Causes for decadal trends in Surface Solar Radiation in the Alpine region

Lucas Ferreira Correa¹, Doris Folini², Boriana Chtirkova¹, and Martin Wild³

¹ETH Zurich ²ETH Zurich, Institute for Atmospheric and Climate Science ³ETH Zürich

December 21, 2022

Abstract

Extending across seven countries, the Alps represent an important element for climate and atmospheric circulation in Central Europe. Its complex topography affects processes on different scales within the atmospheric system. This is of major relevance for the decadal trends in Surface Solar Radiation (SSR), also known as Global Dimming and Brightening (GDB). In this study we analysed data from 14 stations in and around the Swiss and Austrian Alps, over a period ranging from the 1960s up to the 2010s, with the aim of characterizing the spatio-temporal variations of the GDB and understanding the causes for such trends in this region. Our results showed a different behavior in the SSR decadal trends in the western part of the Alps in comparison to the eastern part. We also identified a remarkable difference between the causes of such trends in the stations at low altitudes. The SSR trends under cloudy conditions revealed strong evidence for a control of the decadal trends by cloud optical depth at high elevation sites, in contrast with a strong clear-sky forcing at low elevations. Results from previous literature and available data suggest that such phenomena could be associated with the indirect and direct aerosol effect, respectively, due to differing pollution levels.

Hosted file

952231_0_art_file_10543214_rmzrc9.docx available at https://authorea.com/users/538675/ articles/614188-causes-for-decadal-trends-in-surface-solar-radiation-in-the-alpineregion

Causes for decadal trends in Surface Solar Radiation in the Alpine region Lucas Ferreira Correa¹, Doris Folini¹, Boriana Chtirkova¹ and Martin Wild¹

³ ¹Institute for Atmospheric and Climate Sciences, ETH Zurich, Zurich, Switzerland.

4 Corresponding author: Lucas Ferreira Correa (<u>lucas.ferreira@env.ethz.ch</u>)

5 Key Points:

- Causes for decadal trends in surface solar radiation were identified at 14 stations at different altitudes in the Swiss and Austrian Alps.
- Stations from western and eastern Alps show different phases and transition periods in decadal trends of surface solar radiation.
- Strong evidence indicates that changes in cloud optical depth are the main responsible for
 these decadal trends at high elevation stations.
- 12

14 Abstract

15 Extending across seven countries, the Alps represent an important element for climate 16 and atmospheric circulation in Central Europe. Its complex topography affects processes on 17 different scales within the atmospheric system. This is of major relevance for the decadal trends 18 in Surface Solar Radiation (SSR), also known as Global Dimming and Brightening (GDB). In 19 this study we analysed data from 14 stations in and around the Swiss and Austrian Alps, over a 20 period ranging from the 1960s up to the 2010s, with the aim of characterizing the spatio-21 temporal variations of the GDB and understanding the causes for such trends in this region. Our 22 results showed a different behavior in the SSR decadal trends in the western part of the Alps in 23 comparison to the eastern part. We also identified a remarkable difference between the causes of 24 such trends in the stations at low altitudes in comparison to the station at higher altitudes. The 25 SSR trends under cloudy conditions revealed strong evidence for a control of the decadal trends 26 by cloud optical depth at high elevation sites, in contrast with a strong clear-sky forcing at low 27 elevations. Results from previous literature and available data suggest that such phenomena 28 could be associated with the indirect and direct aerosol effect, respectively, due to differing 29 pollution levels.

30 Plain Language Summary

31 The incidence of surface solar radiation (SSR) is not constant nor spatially homogeneous 32 over decades around the globe. It undergoes trends, also known as Global Dimming (negative) or 33 Brightening (positive). Such trends can have different causes, such as changes in cloudiness and 34 aerosol concentrations. In regions with complex topography, like the Alps, understanding the 35 processes leading to such trends might be challenging. In this study we investigated the causes of 36 decadal trends in SSR at 14 stations in the Alpine region. The results show distinctly different 37 decadal trends in SSR between the stations in the western and those in the eastern part of the Alps. We also identified that altitude plays a major role for the causes of the trends. While at low 38 39 elevations changes in aerosol concentrations seem to largely control long-term SSR, at high 40 altitude stations the changes in optical properties of clouds seem to dominate. This effect might be, however, also associated with changes in aerosol concentrations, since the amount of aerosols 41 42 present in the cloud formation process has significant effects on the cloud optical properties.

43 **1 Introduction**

44 The complexity of the Alpine region topography represents a challenge for many atmospheric and climate studies. In complex terrain, orographic forcing and local circulation 45 46 features generate several phenomena which cover different scales of the atmospheric processes 47 (Serafin et al., 2018). From the radiative perspective, this is especially important because it 48 affects key components of the energy balance, such as the aerosol transport (Rotach and Zardi, 49 2007) and cloud formation. Previous studies have investigated the energy budget in the alpine 50 region (e.g. Ruckstuhl et al., 2007; Philopona, 2013), but the causes of decadal trends in Surface 51 Solar Radiation (SSR) have not yet been deeply explored with focus on the Alpine region and its 52 complex terrain.

