test case with1547

refinement in both space and time, only in space, and only in time. The observed convergence1548

rates align with the theoretical predictions in Bishnu (2021).1549

We utilized TRiSK and DGSEM, representing the finite volume and high-order spectral1550

element methods, based on their prevalence in operational ocean models. In our discussion,1551

we highlight key considerations associated with each spatial discretization technique. For1552
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example, we investigate the importance of conducting self-refinement convergence tests only1553

in space and only in time, noting that the rationale might differ between FVMs and SEMs.1554

We further delve into the nuances of numerical implementation, with certain details specific1555

to either FVMs or SEMs. Despite the differences between TRiSK and DGSEM, our study1556

underscores the robustness of our numerical approach in verifying the spatial and temporal1557

orders of accuracy across both discretization methods.1558

In our analysis of numerical solutions, we discerned that the temporal evolution of1559

errors in both TRiSK and DGSEM closely mirrors the intrinsic physics of the system being1560

modeled. The DGSEM approach, characterized by its use of high-order polynomial basis1561

functions, is more prone to spurious oscillations near steep gradients or discontinuities, a1562

trait commonly dubbed as the “Gibbs phenomenon”. Employing Legendre-Gauss nodes in1563

conjunction with the local Lax Friedrichs (LLF) Riemann solver significantly alleviates these1564

oscillations. However, the LLF solver is not without its trade-offs, as it introduces its own1565

flavor of dissipative error. In coarser meshes with fewer elements to absorb these errors,1566

their impact becomes more pronounced, especially at element boundaries. Additionally,1567

DGSEM’s susceptibility to numerical dispersion errors is heightened in these coarser meshes1568

due to the physical phenomena being represented with less fidelity. In contrast, the TRiSK1569

scheme, with its inherent dissipation properties, effectively dampens both spurious oscillations1570

and dispersion errors. However, this comes at the expense of overall solution accuracy. In1571

fact, TRiSK’s error turns out to be several orders of magnitude larger than DGSEM’s at1572

comparable spatial resolution. This is despite the presence of the aforementioned numerical1573

artifacts in DGSEM, which become evident only upon close scrutiny.1574

It is our hope that the exact solutions and numerical results presented here will be useful1575

to other developers of atmosphere and ocean dynamical cores. Shallow water equation1576

test cases may be applied to ocean layered primitive equation models with the vertical1577

advection and diffusion terms turned off, as well as the barotropic mode in split time-stepping1578

schemes. The suite was designed to include a progressive sequence of added complexity in the1579

terms tested, topography, and boundary conditions. Test cases with exact or manufactured1580

solutions can verify model functionality without resorting to high resolutions and a large1581

number time steps common in global simulations. Moreover, for convergence studies aimed1582

at verifying the spatial and temporal orders of accuracy, the simulation time can be further1583

reduced, leading to an even smaller number of time steps. Such attributes render these1584

test cases ideal for automated nightly regression testing and as a prerequisite for code pull1585

requests. Verification suites with thorough coverage of code functionality have proven to be1586

indispensable in our own development work. In E3SM, we have developed an automated1587

test harness called Polaris that creates the initial conditions, runs the ocean model, and then1588

reports the error and order of convergence for verification test cases (Asay-Davis & Begeman,1589

2024). Our ongoing and future work include designing further verification exercises with1590

complexity in between the barotropic equations and the primitive equations; stratification1591

and complex bathymetry; the ability to test both the barotropic and baroclinic components1592

separately, and the coupling between these modes.1593

Appendix A An Additional Suite of Test Cases1594

We present an additional suite of test cases with exact solutions, summarized in Table1595

A1. Test cases 1–6 in the main text encompass the largest variety of configurations—from1596

linear to non-linear, solid and periodic boundaries, flat and sloping bathymetries, and f- and1597

beta-plane domains. Though test cases 7–14 expand the suite, they exhibit more repetition1598

in their configurations. The plane wave test case examines the most basic form of the linear1599

shallow water equations, excluding the Coriolis terms. The diffusion, advection-diffusion,1600

and viscous Burgers test cases do not offer solutions to the shallow water equations used1601

to simulate geophysical fluid dynamics. However, the advection-diffusion test case verifies1602

the implementation of the linear advection term, and in conjunction with the diffusion test1603

case, it verifies the implementation of the diffusion term ensuring the numerical stability1604
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of the non-linear shallow water equations. The viscous Burgers test case not only verifies1605

the implementations of the non-linear advection and diffusion terms, it also assesses the1606

resilience of numerical methods against problems with low regularity. Lastly, the equatorial1607

wave test cases (TC 10–13) may appear repetitive in their testing scope, but they hold merit1608

for pedagogical purposes, elucidating the dynamics and visualization of equatorial waves in1609

simplified configurations.1610

Table A1. Summary of test cases in Appendix A, continuing the case numbering from Table 1

in the main text. The last column refers to terms in the shallow water equations (6).

Coriolis Bottom Numerical Boundary Terms Verified
Parameter Topography PDE Conditions in Equation (6)

7. Plane Gaussian Zero Flat Linear, Homogeneous, Non-Periodic in x (5),
Wave (no Coriolis) Bottom Constant-Coefficient Non-Periodic in y (8)

8. Diffusion Zero Flat Linear, Homogeneous, Periodic in x (6)
Eqn (no Coriolis) Bottom Constant-Coefficient Periodic in y

9. Advection Zero Flat Linear, Homogeneous, Non-Periodic in x (6),
Diffusion Eqn (no Coriolis) Bottom Constant-Coefficient Non-Periodic in y (8)

10. Viscous Burgers Zero Flat Non-Linear, Homogeneous, Non-Periodic in x (1), (2), (6)
Equation (no Coriolis) Bottom Constant-Coefficient Non-Periodic in y

11. Equatorial Linear in y Flat Linear, Homogeneous, Periodic in x (4), (5),
Kelvin Wave (beta-plane) Bottom Variable-Coefficient Non-Periodic in y (8)

12. Equatorial Linear in y Flat Linear, Homogeneous, Periodic in x (4), (5),
Yanai Wave (beta-plane) Bottom Variable-Coefficient Non-Periodic in y (8)

13. Equatorial Linear in y Flat Linear, Homogeneous, Periodic in x (4), (5),
Rossby Wave (beta-plane) Bottom Variable-Coefficient Non-Periodic in y (8)

14. Equatorial Inertia Linear in y Flat Linear, Homogeneous, Periodic in x (4), (5),
Gravity Wave (beta-plane) Bottom Variable-Coefficient Non-Periodic in y (8)

A1 Plane Wave, Diffusion, Advection-Diffusion and Viscous Burgers Test1611

Cases1612

We offer a concise overview of the plane wave, diffusion, advection-diffusion, and viscous1613

Burgers test cases, accompanied by visual representations of the exact solutions’ temporal1614

evolution.1615

A11 Test Case 7: Plane Wave1616

The plane wave is a solution of the linear homogeneous non-rotating shallow water1617

equations, obtained by specifying f = 0 in (10). It only tests the implementation of the1618

linear pressure gradient term in the momentum equations and the linear advection term in1619

the continuity equation. This is the first test case against which the linear shallow water1620

equations should be verified. In a domain with zonal and meridional extents denoted by Lx1621

and Ly, the exact solution for the plane wave can be characterized as a Gaussian, given by1622



u

v

η


 =



1/kx
1/ky
1/g


 exp

[
−
{
kx(x− x0) + ky(y − y0)− ct√

2R0

}2
]
, (A1)

where (x0, y0) are the initial coordinates of the Gaussian peak, (kx, ky) are the wavenumber1623

components, R0 is the RMS width of the Gaussian peak, and c =
√
gH is the propagation1624

speed of this plane Gaussian wave, equivalent to the shallow water gravity wave speed. For1625

the parameters, we have chosen Lx = 106 m, x0 = 0.25Lx, kx = ky = 1/
√
2 m−1, g = 101626
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Figure A1. Time evolution of TC7, the Plane Gaussian Wave: the exact surface elevation in the

entire domain (first row) cross-section along the south-west to north-east diagonal (second row);

the surface elevation error of the numerical solution spatially discretized with the TRiSK-based

mimetic finite volume method (third row), and DGSEM (fourth row).