Also known as Global Dimming and Brightening (Gilgen et al., 1998; Wild, 2005; Wild 2009), decadal trends in SSR have been an object of study for decades, due to their importance for various aspects of the climate system such as the hydrological cycle and energy budget. Pioneering studies in the late 80s and early 90s (e.g. Ohmura and Lang, 1989; Russak, 1990; 57 Dutton et al., 1991; Stanhill and Moreshet, 1992) have for the first time presented evidence that 58 the SSR was not constant over time, but exhibited decadal trends. Later publications (e.g. Wild

59 2009) have pointed out three main periods in the 20th century over Europe: a positive trend

60 before the 50s also referred to as "early brightening"; a negative trend between the 50s and the

61 80s also referred to as "dimming"; and a follow-up period of positive trends also known as

62 "brightening".

63 Regarding the causes of GDB, several studies (e.g. Power, 2003; Wild et al, 2005; Streets 64 et al., 2009; Manara et al., 2016, Wild et al., 2021) have attributed the dimming and subsequent 65 brightening in Europe to changes in aerosol loadings. Changes in emission regulations enforced from the 80s onwards in many European countries might have been a major cause for the 66 67 decrease in AOD, which reduced the direct aerosol effect in most of Central and Southern 68 Europe and resulted in an increase of SSR (brightening period). Other authors (Stjern et al., 69 2008) associated the GDB trends in northern Europe with changes in cloud cover. Even though 70 Krüger and Graßl (2002) have identified a pronounced decrease in cloud albedo in Europe during 71 the period of decreasing aerosols in the 80s and 90s, Ruckstuhl et al. (2010) did not find 72 evidence of a significant indirect aerosol effect on SSR changes at 15 lowland stations (altitude 73 lower than 1000 masl) in Switzerland during the same period. Folini et al. (2017) and Chtirkova 74 et al. (2022) highlighted that the effect of internal variability at individual locations should not be 75 neglected. All of these studies provide evidence for the existence of different players controlling 76 the decadal SSR trends, from both natural and anthropogenic origins. Thus, a careful analysis is 77 required to link SSR decadal trends to their causes.

In the present study, we analyze the spatio-temporal variations of the decadal trends in SSR in the alpine region and its underlying causes, contrasting the trends and causes in different parts of the Alps and at different altitudes. For this purpose we use data from 14 stations in and around the Swiss and Austrian Alps, at different altitudes. The time span depends on the data availability at each station, but ranges from the 1960s to the 2010s. The objective is to answer whether the GDB trends in the region are similar within the whole mountain range and to understand which processes control the trends in different areas and at different altitudes.

85 2 Data and Methods

86 SSR daily means from 14 stations in the Swiss and Austrian alpine region ranging from the 1960s until the 2010s were used in this study. They are listed in Table 1 and shown in Figure 87 88 1. This data was collected from the World Radiation Data Center (WRDC - Voeikov Main 89 Geophysical Observatory, 2022), from the European Climate Assessment and Dataset (ECAD -90 Klein Tank et al., 2002) and from the website of the Federal Office of Meteorology and 91 Climatology of Switzerland (IDAWEB, Meteoswiss), which all provide data with at least daily resolution. Daily resolution is a prerequisite for the estimation of clear-sky trends as described in 92 93 Correa et al. (2022). Their altitudes range from 203 to 3580 meters above sea level. Synop cloud 94 cover (oktas) and sunshine duration were collected, when available, from ECAD. For 95 Jungfraujoch. Synop cloud cover data was obtained via the ogimet website 96 (https://www.ogimet.com/synops.phtml.en). Particle Number Concentration and Cloud 97 Condensation Number Concentration at Jungfraujoch were downloaded from EBAS (Tørseth et 98 al., 2012), a database operated by the Norwegian Institute for Air Research (NILU). ERA-5 99 reanalysis data (Hersbach et al., 2020) was also used.

Station	Coordinates	Altitude (m)	Topography	Synop cloud cover/Sunshi ne duration available?	Availability	Source
Col du Grand St-Bernard, Switzerland (GSB)	45.87°N 7.17°E	2472	High altitude valley	Yes/Yes	1981-2019	IDAWEB
Feuerkogel, Austria (FKG)	47.82°N 13.73°E	1598	Mountain peak	Yes/Yes	1965-1988	ECAD
Geneva, Switzerland (GNV)	46.25°N 6.13°E	420	Low elevation urban	Yes/Yes	1981-2018	WRDC
Guestsch, Andermatt (GUE)	46.65°N 8.62°E	2286	Mountain peak	No/No	1981-2019	IDAWEB
Innsbruck, Austria (INN)	47.25°N 11.35°E	579	Mountain valley urban	Yes/Yes	1968-2018	WRDC
Jungfraujoch, Switzerland (JFJ)	46.55°N 7.98°E	3580	Mountain peak	Yes/No	1981-2018	WRDC
Pitztaler Gletscher, Austria (PTG)	46.92°N 10.87°E	2864	Mountain peak	No/No	1994-2021	ECAD
Piz Corvatsch, Switzerland (COR)	46.42°N 9.82°E	3315	Mountain peak	No/No	1981-2018	WRDC
Saentis, Switzerland (SAE)	47.25°N 9.35°E	2490	Mountain peak	Yes/Yes	1981-2018	WRDC
Salzburg, Austria (SZB)	47.78°N 13.05°E	420	Low elevation urban	Yes/Yes	1964-2018	WRDC
Sonnblick, Austria (SON)	47.05°N 12.95°E	3105	Mountain peak	Yes/Yes	1964-2018	WRDC
Weissfluhjoch, Switzerland (WFJ)	46.83°N 9.80°E	2691	Mountain peak	No/No	1981-2019	IDAWEB
Vienna, Austria (VIE)	48.25°N 16.35°E	203	Low elevation urban	Yes/Yes	1964-2018	WRDC

Manuscript submitted to JGR: Atmospheres

106

107

108 Figure 1 - Map of the altitudes (in meters) of the Alpine region and the location of the stations used in this study.

110 Clear-sky SSR time series were derived from the daily data based on 2 different methods: 111 using (1) the method by Correa et al. (2022) and using (2) Synop cloud cover data (when 112 available). In (1), satellite cloud cover daily data is used as a proxy for clear-sky occurrence at 113 each station. Then, by combining satellite cloud cover and transmittance data at the station 114 (directly associating the station to its closest grid from the satellite data), optimal monthly 115 transmittances thresholds are retrieved to remove days in which clouds significantly affected the 116 transmittance, resulting in clear-sky time series. As the resulting time series contains missing data on all days flagged as cloudy, special attention is required when converting daily data into 117 118 monthly and annual values. Monthly values are only calculated when at least 2 days flagged as 119 clear-sky occur, otherwise the climatology is used. When calculating monthly means, the 120 irradiance at the days flagged as clear-sky is normalised to the 15th day of the month, to avoid 121 bias due to solar geometry. Annual values are the mean of the 12 normalised monthly means, but are calculated only when at least 10 out of the 12 months had enough available data (i.e. no more 122

than 2 months have the monthly value expressed as the climatology). This normalisation process when going from daily to monthly and then annual data is repeated in all further derivations used in this study (Synop clear-sky, overcast and true overcast time series). In the method (2), based on Synop cloud cover, we considered any days with 2 or less oktas of cloud cover as clear-sky, with the conversion from daily to monthly and annual values as described above.

128 Clear-sky time series allow the assessment of the cloud-free processes in the atmosphere, 129 such as the SSR changes due to direct aerosol effect or the changes in water vapor content. In 130 combination with all-sky SSR time series and cloud cover time series, it provides insight to the 131 most important aspects regarding the SSR decadal variability. However, the context of this study 132 also requires an assessment of the SSR variability due to cloud optical depth. The obvious choice 133 to achieve this is to derive a SSR overcast time series using Synop cloud cover information, 134 flagging all days with 8 oktas of cloud cover as overcast, as done in previous studies (e.g. 135 Ruckstuhl et al., 2010). Nevertheless, these time series would still retain the SSR variability due 136 to changes in cloud type. Ruckstuhl et al. (2010) have reported a positive trend in high clouds 137 and a negative trend in cumulus clouds over Switzerland under overcast conditions in the period from 1981 to 2005. This "change" from low to high clouds would obviously exert a positive 138 139 forcing on SSR, since high clouds are more transmissive to solar radiation. In order to minimize 140 this effect in the SSR time series while keeping the effects of changes in cloud optical depth, we 141 adapted the method by combining the Synop cloud fraction observations with sunshine duration 142 observations. We used only days with 8 oktas of Synop cloud fraction and 0.0 hours of Sunshine 143 duration to derive time series that from here on will be called "true overcast" SSR. Alternatively, 144 this could have been done with information from low/high level clouds from Synop observations, 145 which, however, was not available for this study. With these time series, we expect to avoid any 146 days with non-overcast periods and days when the overcast condition is mostly due to high 147 clouds, since, on such days, one would expect the heliograph to report non zero sunshine duration values. Comparisons between overcast and true overcast time series have shown 148 149 irradiances up to 20% smaller in the latter, in addition to differences in the long term trends. All 150 the trends presented in this study are calculated from the 11-year moving mean time series.

151 3 Results

152 We first present observational time series of all-sky and clear-sky SSR for the different 153 sites in Sections 3.1 and 3.2. Next, we examine in Section 3.3.1 cloud cover data and discuss its 154 potential to explain the SSR observations presented, highlighting that cloud cover changes on 155 their own cannot explain all aspects of observed all-sky SSR changes at most sites. Consequently, we turn to cloud optical depth in Sections 3.3.2 to 3.3.4, using SSR under true 156 157 overcast conditions as a proxy. Finally, in Section 3.3.5 we discuss the contrast of what was 158 observed at Piz Corvatsch compared to the other stations, and potential reasoning for the 159 deviations at this site in the southern Alps.