–46–

Figure A1. Time evolution of TC7, the plane Gaussian wave, showing the exact surface elevation

(first row), and cross-section of the exact surface elevation along the south-west to north-east

diagonal (second row).

m s−2, H = 1000 m (yielding c = 100 m s−1), and R0 = w/(2
√
2 ln 2), where w = 105 m1627

denotes the full width at half maximum. For the spectral element mesh, y0 = x0, and for1628

the MPAS-Ocean mesh, y0 =
√
3/2x0. Figure A1 depicts the time evolution of the surface1629

elevation of this plane wave in the entire domain (first row) and along the south-west to1630

north-east diagonal (second row). The error patterns of the non-dispersive Kelvin wave,1631

depicted in Figure 10 of the main paper, resemble this plane wave, as they all travel at the1632

shallow water gravity wave speed.1633

A12 Test Case 8: Diffusion Equation1634

The heat or diffusion equation is a fundamental equation in the study of heat transfer1635

and diffusion processes. It describes how a quantity, such as temperature or concentration of1636

a substance, spreads out over time inside a specified region. In two dimensions, the equation1637

is expressed as1638

φt = ν∇2φ, (A2)

where φ represents the diffusing quantity, and ν is the diffusion coefficient, a measure1639

of the rate at which diffusion occurs. Based on Fick’s laws of diffusion, (A2) assumes a1640

homogeneous and isotropic medium, meaning the properties of the medium do not change1641

with direction or position. It essentially states that the rate of change of the scalar field,1642

φ, at any point in space is proportional to the curvature of φ at that point. This reflects1643

the physical principle that diffusion acts to smooth out variations in the scalar field over1644

time. Mathematically, (A2) is an example of a parabolic partial differential equation,1645

and is derived under the assumption of a constant diffusion coefficient and the absence1646

of any sources or sinks within the domain. Standard texts on partial differential equations1647

and numerical analysis, including works by Strauss (2007), J. D. Logan (2014), Farlow1648
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where ϕ represents the diffusing quantity, and ν is the diffusion coefficient, a measure
of the rate at which diffusion occurs. Based on Fick’s laws of diffusion, (A2) assumes a
homogeneous and isotropic medium, meaning the properties of the medium do not change
with direction or position. It essentially states that the rate of change of the scalar field,
ϕ, at any point in space is proportional to the curvature of ϕ at that point. This reflects
the physical principle that diffusion acts to smooth out variations in the scalar field over
time. Mathematically, (A2) is an example of a parabolic partial differential equation,
and is derived under the assumption of a constant diffusion coefficient and the absence
of any sources or sinks within the domain. Standard texts on partial differential equations
and numerical analysis, including works by Strauss (2007), J. D. Logan (2014), Farlow
(1993), and Haberman (1998), offer in-depth explorations of this equation. In our numerical
simulations, we employ the exact solution

ϕ(x, y, t) = sin(kxx) sin(kyy)e−κt, (A3)

to set the initial and boundary conditions. The diffusivity, κ = ν
(
k2
x + k2

y

)
, represents the1464

rate and pattern of diffusion, factoring in the spatial variability of the system. In a domain1465

with a zonal extent of Lx = 106 m, key parameters include kx = 2π/Lx, ky = 2π/Ly,1466

and ν = 25000 m2 s−1. The solution’s visualization, depicted in Figure A3, showcases the1467

diffusion pattern across the entire domain (first row) and along the south-west to north-east1468

diagonal (second row).1469
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Figure A2. Time evolution of TC8, the diffusion equation, showing the exact solution (first

row), and cross-section of the exact solution along the south-west to north-east diagonal (second

row).

A13 Test Case 8: Advection-Diffusion Equation1470

The advection-diffusion equation models the combined effect of advection and diffusion
on a scalar field, ϕ, such as concentration of a substance or temperature. This equation plays

–49–

Figure A2. Same as Figure A1 but for TC8, the diffusion equation, showing the exact solution

(first row), and cross-section of the exact solution along the south-west to north-east diagonal

(second row).

(1993), and Haberman (1998), offer in-depth explorations of this equation. Solving the1649

diffusion equation while employing the spatial discretization of an ocean model verifies the1650

implementation of the Laplacian operator. In our numerical simulations, we employ the1651

exact solution1652

φ(x, y, t) = sin(kxx) sin(kyy)e
−κt, (A3)

to set the initial and boundary conditions. The diffusivity, κ = ν
(
k2x + k2y

)
, represents the1653

rate and pattern of diffusion, factoring in the spatial variability of the system. In a domain1654

with a zonal extent of Lx = 106 m, key parameters include kx = 2π/Lx, ky = 2π/Ly, and1655

ν = 25000 m2 s−1. The exact solution’s visualization, depicted in Figure A2, showcases1656

the diffusion phenomenon across the entire domain (first row) and along the south-west to1657

north-east diagonal (second row).1658

A13 Test Case 9: Advection-Diffusion Equation1659

The advection-diffusion equation models the combined effect of advection and diffusion1660

on a scalar field, φ, such as concentration of a substance or temperature. This equation plays1661

a pivotal role in fields including fluid dynamics, heat transfer, and environmental sciences.1662

Mathematically, the equation is formulated as1663

φt + u0 · ∇φ ≡ φt +∇ · (φu0) = ν∇2φ. (A4)

Here, φ is the scalar quantity of interest, u0 = u0i + v0j is the velocity field causing1664

advection, and ν is the diffusion coefficient. Comprehensive derivations and solutions of the1665

advection-diffusion equation can be gleaned from standard PDE and numerical analysis1666

texts, such as those by Strauss (2007), Smith (1985), Donea and Huerta (2003), and1667
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Figure A2. Same as Figure A1 but for TC8, the Advection-Di↵usion equation, showing the

exact solution (first row), cross-section of exact solution (second row), TRiSK error (third row),

and DGSEM error (fourth row).
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Figure A3. Same as Figure A1 but for TC9, the advection-diffusion equation, showing the

exact solution (first row), and cross-section of the exact solution along the south-west to north-east

diagonal (second row).

D. A. Kopriva (2009). When the advection-diffusion equation is solved using the spatial1668

discretization of an ocean model, the implementation of the divergence and Laplacian1669

operators can be verified. In our numerical simulations, we employ the exact solution1670

φ(x, y, t) =
1

4t+ 1
exp


−

{
(x− x0 − u0t)

2
+ (y − y0 − v0t)

2
}

ν(4t+ 1)


, (A5)

to specify the initial and boundary conditions. This solution depicts a two-dimensional1671

Gaussian patch with a time-dependent amplitude of 1/(4t+ 1) and a radial RMS width of1672 √
ν(4t+ 1)/2. This patch is advected by the velocity u0 while undergoing diffusion at a rate1673

of ν. The Gaussian’s peak is initially located at coordinates (x0, y0). In a domain with a1674

zonal extent of Lx = 2 m, the parameters are chosen as x0 = 0.25Lx = 0.5 m, u0 = 1 m s−1,1675

and ν = 0.01 m2 s−1. For the spectral element mesh, the parameters y0, and v0 mirror their1676

zonal counterparts. In contrast, on the MPAS-Ocean mesh, these parameters are scaled by1677

a factor of
√
3/2 relative to their zonal values. Figure A3 illustrates the exact solution of1678

the advection-diffusion equation with the aforementioned parameters, in the entire domain1679