160

3.1 Spatio-temporal homogeneity of SSR decadal variability in the alpine region

Figure 2 shows the time series of SSR annual anomalies in 12 out of the 14 stations analyzed in this study. As can be seen in table 1, the stations not shown have the shortest time spans. Most stations show a negative trend in SSR until the 1980s or 1990s, which turn into positive trends after that, agreeing with what was published in previous studies (e.g. Wild et al., 2005). A few aspects, however, should be highlighted. First, all of the Austrian stations analyzed

166 show, at the turn of the century, a slow down or even change in the positive SSR trends observed in the previous decades. The trends after 1995 at these stations range from 1.8 W/m^2 per decade 167 in Salzburg (not statistically significant at the 0.05 level) to -2.20 W/m² per decade at Sonnblick 168 169 (statistically significant at the 0.05 level). In the same period, the Swiss stations show an intensification in the positive all-sky SSR trends. Figure 3 shows this contrast between the trends 170 171 in the western and in the eastern part of the Alps before and after 1995. Secondly, even though 172 almost all of the Swiss stations show statistically significant positive trends in the period after 173 1995, the change from negative/stable to positive trends is not homogeneous timewise. In 174 Geneva, for example, the strong increase in SSR started only around 2000, when most Swiss 175 stations already were showing strong positive trends. Finally, at the high altitude site Piz Corvatsch, in southeastern Switzerland, one cannot identify any clear change in trends. The site 176 177 shows strong interannual variability, but the long term trends are mostly stable, at 0.031 W/m^2 178 per decade in the period from 1981 to 2018. All of this reveals a non-homogeneous spatio-179 temporal SSR decadal variability in the alpine region, which suggests that more than one process 180 could be of significance for the decadal SSR variability in the region.

Figure 2 - All-sky SSR anomalies time series at 12 of the 14 stations analyzed in this study. Black line represents the 11-year moving means. Of the stations not included, Feuerkogel has data only before 1989 and Pitztaler Gletscher

has data only from 1994, with a gap between 2000 and 2007.

185

Figure 3 - Map of all-sky SSR trends at the stations used in this study for two periods (1980-1995 and 1996-2015).
Filled markers indicate statistically significant trends at 0.05 level. Both maps include 13 stations because
Feuerkogel covers only the first period and Pitztaler Gletscher only the second.

190

3.2 Aerosols as a cause for SSR decadal trends: clear-sky SSR

Figure 4 shows the time series of clear-sky SSR annual anomalies at 12 stations, based on the two different methods outlined in section 2. These time series are expected to show the variability when clouds do not play a role. Under these conditions, most stations keep the general behavior of the all-sky SSR: The Austrian stations with stable to negative trends in the 21st century and the Swiss stations with positive trends in the same period. However, this is not the case for Jungfraujoch and Saentis. At both sites a persistent stable to negative trend is observed in clear-sky while in all-sky positive trends take place. This disagreement between all-sky and

198 clear-sky SSR trends is a strong indication that clouds might be responsible for the observed

199 trends in all-sky.

200

Figure 4 - Clear-sky SSR anomalies time series at 12 of the 14 stations used in this study. Time series in green were derived with the method by Correa et al., (2022) and time series in orange were derived with SYNOP cloud cover data. Jungfraujoch with both time series for comparison due to too many missing years in the first method; Innsbruck and Sonnblick only have SYNOP derived clear-sky due to too many missing years in the other method; other stations with both clear-sky time series presented similar long-term behavior, but have only one plot presented for simplification. The red line represents the 11-year moving means.

207

208 The analysis of the individual time series also reveals a contrast between low elevation 209 and high elevation stations. At lower altitudes, such as at the stations Zurich or Salzburg, the magnitudes of the clear-sky trends are much higher than at higher altitude stations. At the Zurich 210 station, for example, the clear-sky trend after 1995 is 8.1 W/m² per decade, which is equivalent 211 212 to 86% of the all-sky trend. The same comparison for Col du Grand St Bernard reveals that the 213 clear-sky trend is equivalent to only 50% of the all-sky trend. This pattern is repeated at most 214 sites, with the exception of Sonnblick and Vienna. At Sonnblick, a high elevation site, both the clear-sky trends before and after 1995 show the same sign but with higher magnitude compared 215 216 to those in all-sky (clear sky represents 195% of all-sky before 1995 and 218% after 1995), and 217 in Vienna, a low elevation site, a much smaller trend is found under clear-sky than all-sky conditions. The overall pattern indicates that, at lower elevations, cloud free processes play a 218 major role in controlling SSR decadal trends. This is in line with previous studies which 219 associated the changes in SSR decadal trends in Europe mostly to changes in aerosol loadings, 220 221 which prevail in low level boundary layers (e.g. Wild et al, 2005; Streets et al., 2009; Manara et 222 al., 2016, Wild et al., 2021) (see also discussion section).