(first row) and along the south-west to north-east diagonal (second row).1680

A14 Test Case 10: Viscous Burgers’ Equation1681

The study of hyperbolic PDEs such as the Burgers’ equation requires understanding1682

the notion of “characteristics”. In the context of the simpler linear advection equation,1683

ut + aux = 0, the solution is given by u(x, t) = u0(x − at), where u0(x) represents the1684

initial condition and a is the advection speed. For this equation, x− at = c (where c takes1685

different values) represents straight lines in the x − t plane called characteristics. Along1686

these characteristics, the solution remains unchanged, effectively signifying that information1687
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propagates without alteration. Transitioning to the inviscid Burgers’ equation, the situation1688

becomes non-linear and significantly more complex. Here, the equation reads ut + uux = 01689

or ut + (f(u))x = 0, where f(u) = u2/2. A crucial difference is noticed: while in the1690

linear advection equation, the advection speed is constant, in the Burgers’ equation, it is1691

dependent on the solution magnitude u itself. This means the characteristics are determined1692

by the local value of the solution, causing them to curve in the x− t plane rather than being1693

straight lines. As the local advection speed u varies across the domain, characteristics either1694

converge or diverge.1695

manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Figure A3. Same as Figure A1 but for TC9, the viscous Burgers shock wave, showing the exact

zonal velocity solution (first row), cross-section of exact zonal velocity solution (second row) TRiSK

error (third row), and DGSEM error (fourth row).
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Figure A4. Same as Figure A1 but for TC10, the viscous Burgers’ shock wave, showing the

exact solution (first row) and cross-section of the exact solution (second row).

The Riemann problem, taken as an example, features a step-like initial condition:1696

u0(x) =

{
ul if x < 0,

ur if x ≥ 0,
(A6)

where ul and ur are constants. Due to the step-like variation, different advection speeds,1697

ul and ur respectively, are possessed by the left and right sides. Characteristics are either1698

caused to converge (if ul > ur) resulting in a shock wave, or to diverge (if ul < ur) leading1699

to a rarefaction wave. With a smooth initial condition like a Gaussian u(x, 0) = exp(−x2),1700

the solution is continuously varying, and so is the local advection speed. Initially, the1701

solution remains single-valued for every x. However, due to the higher magnitude (and thus1702

higher advection speed) at the Gaussian’s peak, it starts overtaking its leading edge, causing1703

characteristics to converge. A triple-valued solution at certain x values is encountered,1704

marking the breaking time. Replacing the multi-valued region with a discontinuity by the1705

equal area rule ensures the conservation of the integral of u and sets the shock’s position.1706

Meanwhile, at the trailing (left) edge of the Gaussian bump, the characteristics diverge due1707

to a lower advection speed, causing a rarefaction wave to form.1708
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When characteristics converge leading to a shock formation, numerically the solution1709

can become multi-valued in standard discretization schemes. This multi-valuedness is not1710

physically realizable and leads to ambiguity. Numerical methods typically are not designed1711

to handle multi-valued solutions directly. Instead, when faced with a choice among several1712

possible values, the method may inadvertently pick one, leading to an artificially steep1713

gradient. These steep gradients can induce numerical instabilities, particularly in explicit1714

time-stepping schemes, where high gradients can result in time step restrictions (due to1715

the CFL condition) or even solution blow-up. In the case of a rarefaction wave, the1716

characteristics spread apart. Numerically, when modeling a rarefaction wave, the solution1717

remains single-valued and smoother compared to a shock. There is not the same challenge of1718

handling multi-valued solutions. However, if not captured accurately, numerical diffusion, an1719

artifact of many discretization schemes, can overly smooth the rarefaction, making it wider1720

and less pronounced than it should be. This is a common issue, especially in first-order1721

numerical schemes.1722

We now transition to the viscous Burgers’ equation, ut+uux = νuxx, where ν represents1723

the viscosity or diffusion coefficient. The introduction of this viscous term plays a pivotal1724

role in smoothing out the discontinuities found in the inviscid case. For instance, in the1725

Riemann problem, the introduction of viscosity transforms what would be a shock wave in1726

the inviscid case into a smooth transition in space and time, given by1727

u(x, t) = s− ul − ur
2

tanh

{
(x− x0 − st)(ul − ur)

4ν

}
, (A7)

where s = (ul + ur)/2 represents the shock speed, and x0 denotes the location of the initial1728

discontinuity or transition in the solution. In the context of the inviscid Burgers’ equation,1729

s can be derived using the Rankine-Hugoniot jump condition:1730

s =
jump in f(u)

jump in u
=
f(ul)− f(ur)

ul − ur
=

u2l − u2r
2 (ul − ur)

=
ul + ur

2
. (A8)

As x → +∞, the hyperbolic tangent function asymptotically approaches 1, ensuring that1731

the solution tends to ur. Conversely, as x→ −∞, the hyperbolic tangent function gravitates1732

towards −1, and hence the solution aligns with ul. The term (x− x0 − st)(ul − ur) in the1733

numerator ensures the solution progresses with the appropriate shock speed and correctly1734

accounts for the position and magnitude of the initial discontinuity. When the viscosity ν1735

is allowed to approach zero, the hyperbolic tangent function becomes increasingly sharp.1736

In this limiting scenario, the solution of the viscous Burgers’ equation converges to the1737

step function solution that characterizes the inviscid Riemann problem, illustrating the1738

connection between the viscous and inviscid formulations.1739

Using the viscous Burgers’ equation as a verification test for ocean models can be1740

quite advantageous. Ocean models inherently do not encounter shock waves due to viscous1741

terms and numerical diffusion. The viscous Burgers’ equation allows these models to verify1742

both their non-linear advection and viscous terms. Moreover, by adjusting the viscosity1743

parameter, we can modulate the solution’s regularity, allowing us to closely approach a1744

discontinuous step function and thus robustly test our numerical methods.1745

Figure A4 displays the exact solution of the viscous Burgers’ equation in the entire1746

domain (first row) and along any zonal section (second row). It is uniform in the meridional1747

direction. In case of the TRiSK discretization, the normal velocity is the prognostic quantity1748

of interest. So, we do not lose any generality by using a velocity field with zero meridional1749

component as in this instance. Key parameters include Lx = 106 m, x0 = Lx/4 = 2.5× 1051750

m, ul = 1 m s−1, ur = 0, s = (ul + ur)/2 = 0.5 m s−1, and ν = 2.5× 104 m2 s−1.1751

A2 Equatorial Waves1752

Along the equator, the latitude ϕ0 = 0, and the Coriolis parameter f0 = 2Ω sinϕ01753

vanishes. So, the equator is a dynamically special region. Therefore, in the vicinity of the1754
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Figure A4. Time evolution of the TC10, the non-dispersive equatorial Kelvin wave: the exact

solution of surface elevation (first row), cross-section of exact solution (second row), TRiSK error

(third row), and DGSEM error (fourth row).
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Figure A5. Time evolution of the TC11, the non-dispersive equatorial Kelvin wave, showing

the exact surface elevation (first row) and cross-section of the exact surface elevation (second row).

equator, certain geophysical waves develop unusually strong signals and contribute to the1755

generation of the Quasi-Biennial Oscillation (QBO) in the atmosphere (Hell, 2020; Baldwin1756

et al., 2001) and the El Niño Southern Oscillation (ENSO) phenomenon in the ocean and1757

atmosphere (Clarke, 2008; Sarachik & Cane, 2010; Philander et al., 1989).1758

The equatorial Kelvin, Yanai, Rossby, and inertia-gravity waves are solutions of the1759

rotating shallow water equations1760

ut − β0yv = −gηx, (A9a)

vt + β0yu = −gηy, (A9b)