223 3.3 The role of clouds and aerosols in the decadal SSR trends

224 The comparison between all-sky and clear-sky SSR changes revealed the most significant 225 differences at stations at higher altitudes and the most significant similarities at lower altitudes. 226 Regarding the differences, the stations Saentis and Jungfraujoch are especially remarkable, since, 227 their clear-sky long term variability do not show a recovery from the dimming period. This 228 implies that clouds should be the main responsible for the all-sky SSR trends at these high 229 altitude sites. At low elevations, the similarities between all-sky and clear-sky time series imply 230 that the cloud-free processes dominate over the cloud effects. This does not apply, however, to 231 Vienna. At this low elevation Austrian station the clear-sky time series shows little variability in 232 the long term, contrasting to a significant positive trend in all-sky between the 1980s and the turn 233 of the century.

234

3.3.1 Changes in cloud cover in the western and eastern Alps

235 The logical sequence to initially verify the role of clouds at each station is through an 236 analysis of the changes in cloud cover, which we pursued using information from Synop 237 observations as well as from ERA5 reanalysis. In figure 5 we display the cloud cover time series 238 for the two mentioned high elevation sites, for Vienna and for three low land sites (two in 239 Switzerland and one in Austria). For Jungfraujoch the ERA5 cloud cover is plotted together with 240 SYNOP cloud cover due to the limited period of the second, but for the other stations only 241 SYNOP cloud cover is plotted for simplification. At the sites Saentis, Salzburg, Jungfraujoch and 242 Zurich, no significant cloud cover changes in line with the positive trends in all-sky SSR was 243 observed. At Geneva, a period of approximately 10 years of decreasing cloud cover from the mid 244 1990s to the mid 2000s (-2.8% per decade, statistically significant) might have contributed to the 245 positive trend in SSR during that period, even though the clear-sky time series (trend after 1995 246 = 9.0 W/m^2 per decade; ~91% of the all-sky trend) indicates that the clear-sky processes 247 dominate at that station. Finally, in Vienna, a period of more than 20 years of decrease in cloud cover between the late 1970s and the late 1990s (-3.3% per decade, statistically significant) is in 248 249 line with the observed brightening during this period at the station (7.5 W/m^2 per decade). The 250 comparison between 11-year moving mean SSR and cloud cover in Vienna show a correlation of 251 -0.96.

252

257

Figure 5 - Cloud cover annual time series at two high elevation and four low land stations in Switzerland and Austria, from SYNOP observations (blue) and from ERA5 reanalysis (black). The orange line shows the 11-year moving means of the SYNOP time series; the red line in the Jungfraujoch panel shows the 11-year moving means of the ERA5 time series.

While in Vienna the observations point towards SSR decadal trends caused by changes in cloud cover, at the other low land stations the clear-sky processes seem to dominate the long term SSR trends. At Saentis and at Jungfraujoch, however, both clear-sky variability and cloud cover trends do not seem to be sufficient to explain the long term SSR trends. The Synop cloud cover at Sonnblick, Feuerkogel and Col du Grand Saint Bernard (not shown) and the ERA5 cloud cover at the grids of the other high elevation stations (not shown) also do not show long term cloud cover trends in line with the all-sky SSR trends.

265 3.3.2 Aerosols and Cloud Optical Properties

This drives our attention to any potential changes in cloud optical properties at the high elevation stations. Wild (2009) has introduced a conceptual framework on the role of aerosol and

268 clouds in dimming/brightening processes. The author argues that at pristine locations small 269 changes in cloud condensation nuclei potentially have an effective impact on cloud 270 characteristics, thus a small increase in CCNs could result in an amplified reduction in SSR via 271 aerosol indirect effect and vice versa. On the other hand, in highly polluted areas, cloud 272 microphysics effects saturate, and an increase in aerosols may suppress cloud formation, 273 resulting in an opposite effect on SSR trends compared to pristine regions (Wild 2009, 2012). 274 Yang et al. (2021) have demonstrated this effect in China, which can be classified mostly as a 275 highly polluted area. The high elevation Alpine stations analyzed in this study range in altitudes 276 from 1598 to 3105 meters, being located above the lower layers of the atmosphere, where the 277 major sources of aerosols are found and where the aerosol concentrations are usually higher. 278 Thus, in the referred conceptual framework, these stations could be classified as pristine. In this 279 context, one would expect that the period of strong increase in SSR at the Saentis and 280 Jungfraujoch stations would be a period of decrease in CCNs. On Jungfraujoch this could be 281 verified via the Particle Number Concentration (PNC) time series, which is shown in Figure 6.

Figure 6 - Particle Number Concentration monthly time series at Jungfraujoch. Blue line shows the 12 month moving mean.