ηt +H (ux + vy) = 0, (A9c)

where u and v are the zonal and meridional velocities, η is the surface elevation, H is the1761

mean depth of the ocean with a flat bottom, β0 is the first-order meridional gradient of the1762

Coriolis parameter, and g is the acceleration due to gravity. Equation (A9) is obtained by1763

replacing f with β0y in equation (18) of the main paper. Detailed derivations of equatorial1764

wave solutions are found in textbooks specializing in equatorial dynamics (Clarke, 2008)1765

and many geophysical fluid dynamics textbooks (Vallis, 2017; Cushman-Roisin & Beckers,1766

2011).1767

A21 Test Case 11: Equatorial Kelvin Wave1768

The equatorial Kelvin wave is a long gravity wave trapped along the equator with decay1769

scale
√
2Req = (2c/β0)

1/2, where c =
√
gH is the shallow water gravity wave speed, and1770

Req is the equatorial Rossby radius of deformation. The equatorial Kelvin wave has zero1771

meridional velocity, and travels eastward at speed c. It is non-dispersive and assumes a1772
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solution of the form1773

η = HG(x− ct) exp

(
−1

2

(
y

Req

)2
)
, (A10)

u = cG(x− ct) exp

(
−1

2

(
y

Req

)2
)
. (A11)

In our numerical simulations, we specify1774

G(x− ct) = η̂ sin(k(x− ct)) = η̂ sin(kx− ωt) = η̂Im
(
ei(kx−ωt)

)
, (A12)

where η̂ is the amplitude, and the phase speed ω/k = c is a constant.1775

Figure A5 displays the time evolution of the equatorial Kelvin wave’s surface elevation1776

across the entire domain (first row) with zonal extent Lx = 1.75 × 107 m, and along1777

the equator (second row). Similar to our simulations of the coastal Kelvin wave and the1778

inertia-gravity wave in the main paper, we specify the exact solutions to be a superposition1779

of two wave components, where the second component possesses twice the amplitude and1780

wavenumber of the first. Mathematically, η̂(2) = 2η̂(1) and k(2) = 2k(1), where η̂(1) = 10−4
1781

m and k(1) = 2π/Lx. Being non-dispersive in nature, both components, as well as the1782

resultant wave, propagate at an identical phase speed, thereby preserving the initial profile1783

of the resultant wave.1784

A22 Test Cases 12, 13, and 14: Equatorial Yanai, Rossby, and Inertia-1785

Gravity Waves1786

The equatorial Yanai, Rossby and inertia-gravity waves can be obtained from the1787

non-dimensional form of (A9),1788

u′t′ − y′v′ = −η′x′ , (A13a)

v′t′ + y′u′ = −η′y′ , (A13b)

η′t′ + u′x′ + v′y′ = 0, (A13c)

where u = cu′, v = cv′, η = Hη′, x =
√
c/β0x

′, y =
√
c/β0y

′, and t = 1/
√
β0ct

′.1789

Dropping the primes for notational convenience, the non-dimensional meridional velocity1790

of the dispersive equatorial Yanai, Rossby and inertia-gravity waves can be expressed in1791

modal form as1792

v = Re
(
ei(kx−ωt)ψm(y)

)
= cos(kx− ωt)ψm(y), (A14)

where the Hermite function ψm(y) is1793

ψm(y) =
e−y

2/2Hm(y)√
2mm!

√
π
, (A15)

with Hm(y) being the mth-order Hermite polynomial. Since Hm(y) is an odd function of y1794

for odd m and an even function of y for even m, so is ψm(y). The Hermite function ψ(y)1795

satisfies1796

d2ψm
dy2

+

(
ω2 − k2 − k

ω
− y2

)
ψ ≡ d2ψm

dy2
+
(
2m+ 1− y2

)
ψ = 0, m = 0, 1, . . . , (A16)

with the non-dimensional dispersion relation being1797

k2 +
k

ω
− ω2 + (2m+ 1) = 0, m = 0, 1, . . . . (A17)

From (A16), it can be seen that ψm(y) is oscillatory for |y| <
√
2m+ 1 and monotonically1798

decaying for |y| >
√
2m+ 1. Since the nature of ψm(y) changes at y =

√
2m+ 1, it is1799

referred to as the turning latitude for mode m. Solving the quadratic equation (A17) in k,1800

k = − 1

2ω
±
√
ω2 +

1

4ω2
− (2m+ 1). (A18)
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Figure A5. Time evolution of the TC11, the dispersive equatorial Yanai wave: the exact solution

of meridional velocity (first row), cross-section of the exact meridional velocity along the equator

(second row), TRiSK error (third row), and DGSEM error (fourth row).
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Figure A6. Time evolution of the TC12, the dispersive equatorial Yanai wave, showing the

exact meridional velocity (first row) and cross-section of the exact meridional velocity along the

equator (second row).
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Figure A6. Time evolution of the TC12, the dispersive equatorial Rossby wave: the exact

solution of meridional velocity (first row), cross-section of the exact meridional velocity along the

20.11°N latitude with maximum magnitude of the Hermite function  1(y) (second row), TRiSK

error (third row), and DGSEM error (fourth row).
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Figure A7. Time evolution of the TC13, the dispersive equatorial Rossby wave, showing the

exact meridional velocity (first row) and cross-section of the exact meridional velocity along the

20.11°N latitude with maximum magnitude of the Hermite function ψ1(y) (second row).
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Figure A7. Time evolution of the TC13, the dispersive equatorial inertia-gravity wave: the

exact solution of meridional velocity (first row), cross-section of the exact meridional velocity along

the 31.80°N latitude with maximum magnitude of the Hermite function  2(y) (second row), TRiSK

error (third row), and DGSEM error (fourth row).
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Figure A8. Time evolution of the TC14, the dispersive equatorial inertia-gravity wave, showing

the exact meridional velocity (first row) and cross-section of the exact meridional velocity along

the 31.80°N latitude with maximum magnitude of the Hermite function ψ2(y) (second row).

When m = 0, the roots are k = ω − 1/ω and k = −ω, both of which are real. The1801

root k = −ω corresponds to a westward propagating Kelvin wave with unbounded velocity1802

at large distances from the equator, and is therefore not a viable solution. The other root1803

k = ω − 1/ω gives rise to a Yanai or ‘mixed’ Rossby gravity wave with meridional velocity1804

v = exp

(
i

(
ω − 1

ω

)
x− ωt

)
ψ0(y). (A19)

When the discriminant ω2 + 1/
(
4ω2

)
− (2m+ 1) > 0 and m ≥ 1, both roots of (A18)1805

are real and result in acceptable wave fields. But depending on the magnitude of ω, these1806

waves can belong to one of two categories: low-frequency Rossby waves for small ω, or1807

high-frequency inertia-gravity waves for large ω.1808

Equation (A18) expresses the wave number, k, in terms of the angular velocity, ω.1809

Alternatively, the angular velocity, ω, corresponding to a particular wave number, k, can be1810

determined by solving the non-linear equation1811

F(ω) ≡ ω3 − (k2 + 2m+ 1)ω − k = 0, (A20)

which is a variant of (A17). We use the Newton-Raphson method to solve (A20), and specify1812

the magnitude of the initial guess for ω to be close to zero for the low-frequency equatorial1813

Rossby wave and greater than one for the high-frequency equatorial inertia-gravity wave.1814
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The non-dimensional zonal velocity and surface elevation are1815

u = Re

(
k dψm

dy − ωyψm

k2 − ω2
iei(kx−ωt)

)
=
k dψm

dy − ωyψm

ω2 − k2
sin(kx− ωt), (A21)

η = Re

(
ω dψm

dy − kyψm

k2 − ω2
iei(kx−ωt)

)
=
ω dψm

dy − kyψm

ω2 − k2
sin(kx− ωt). (A22)