285

At the Jungfraujoch station there is a decrease in particle number concentration at the turn of the century, which fits to the period of stronger positive trend in SSR at that station. The time series of monthly anomalies of all-sky SSR has a correlation of -0.735 with the monthly PNC. Cloud condensation nuclei number concentration (CCNNC) data was available only from 2012, but comparisons between PNC and CCNNC time series in the overlapping period between the two measurements show strong correlations, ranging from 0.65 at 0.1% super saturation to 0.78 at 1% super saturation in the monthly means time series. According to the referred conceptual 293 framework, this decrease in PNC would result in less bright clouds with shorter lifetimes, 294 allowing for more solar radiation to reach the surface.

295

301

3.3.3 True overcast SSR changes as a proxy for Cloud Optical Depth

296

changes

297 Aerosol measurements require a highly specialized instrumentation, and, for that reason, 298 not all stations have such measurements. Thus, in order to assess the effects of changes in cloud 299 optical depth on SSR we used the time series of true overcast SSR (introduced in section 2) as a 300 proxy. Figure 7 shows the true overcast time series for the stations where both synop cloud cover and sunshine duration data was available. We did not have the sunshine duration data from 302 Jungfraujoch, but we believe that this is an important site for the discussion, thus at this site the 303 time series shown is the overcast SSR (not "true overcast", thus based on Synop data only).

- 305 Figure 7 - True overcast SSR annual time series of stations used in this study. Green lines show the 11-year moving 306 means.
- 307 *Sunshine duration data at Jungfraujoch was not available, thus, its red line shows the overcast time series (only 308 days with 8 oktas of cloud cover) instead of the true overcast time series (only days with 8 oktas of cloud cover + 309 0.0 hours of sunshine duration).
- 310 **The Salzburg time series is using a combination of the sunshine duration and cloud cover from Salzburg airport
- 311 (black part) and Salzburg Freisaal (blue part) for the true overcast determination. The irradiance data was collected 312 at Salzburg Freisaal. Stations are ~5km apart.
- 313

314 One can note from the time series in Figure 7 that interannual variability is higher at high elevation stations. This is also reflected in the decadal trends. On Saentis, the decadal trend after 315 1992 (brightening phase) is 5.5 W/m^2 per decade, while in Zurich it is 2.5 W/m^2 per decade. 316 317 When compared to the all-sky trends, 5.2 and 8.2 W/m^2 per decade respectively, the true overcast trends are equivalent to 105.7% of the all-sky trends at Saentis and 30.9% at Zurich. 318 319 The overcast time series at Jungfraujoch also shows a remarkable positive phase which fits with 320 to the positive phase in the all-sky time series. Nevertheless, since the overcast time series at 321 Jungfraujoch is only based on synop cloud cover, it can be affected by non overcast periods in 322 between the synop measurements and by overcast conditions by high clouds. Anyhow, the 323 pattern of higher variability and stronger trends at high elevations is consistent with other 324 stations. An exception here is Col du Grand Saint Bernard. Its true overcast trend after 1992 of 325 1.25 W/m^2 per decade is smaller even than the low elevation sites. The reason for this contrast 326 could be in the local features. Differently to the other high elevation sites, Col du Grand Saint 327 Bernard is not at the top of a mountain, but rather located in a valley between higher peaks (up to 328 around 400 meters higher). If the hypothesis that changes in cloud optical depth are mostly 329 associated with aerosol indirect effect is correct, the nearby peaks might be shadowing the effect 330 at this station. Such local features, as the contrast between cloud formation processes in a 331 mountain top environment and a valley environment, are relevant for the discussion of the causes 332 of GDB at the local scale, but go beyond the scope of this paper, since here we focus on the 333 larger scale features rather than particularities of every individual station.

334

3.3.4 The role of the altitude in true overcast SSR variability

In order to visualise the role of altitude in the true overcast time series variability (thus, the importance of the cloud optical depth variability according to altitude), figure 8 shows a comparison of the absolute and relative standard deviations of true overcast annual SSR as a function of altitude.

339

344 altitude of the station; and (c) Ratio between relative standard deviation (relative standard deviation = standard 345 deviation normalized by the mean SSR) of annual SSR under true overcast and under all-sky conditions vs the

346 altitude of the station.

347

348 The simple comparison between standard deviations of annual true overcast SSR and 349 altitude (Figure 8a) reveals an exponential curve. This curve fits to the expected exponential 350 decay of transmittance based on the Beer-Lambert law. Stations at higher altitudes have a 351 smaller depth of atmosphere between them and TOA, thus, since in this comparison all stations 352 have similar cloudiness conditions (i.e., true overcast), they are expected to receive higher 353 irradiance on average. This results in higher variability (in absolute values) at higher altitudes, 354 because any, for example, 10% reduction in transmittance due to changes in cloud optical depth, 355 will be reflected in higher absolute SSR variability in locations with higher mean irradiances. However, when we compare the true overcast variability against the all-sky variability (Figure 356 8b) we identify a close to linear relationship ($R^2 = 0.845$). At higher altitudes, the fraction of true 357 358 overcast divided by all-sky standard deviation is higher than at low altitudes. This might indicate 359 that the SSR variability under true overcast conditions is more relevant to the overall SSR 360 variability at high elevations than at low land stations. In Figure 8c the standard deviations are 361 normalized with the average irradiance under the respective conditions (all-sky or true overcast), so that we see the relative standard deviation (in %) instead of absolute (in W/m^2). In this 362 scenario we still see a statistically significant linear relationship, and the true overcast STD at 363 364 high altitudes can be as high as twice of the all-sky. In practical terms, this would mean that a 365 station with standard deviation of annual all-sky SSR of 5% could have a standard deviation of 10% under true overcast conditions. This shows that the importance of the true overcast 366 367 variability (thus, cloud optical depth variability) increases with altitude not only in absolute 368 (W/m^2) but also in relative (%) terms.