Figures A6 through A8 showcase the meridional velocity of the equatorial Yanai, Rossby,1816

and inertia-gravity waves. As with previous demonstrations, we define the exact solutions1817

for these equatorial waves as a combination of two wave components, wherein the second1818

component possesses twice the amplitude and wavenumber of the first. Mathematically,1819

η̂(2) = 2η̂(1) and k(2) = 2k(1), where η̂(1) = 10−4 m, k(1) = 2π/Lx, and Lx = 1.75× 107 m.1820

The first row of these figures portrays the equatorial wave across the entire domain, while1821

the second row focuses on a segment of the resultant wave solution and its components along1822

the latitude characterized by the peak magnitude of the Hermite function, ψm(y). Due to1823

the dispersive nature, these components propagate at different phase speeds causing the1824

resultant wave profile to alter over time. For the equatorial Yanai wave (Figure A6) and1825

inertia-gravity wave (Figure A8), we specifym = 0 andm = 2, so that the Hermite functions1826

ψ0(y) and ψ2(y) are even, and therefore the solution is symmetric across the equator. For the1827

equatorial Rossby wave (Figure A7), we specify m = 1, so that the Hermite function ψ1(y)1828

is odd, and therefore the solution is antisymmetric across the equator. Moreover, ψ0(y),1829

ψ1(y), and ψ2(y) attain their maximum magnitudes at y = 0, y = ±1, and y = ±
√
2.5.1830

After multiplying by the length scale
√
c/β0, and dividing by the radius of the Earth, these1831

non-dimensional values of y correspond to the 0° latitude or the equator (second row of1832

Figure A6), the 20.11°N and S latitudes (second row of Figure A7), and the 31.80°N and S1833

latitudes (second row of Figure A8).1834

A3 Numerical Results1835

We begin this section by addressing the time step limitations inherent to the numerical1836

simulation of the diffusion, advection-diffusion and viscous Burgers’ equations. The parabolic1837

nature of these equations, resulting from the diffusion term, necessitates a more restrictive1838

time step. Drawing from the Von Neumann stability analysis of the linear diffusion equation,1839

we define the diffusive time step on a two-dimensional spatial domain as1840

∆tdiffusive =





1

2ν
(

1
∆x2 + 1

∆y2

) for TRiSK,

1

2ν
(
P 2

x

∆x2 +
P 2

y

∆y2

) for DGSEM.
(A23)

Here, ν symbolizes the diffusion coefficient, while ∆x and ∆y represent the widths of the cell1841

(or element). On a uniform TRiSK mesh with hexagonal cells, we can set ∆y =
√
3/2∆x.1842

In the context of DGSEM, Px and Py signify the polynomial orders in the two horizontal1843

directions. Based on (59)—(61) in the main paper, we define the advective time step to be1844

∆tadvective =





C
cx
∆x +

cy
∆y

for TRiSK,

C
cxP 2

x

∆x +
cyP 2

y

∆y

for DGSEM.
(A24)

In the equations above, C represents the Courant number. For the advection-diffusion1845

equation, we specify cx = u0 and cy = v0. Similarly, for the viscous Burgers’ equation, we1846

set cx = max(|ul|, |ur|) and cy = 0. The actual time step is specified as ∆t = ∆tdiffusive for1847
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the diffusion equation and ∆t = min (∆tadvective,∆tdiffusive) for the advection-diffusion and1848

viscous Burgers’ equations.1849

We present the numerical results, showcasing error plots and their temporal evolution.1850

Figures A9 to A12 display the surface elevation errors for the plane Gaussian wave, the1851

diffusion and advection-diffusion equation solutions, and the zonal velocity error of the1852

viscous Burgers shock wave. Subsequently, Figures A13 to A16 depict the temporal evolution1853

of the surface elevation error of the equatorial Kelvin wave, as well as the meridional velocity1854

error for equatorial Yanai, Rossby, and inertia-gravity waves. The zonal extent of the1855

rectangular domain for each test case is specified as follows: Lx = 106 m, 106 m, 2 m, 106 m,1856

and 1.75×107 m for the plane Gaussian wave, the diffusion equation, the advection-diffusion1857

equation, the viscous Burgers’ equation, and the equatorial waves respectively. As for the1858

meridional extent, it is defined by Ly =
√
3/2Lx for TRiSK, and by Ly = Lx for DGSEM. In1859

each horizontal direction, the planar hexagonal TRiSK mesh comprises N = 100 cells, and1860

the spectral element mesh consists of N = 5 elements. The distance between the hexagonal1861

cell centers of the TRiSK mesh, given by ∆x = Lx/N , represents the zonal cell width,1862

and ∆y =
√
3/2∆x provides a measure for the meridional cell width. Meanwhile, for the1863

spectral element mesh, the side lengths are equal in both directions: ∆x = Lx/N . The1864

smallest grid spacings near the element boundaries approximate to ∆x/P 2, with P = 101865

indicating the order of the polynomial basis functions and the spatial order of accuracy of1866

our DGSEM. For all test cases, we target an advective Courant number close to 0.5. For1867

the diffusion equation, we choose the diffusive time step, and for the advection-diffusion1868

and viscous Burgers test cases, we select the minimum between the advective and diffusive1869

time steps, as elaborated in the preceding paragraph. When modeled with TRiSK, this1870

leads to time step sizes of ∆t = 16 s, 750 s, 5 × 10−3 s, 750 s, 900 s, 450 s, 1200 s, and1871

300 s for the plane Gaussian wave, the diffusion equation, the advection-diffusion equation,1872

the viscous Burgers’ equation, and the equatorial Kelvin, Yanai, Rossby, and inertia-gravity1873

waves respectively. With DGSEM, the respective time steps for these cases are set at 3.5 s,1874

40 s, 4× 10−4 s, 30 s, 180 s, 90 s, 240 s, and 60 s.1875

The first row of Figures A9—A16 demonstrates the error yielded by the second-order1876

accurate TRiSK-based finite volume method. In contrast, the second row illustrates the1877

error from the 10th-order accurate DGSEM. As anticipated, the TRiSK error is a few orders1878

of magnitude smaller, and the DGSEM error is several orders of magnitude smaller than the1879

solution magnitude. As observed in our main paper’s test case simulations, the error plots1880

resonate with the intrinsic physics of the system. For example, the error associated with1881

the plane wave propagates at the same phase speed as the solution, mirroring the speed of1882

a shallow water gravity wave. In the TRiSK-based mimetic finite volume method, spurious1883

reflections observed at domain boundaries are likely due to the implementation of Dirichlet1884

boundary conditions that do not fully capture the characteristics of the incoming wave.1885

The method involves updating the normal velocities at the boundary edges of the hexagonal1886

mesh using exact solution values, whereas the normal velocities at the interior edges and the1887

surface elevation at cell centers are updated prognostically through numerical gradient and1888

divergence and formulations respectively. However, without direct boundary constraints on1889

surface elevation, discrepancies can arise during wave-boundary interactions. In contrast,1890

DGSEM updates zonal and meridional velocities as well as surface elevation at the interior1891

Gauss quadrature points of each element, with tendencies computed from both interior fluxes1892

at the quadrature points and numerical fluxes at the element’s edges. Moreover, DGSEM1893

applies the exact solution as the external state at boundary edges, offering a more accurate1894

wave representation and minimizing reflections, aided by the dissipative properties of the1895

LLF Riemann solver at these edges. This distinction in boundary treatment between the1896

methods helps explain the observed differences in wave reflection.1897

Given that the error magnitude is contingent on the exact solution and its gradients,1898

pronounced errors in regions characterized by high spatial gradients are unsurprising. This1899

is most prominent for the plane Gaussian wave error (both TRiSK and DGSEM), and the1900
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Figure A1. Time evolution of TC7, the Plane Gaussian Wave: the exact surface elevation in the

entire domain (first row) cross-section along the south-west to north-east diagonal (second row);

the surface elevation error of the numerical solution spatially discretized with the TRiSK-based

mimetic finite volume method (third row), and DGSEM (fourth row).