369 It should be highlighted that at the daily times scale, the absolute standard deviation is 370 always higher under all-sky than under true overcast conditions (not shown), as expected. 371 Sonnblick shows the highest daily mean absolute standard deviation under true overcast when 372 compared to all-sky between all the stations, with the value of the first representing 64% of the 373 value of the second. At annual time scales, however, the averaging process masks the stronger 374 day to day variability, and this led, at Sonnblick, to a higher standard deviation under true 375 overcast than under all-sky conditions. This explains the, at first glance unexpected, value above 376 1 in Figure 8b, which stems from Sonnblick.

377 These comparisons suggest that the variability under true overcast conditions can in fact 378 represent a significant fraction of the all-sky SSR variability at high elevations. This might be 379 counter intuitive at first, since all-sky variability can happen due to any process in the 380 atmosphere, most remarkably to changes in cloud cover, while the true overcast shows 381 variability mostly due to changes in cloud optical properties. However, the pristine conditions at 382 high elevations can be favorable for the enhancement of the indirect aerosol effect. The higher 383 average irradiance at high elevations under true overcast conditions (Beer-Lambert law) can also 384 enhance this effect, since similar relative changes would result in higher absolute changes at high 385 elevations than at low elevations. It should be noted that other aspects not assessed in this paper 386 (i.e. changes in cloud liquid water content) could also affect cloud optical depth and thus the SSR 387 variability.

388 Another remarkable aspect of the true overcast SSR annual time series regards the 389 Austrian stations. As previously mentioned, these stations show a reversal in the all-sky trends at 390 the turn of the century. This is, to some extent, also observed in the true overcast time series. 391 Sonnblick, for example, shows a positive trend of 8.0 W/m^2 per decade in the true overcast time series if we take the series from 1990, however, the trend turns negative (-0.5 W/m^2 per decade, 392 393 not significant) if we take the series starting in 1996. The simple comparison of the annual mean 394 SSR time series under all-sky and true overcast conditions at this site reveals a correlation 395 coefficient of 0.705 (statistically significant) between the two time series in Sonnblick. All of 396 this reveals that, even though the all-sky trends behave different in Austria when compared to the 397 Swiss stations, the all-sky - true overcast similarities can still be identified in the Austrian Alps.

398

3.3.5 Changes in cloud cover in the Southern Alps: the case of Piz Corvatsch

399 Finally, Piz Corvatsch shows an interesting SSR decadal variability, not having any 400 distinct positive or negative decadal trend. No sunshine duration or synop cloud cover data was 401 available for this station, which is located in the southern region of the Alps, thus no derivation 402 of true overcast conditions time series was possible. The clear-sky time series at this station, 403 however, shows a change in trend, from a negative trend before the year 2000 to a positive trend 404 after that. This off-phase between all-sky and clear-sky suggests that changes in clouds control 405 the all-sky trends. The significant role of changes in cloud cover in the long term SSR variability 406 at this station gets more evident when the seasons are observed individually. Figure 9 shows the 407 comparison between 11-year moving mean seasonal SSR anomalies and 11-year moving mean 408 seasonal cloud fraction anomalies from ERA5 at Piz Corvatsch. Fall, winter and spring show 409 statistically significant linear correlations of -0.80, -0.74 and -0.64 respectively. In summer, the 410 linear correlation is -0.18 (not significant at the 0.05 level). Other high elevation stations also 411 show statistically significant correlation in some seasons in such comparison. For instance, 412 Saentis also shows a strong negative correlation between 11-year moving means of seasonal 413 anomalies of irradiance and cloud fraction in fall, and Sonnblick in spring (not shown). But 414 neither these stations, nor the other stations analysed in this study show such a remarkable 415 occurrence of multiple seasons with such strong negative correlations between the variables as it 416 was observed at Piz Corvatsch.

417

Figure 9 - Comparison between 11-year moving means of seasonal SSR anomalies and 11-year moving means ofcloud fraction anomalies from ERA 5 at Piz Corvatsch.