–46–

Figure A9. Time evolution of the surface elevation error of TC7, the plane Gaussian wave,

spatially discretized with the TRiSK-based mimetic finite volume method (first row), and DGSEM

using 5 elements and polynomial basis functions of order 10 in each horizontal direction (second

row).
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Figure A10. Same as Figure A9 but for TC8, the diffusion equation, showing error for TRiSK

(first row) and DGSEM (second row).
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Figure A2. Same as Figure A1 but for TC8, the Advection-Di↵usion equation, showing the

exact solution (first row), cross-section of exact solution (second row), TRiSK error (third row),

and DGSEM error (fourth row).

–47–

Figure A11. Same as Figure A9 but for TC8, the advection-diffusion equation, showing error

for TRiSK (first row) and DGSEM (second row).
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Figure A10. Same as Figure A9 but for TC8, the diffusion equation, showing error for TRiSK

(first row) and DGSEM (second row).
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Figure A2. Same as Figure A1 but for TC8, the Advection-Di↵usion equation, showing the

exact solution (first row), cross-section of exact solution (second row), TRiSK error (third row),

and DGSEM error (fourth row).

–47–

Figure A11. Same as Figure A9 but for TC9, the advection-diffusion equation, showing error

for TRiSK (first row) and DGSEM (second row).

manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Figure A3. Same as Figure A1 but for TC9, the viscous Burgers shock wave, showing the exact

zonal velocity solution (first row), cross-section of exact zonal velocity solution (second row) TRiSK

error (third row), and DGSEM error (fourth row).

–48–

Figure A12. Same as Figure A9 but for TC10, the viscous Burgers shock wave, showing error

for TRiSK (first row) and DGSEM (second row).
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Figure A4. Time evolution of the TC10, the non-dispersive equatorial Kelvin wave: the exact

solution of surface elevation (first row), cross-section of exact solution (second row), TRiSK error

(third row), and DGSEM error (fourth row).

–51–

Figure A13. Time evolution of the surface elevation error of TC11, the non-dispersive equatorial

Kelvin wave, spatially discretized with TRiSK (first row) and DGSEM (second row).

manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Figure A5. Time evolution of the TC11, the dispersive equatorial Yanai wave: the exact solution

of meridional velocity (first row), cross-section of the exact meridional velocity along the equator

(second row), TRiSK error (third row), and DGSEM error (fourth row).

–52–

Figure A14. Same as Figure A13 but for TC12, the dispersive equatorial Yanai wave, showing

the meridional velocity error for TRiSK (first row) and DGSEM (second row).
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Figure A6. Time evolution of the TC12, the dispersive equatorial Rossby wave: the exact

solution of meridional velocity (first row), cross-section of the exact meridional velocity along the

20.11°N latitude with maximum magnitude of the Hermite function  1(y) (second row), TRiSK

error (third row), and DGSEM error (fourth row).

–53–

Figure A15. Same as Figure A13 but for TC13, the dispersive equatorial Rossby wave, showing

the meridional velocity error for TRiSK (first row) and DGSEM (second row).

manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Figure A7. Time evolution of the TC13, the dispersive equatorial inertia-gravity wave: the

exact solution of meridional velocity (first row), cross-section of the exact meridional velocity along

the 31.80°N latitude with maximum magnitude of the Hermite function  2(y) (second row), TRiSK

error (third row), and DGSEM error (fourth row).

–54–

Figure A16. Same as Figure A13 but for TC14, the dispersive equatorial inertia-gravity wave,

showing the meridional velocity error for TRiSK (first row) and DGSEM (second row).
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TRiSK error for the diffusion, advection-diffusion, and viscous Burgers’ equations. The1901

DGSEM errors manifest in various forms, including numerical dispersion and dissipation,1902

and spurious oscillations (Section 5). The setup for the viscous Burgers’ equation amplifies1903

the numerical dispersion and spurious oscillations (Figure A12), especially when compared to1904

linear test cases like the barotropic tide. The dispersive errors traverse element boundaries1905

and exit the domain at velocities surpassing that of the shock wave. For the equatorial1906

Kelvin, Yanai, Rossby, and inertia-gravity waves, the inherent dissipation of the mimetic1907

TRiSK scheme largely curtails the dispersive error prevalent in the DGSEM error. We1908

again encourage interested readers to access low p- and h-resolution DGSEM solution plots1909

from Bishnu (2024a), which reveal increased numerical dispersion and dissipation, although1910

spurious oscillations are not as prevalent. This observation is attributed to the deployment1911

of the LLF Riemann solver, whose primary function is to suppress such oscillations at the1912

edges of spectral elements. However, this solver introduces its own dissipative error, which1913

becomes more noticeable in coarser meshes where fewer elements are available to absorb it,1914

leading to visibly enhanced errors at element boundaries. Despite not affecting the spatial1915

order of accuracy (Section 5.1), the global pattern of this dissipative error unveils the element1916

boundaries, revealing the spectral elements’ positions in the mesh. This, in conjunction with1917

the linear scaling of the color bars, rendering any error of magnitude lower than the dominant1918

error nearly invisible, can create the impression of mesh effects in the plots (Figures A91919

and A10). Numerical dispersion is accentuated in the coarser meshes due to less accurate1920

representation of the physical phenomena at a given scale. For instance, the equatorial1921

Kelvin wave, akin to its coastal counterpart, exhibits no physical dispersion. However,1922

when simulated with less than three elements and third-order polynomial basis functions1923

in each horizontal direction, numerical dispersion significantly alters the phase speed across1924

varying wavelengths, which in turn, distort the shape of these physically non-dispersive1925

Kelvin waves as the simulation unfolds.1926

Appendix B Problem of Multiple Time Scales and Barotropic-Baroclinic1927

Splitting in Ocean Models1928

In this section, we highlight the applicability of shallow water test cases within the1929

context of baroclinic-barotropic splitting in an ocean model. We initiate our discussion with1930

the challenge of multiple time scales inherent in ocean models, elucidating how the splitting1931

approach can effectively address this complication and boost computational efficiency. As1932

a practical example of the splitting procedure, we derive the barotropic and baroclinic1933

equations from the governing equations of MPAS-Ocean. We then demonstrate that the1934

barotropic equations assume the form of inhomogeneous rotating shallow water equations.1935

Numerical ocean circulation models typically admit motions varying on a wide range1936

of time scales. For instance, the fast external gravity waves, approximately independent of1937

depth, propagate at a speed of O
(
100 ms−1

)
. On the other hand, the major current systems1938

and internal gravity waves exhibit velocities of O
(
1 ms−1

)
i.e. two orders of magnitude less.1939

This vast disparity of time scales imposes a tremendous constraint on numerically modelling1940

oceanic phenomena. For explicit time-stepping methods, the CFL condition states that, for1941

a given Courant number, the maximum permissible time step of a hyperbolic system should1942

be inversely proportional to the wave speed to attain a numerically stable solution (see,1943

e.g. Griffies et al. (2005, Section 12.8). Therefore, the presence of external gravity waves1944

forces the time step to be much smaller than what is required to resolve the internal gravity1945

waves. Solving the full three-dimensional momentum equations with the smallest time1946

step dictated by the CFL condition of the fastest waves is computationally impractical, as1947

running a global simulation at high resolution (10 km grid cells or smaller) would require1948

time steps on the order of minutes. While restrictions of the time step size can be addressed1949

by using an implicit method, this would require solving a system of non-linear equations at1950

every time step thereby compensating for the reduction in computational time achieved by1951

increasing the time step size. A traditional alternative is to split the governing equations1952
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into two subsystems: a barotropic one for solving the fast depth independent motions and1953

a baroclinic one for solving the much slower depth dependent motions, as described in1954

Griffies et al. (2005); T. Ringler et al. (2013). Being independent of the vertical coordinate,1955

the fast barotropic subsytem is two-dimensional and the computational cost involved in1956

solving it, either explicitly using a small time step or implicitly using a large time step, is1957

drastically reduced. The full three-dimensional baroclinic subsystem modeling the slower1958

internal motions is solved explicitly using a much larger time step. Finally, if the baroclinic1959

variables are advanced explicitly using a small time step, a time-averaging filter is applied1960

over the barotropic solutions to minimize mode-splitting and aliasing errors (Shchepetkin1961

& McWilliams, 2005). The resulting time-averaged barotropic solutions are then reconciled1962

with their baroclinic counterparts to arrive at the total 3D states.1963

As an illustrative example, we briefly discuss the barotropic-baroclinic splitting in1964

MPAS-Ocean. The MPAS-Ocean z-level formulation solves the following equations for1965

thickness, momentum, and tracers at layer k:1966

∂hk
∂t

+∇ ·
(
hedgek uk

)
+

∂

∂z
(hkwk) = 0, (B1)

∂uk
∂t

+
1

2
∇ |uk|2 + (k · ∇ × uk)u

⊥
k + fu⊥

k + wedgek

∂uk
∂z

= − 1

ρ0
∇pk + νh∇2uk

+
∂

∂z

(
νv
∂uk
∂z

)
, (B2)

∂hkφk
∂t

+∇ ·
(
hedgek φedgek uk

)
+

∂

∂z
(hkφkwk) = ∇ ·

(
hedgek κh∇φk

)

+ hk
∂

∂z

(
κv
∂φk
∂z

)
. (B3)

The layer thickness h, vertical velocity w, pressure p, and tracer φ, are scalar quantities1967

defined at the center of near-hexagonal cells of the primal MPAS-Ocean mesh. The horizontal1968

velocity vector u and the variables with edge superscript are defined at the edges of the1969

cells. The gradient, divergence and curl operators are all defined on the horizontal plane.1970

The barotropic and baroclinic velocities are1971

u =

Nedge∑
k=1

hedgek uk

Nedge∑
k=1

hedgek

, (B4)

u′
k = uk − u, k = 1, 2, . . . , N. (B5)

If H is the mean depth in the absence of bottom topography, hb(x, y) is the topographic1972

height at (x, y), and η is the surface elevation or the sea surface height (SSH),1973

η =
Nedge∑

k=1

hk − {H − hb(x, y)} . (B6)

Summing over all layers results in the barotropic surface elevation equation1974

∂η

∂t
+∇ ·


u

Nedge∑

k=1

hedgek


 ≡ ∂η

∂t
+∇ · [u {η +H − hb(x, y)}] = 0, (B7)

using the boundary conditions w 1
2
= wN+ 1

2
= 0. Defining1975

T (uk, wk, pk) = −1

2
∇ |uk|2 − (k · ∇ × uk)u

⊥
k − wedgek

∂uk
∂z

− 1

ρ0
∇pk + νh∇2uk +

∂

∂z

(
νv
∂uk
∂z

)
, (B8)
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(B2) can be written in the more compact form1976

∂uk
∂t

+ fu⊥
k = T (uk, wk, pk) . (B9)

Extracting the barotropic component of (B9),1977

∂u

∂t
+ fu⊥ = T (uk, wk, pk) ≡ −g∇η +G, (B10)

where T is the barotropic average of T k = T (uk, wk, pk) over all layers computed similar1978

to u with uk replaced by T k in (B4), and G is defined as G = T (uk, wk, pk) + g∇η.1979

Subtracting the barotropic equation (B10) from the total momentum equation (B9), we1980

obtain the baroclinic momentum equation1981

∂u′
k

∂t
+ fu′⊥

k = T (uk, wk, pk) + g∇η −G. (B11)

It is evident that the barotropic equations (B7) and (B10) exhibit a resemblance to1982

the inviscid inhomogeneous rotating shallow water equations. However, this similarity is1983

marked by two key differences: the omission of the non-linear advection term and the1984

incorporation of a source term G within the barotropic momentum equation. This latter1985

term, G, represents the barotropic average of T (uk, wk, pk)+g∇η. The splitting procedure1986

and the split equations may vary slightly among different ocean models. One variation, as1987

observed in Blumberg and Mellor (1987), is to extract the diffusion of the barotropic velocity1988

out of the G term so that the barotropic momentum equation becomes equivalent to the1989

viscous inhomogeneous linear rotating shallow water momentum equation1990

∂u

∂t
+ fu⊥ = −g∇η + νh∇2u+G. (B12)

Appendix C Details of Numerical Implementation1991

In this section, we discuss subtle details in the numerical implementation of the shallow1992

water equations. Constructing the initial-boundary value problem to numerically obtain1993

the solution of the various test cases necessitates careful attention, particularly in ensuring1994

that the initial and boundary conditions are correctly applied on hexagonal meshes, and the1995

source terms for the manufactured solutions are exact. We will methodically tackle these1996

aspects, using a uniform MPAS-Ocean mesh with hexagonal primal cells and triangular1997

dual cells as a case study. The discussion culminates with addressing the crucial process1998

of interpolating the numerical solution or the error to the coarsest spatial mesh, before1999

calculating the error norm, for refinement only in space.2000

C1 Specifying Initial and Boundary Conditions on Hexagonal Meshes2001

For MPAS-Ocean, the prognostic variables are the surface elevations defined at the2002

centers of the primal cells and the normal velocities defined at the primal cell edges. The2003

spatial discretization of MPAS-Ocean based on the TRiSK scheme belongs to the category of2004

finite volume methods, which study the time evolution of cell- and edge-averaged quantities2005

in two dimensions, as opposed to the cell- and edge-centered ones. So, for a test case, it is2006

imperative to adopt an averaging procedure to determine the mean values of the prognostic2007

variables within every cell and edge. Since the cell-averaged quantity is the cell-integrated2008

quantity divided by the cell area, we need to first integrate the quantity over the area2009

spanned by a hexagonal cell. If the quantity consists of a complex combination of polynomial,2010

trigonometric, and exponential functions, performing the integration analytically may be a2011

Herculean task if not impossible. So, we resort to numerical quadrature, which may not2012

be exact but is definitely more accurate than the value at the cell center times the area of2013

the cell. Rules for evaluating numerical quadrature on regular hexagons first appeared in2014
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Figure C1. A 4 ⇥ 4 MPAS-Ocean mesh with non-periodic zonal and periodic meridional

boundaries, showing the components of zonal and meridional velocities normal and tangential to

an edge.

(b) every edge along a non-periodic boundary for the boundary condition.1419

Figure C1 is a schematic of a 4 ⇥ 4 MPAS-Ocean mesh with periodic zonal and1420

non-periodic meridional boundaries. It also shows the resolution of the zonal and meridional1421

velocities in the normal and tangential directions of a non-periodic boundary edge. Since1422

the prognostic variables include only the normal and not the tangential velocity, we do1423

not lose any generality by conducting a test case with zero zonal velocity (e.g. the Coastal1424

Kelvin wave) or one with zero meridional velocity (e.g. the non-linear manufactured solution)1425

since the normal velocity on these hexagonal MPAS-Ocean meshes will, in general, remain1426

non-zero in either case.1427

C2 Specifying Source Terms for Manufactured Solutions1428

The non-linear manufactured solution (38) satisfies inhomogeneous non-linear rotating
inviscid shallow water equations (38) on a flat bottom. The source terms (40) are obtained by
inserting the manufactured solution and its spatial and temporal gradients into the left-hand
side of these equations. On a hexagonal MPAS-Ocean mesh, the source term for the normal
velocity on an edge, where the normal makes an angle ✓ with the positive direction of the
x-axis is

sun

= su cos ✓ + sv sin ✓. (C1)

The cell-averaged source term for the surface elevation and the edge-averaged one for the1429

normal velocity can be obtained by following the same procedure outlined in Section C1 for1430

computing the cell-averaged surface elevation and the edge-averaged normal velocity.1431

C3 Interpolation to the Coarsest Mesh1432

As a final note, for refinement only in space, we need to interpolate the numerical1433

solution (or the error) to the coarsest mesh before taking the di↵erence in the numerical1434

solution (or the error) for successive spatial resolutions and computing its norm. Figure C21435

illustrates (a) a planar hexagonal MPAS-Ocean mesh consisting of 8 cells of width 5 km in1436

each direction (in blue), superimposed on a coarser mesh of the same type consisting of 41437

cells of width 10 km in each direction (in red); and (b) a discontinuous Galerkin spectral1438

element mesh (DGSEMesh) of polynomial order 4 consisting 4 elements of width 10 km in1439

–58–

Figure C1. A 4 × 4 MPAS-Ocean mesh with non-periodic zonal and periodic meridional

boundaries, showing the components of zonal and meridional velocities normal and tangential to

an edge.

Stroud (1971) followed by Lyness and Monegato (1977). In all test cases, we employ Lyness’2015

rule for integrating any scalar quantity over the hexagonal MPAS-Ocean cells. For exact2016

evaluation of the integral of polynomials upto degree 15 over the unit hexagon inscribed2017

within the unit circle centered at the origin, Table A.1 in Lyness and Monegato (1977) lists2018

the number of quadrature points, their coordinates, and weights.2019

We use the Gauss-Legendre quadrature method to specify the edge-averaged normal2020

velocity at the midpoint of2021

(a) every edge for the initial condition,2022

(b) every edge along a non-periodic boundary for the boundary condition.2023

Figure C1 is a schematic of a 4 × 4 MPAS-Ocean mesh with periodic zonal and2024

non-periodic meridional boundaries. It also shows the resolution of the zonal and meridional2025

velocities in the normal and tangential directions of a non-periodic boundary edge. Since2026

the prognostic variables include only the normal and not the tangential velocity, we do2027

not lose any generality by conducting a test case with zero zonal velocity (e.g. the Coastal2028

Kelvin wave) or one with zero meridional velocity (e.g. the non-linear manufactured solution)2029

since the normal velocity on these hexagonal MPAS-Ocean meshes will, in general, remain2030

non-zero in either case.2031

C2 Specifying Source Terms for Manufactured Solutions2032

The non-linear manufactured solution (38) satisfies inhomogeneous non-linear rotating2033

inviscid shallow water equations (38) on a flat bottom. The source terms (40) are obtained by2034

inserting the manufactured solution and its spatial and temporal gradients into the left-hand2035

side of these equations. On a hexagonal MPAS-Ocean mesh, the source term for the normal2036

velocity on an edge, where the normal makes an angle θ with the positive direction of the2037

x-axis is2038

su
n

= su cos θ + sv sin θ. (C1)

The cell-averaged source term for the surface elevation and the edge-averaged one for the2039

normal velocity can be obtained by following the same procedure outlined in Section C1 for2040

computing the cell-averaged surface elevation and the edge-averaged normal velocity.2041
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Figure C2. (a) A planar hexagonal MPAS-Ocean mesh consisting of 8 cells of width 5 km in

each direction (in blue), superimposed on a coarser mesh of the same type consisting of 4 cells of

width 10 km in each direction (in red) on the left. (b) A discontinuous Galerkin spectral element

mesh (DGSEMesh) of polynomial order 4, and 4 elements of width 10 km in each direction (in

blue) superimposed on a coarser mesh of the same type consisting of 2 elements of width 20 km in

each direction (in red) on the right.

each direction (in blue), superimposed on a coarser mesh of the same type consisting of 21440

elements of width 20 km in each direction (in red). The cell centers of the MPAS-Ocean1441

meshes and the quadrature nodes within each element of the DGSEMeshes are represented1442

by square markers. In Figure C2(a), the numerical solution (or the error) on the finer mesh1443

is interpolated to the coarser mesh with a bilinear interpolant (Vetterling & Press, 1992). In1444

Figure C2(b), a Newton-Raphson method is used to determine the physical coordinates of1445

the quadrature nodes of the coarser mesh with respect to the computational coordinates of1446

the quadrature nodes of the finer mesh. Then, the polynomial representation of the solution1447

(or the error) on the finer mesh is evaluated at these physical coordinates.1448

Open Research Section1449

The model code and visualization scripts may be accessed from the GitHub repository at1450

https://github.com/siddharthabishnu/Rotating Shallow Water Verification Suite/1451

tree/v1.0.1, and may also be downloaded from the Zenodo release (Bishnu, 2022b) at1452

https://doi.org/10.5281/zenodo.7425628. The mesh files (Bishnu, 2022a) used for1453

initialization, may be obtained from https://doi.org/10.5281/zenodo.7419817, and the1454

output files (Bishnu, 2022c) including the solution, error and convergence plots, may be1455

downloaded from https://doi.org/10.5281/zenodo.7420073.1456
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Figure C2. (a) A planar hexagonal MPAS-Ocean mesh consisting of 8 cells of width 5 km in

each horizontal direction (in blue), superimposed on a coarser mesh consisting of 4 cells of width

10 km in each direction (in red) on the left. (b) A discontinuous Galerkin spectral element mesh

(DGSEMesh) consisting of 4 elements of width 10 km and polynomial basis functions of order 4

in each horizontal direction (in blue) superimposed on a coarser mesh consisting of 2 elements of

width 20 km and the same polynomial order in each direction (in red) on the right.

C3 Interpolation to the Coarsest Mesh2042

As a final note, for refinement only in space, we need to interpolate the numerical2043

solution (or the error) to the coarsest mesh before taking the difference in the numerical2044

solution (or the error) for successive spatial resolutions and computing its norm. Figure C22045

illustrates (a) a planar hexagonal MPAS-Ocean mesh consisting of 8 cells of width 5 km in2046

each horizontal direction (in blue), superimposed on a coarser mesh consisting of 4 cells of2047

width 10 km in each direction (in red); and (b) a discontinuous Galerkin spectral element2048

mesh (DGSEMesh) consisting of 4 elements of width 10 km and polynomial basis functions2049

of order 4 in each horizontal direction (in blue) superimposed on a coarser mesh consisting2050

of 2 elements of width 20 km and the same polynomial order in each direction (in red).2051

The cell centers of the MPAS-Ocean meshes and the quadrature nodes within each element2052

of the DGSEMeshes are represented by square markers. In Figure C2(a), the numerical2053

solution (or the error) on the finer mesh is interpolated to the coarser mesh with a bilinear2054

interpolant (Vetterling & Press, 1992). In Figure C2(b), a Newton-Raphson method is used2055

to determine the physical coordinates of the quadrature nodes of the coarser mesh with2056

respect to the computational coordinates of the quadrature nodes of the finer mesh. Then,2057

the polynomial representation of the solution (or the error) on the finer mesh is evaluated2058

at these physical coordinates.2059

Open Research Section2060

The model code and visualization scripts may be accessed from the GitHub repository at2061

https://github.com/siddharthabishnu/Rotating Shallow Water Verification Suite/2062

tree/v1.2.5, and may also be downloaded from the Zenodo release (Bishnu, 2024a) at2063

https://doi.org/10.5281/zenodo.10460245. The mesh files (Bishnu, 2023) used for2064

initialization, may be obtained from https://doi.org/10.5281/zenodo.10161055, and2065
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the output files (Bishnu, 2024b) including the solution, error and convergence plots, may be2066

downloaded from https://doi.org/10.5281/zenodo.10460252.2067
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