420

421 The location of the station in the Southern Alps could be playing an important role for the 422 differences observed in the long term all-sky SSR at Piz Corvatsch when compared to all the 423 other stations analysed in this study. Panziera et al. (2015) have studied the regional circulation 424 features at the region of Trentino (~60 km east of Piz Corvatsch, also in the Southeastern Alps). 425 The authors highlighted the importance of the mesoscale mechanisms resulting from the 426 interaction between large-scale flow with local orography to the atmospheric processes occurring in the region. One of the remarkable features highlighted by the authors regards the "shadowing" 427 428 of the Trentino region by the western Alps in the occurrence of western flow, which is moist and 429 usually associated with cloudiness in the western part of the Alps. This results in a more 430 significant impact of the regional and local circulation patterns in the region, which might have 431 contributed to the distinct long term SSR variability at Piz Corvatsch.

The lack of true overcast SSR data at this station does not allow for testing the hypothesis that changes in cloud optical depth could dominate the SSR variability at this site. But the comparison of the all-sky SSR time series at this station with the all-sky SSR behavior of the other Swiss stations already suggests that different processes dominate the SSR decadal trends at Piz Corvatsch, most likely with a major contribution of the changes in cloud cover. The role of cloud cover and cloud optical depth in the SSR trends, and potential causes for heterogeneity of the SSR trends in the Alpine region are discussed in the following section.

439 4 Discussion

440 The results presented here strongly suggest that changes in cloud optical depth play a 441 major role in controlling SSR decadal trends at high altitude Alpine stations, whereas at low 442 altitude stations, SSR trends are dominated by changes in the cloud-free atmosphere. Vienna is 443 an exception to that, since changes in cloud cover dominate at this station. The conceptual 444 framework on the role of aerosols and clouds in Global Dimming and Brightening (Wild, 2009) 445 suggests that at pristine locations the indirect aerosol effect is of significant importance for the 446 SSR trends, strongly affecting cloud optical depth and cloud lifetime. Such pristine conditions 447 can be found at the high elevation sites analysed in this study. Due to their high elevations, they 448 have a limited interaction with the lowest levels of the atmosphere, where the major 449 anthropogenic pollution sources are located. This results in significantly lower AOD and particle 450 number concentration at these high elevation sites than at the stations at lower altitudes. 451 Consequently, one would expect that at high elevation sites reducing aerosols would lead to a 452 positive forcing (brightening) primarily via aerosol indirect effect. This is supported by the 453 absence of substantial clear-sky trends. The true overcast time series show in fact stronger 454 positive trends in SSR at the high altitude stations in the end of the 20th century, consistent with 455 the reported decline in sulfate aerosol loadings over Europe in that period (Stern, 2006). As 456 observed, the higher average irradiance at higher altitudes also contributes to the higher absolute 457 variability and stronger trends at these locations. Other aspects, however, could also affect the 458 cloud optical depth, such as changes in cloud liquid water content, which were not assessed in 459 this study. Thus, even though the results and the literature (e.g. Krüger and Graßl, 2002) point 460 towards changes in cloud optical depth due to changes in aerosol loadings, we could not further 461 challenge this hypothesis by comparing it to other potential causes for changes in cloud optical 462 depth.

463 Saentis and Jungfraujoch show an especially interesting contrast between all-sky and 464 clear-sky SSR trends. Those are the only two stations where a positive trend in clear-sky SSR 465 was not observed at all. This is somewhat against an expected weak positive trend in clear-sky SSR, as observed (by both methods used for clear-sky derivation) in other Alpine stations (e.g. 466 Weissfluhjoch, Guetsch-Andermatt, Piz Corvatsch), due to reducing aerosols. In the case of 467 468 Jungfraujoch, observations even show a decrease in particle number concentration, in the end of 469 the 20th century, which was not reflected in a positive clear-sky SSR trend. A potential cause for 470 this persistent negative trend in clear-sky conditions at these stations could be associated with 471 orographic forcing. Both are elevated peaks in the windside of the Alps from a synoptic point of 472 view, as winds blow mostly from west in the region (Weber and Furger, 2001). Thus, orographic 473 forcing mostly keeps a constant process of cloud formation, independent of the amount of 474 moisture and CCNs present. For the case of Junfraujoch, Juranyi et al. (2011) have shown that 475 cloud droplet activation is likely to occur in aerosol limited regime most of the time. 476 Consequently, changes in aerosol loadings (more or less CCNs) would be reflected more in the 477 aerosol indirect effect than in aerosol direct effect or in cloud cover changes. All the other high 478 elevation stations do show some long term variability in the clear-sky SSR time series. But they 479 are also located more in the inner Alpine areas (from the synoptic wind perspective), thus in 480 more complex terrains when it comes to synoptic and local circulations.

481 Every station has its own local conditions, which makes it hard to understand every 482 anomaly of every location. Especially at high altitude stations, local circulations features can 483 significantly affect the decadal trends of SSR, but overall it is still possible to identify

484 commonalities. The Swiss stations at all altitudes, with the exception of Piz Corvatsch, have a 485 similar SSR long term variability, with all of them showing a brightening period starting between 486 late 80s and late 90s. They are all located in the southwestern, western and northwestern parts of 487 the Alps. The Austrian stations, located more in the eastern (inner) part of the Alps, also show a 488 similar long term SSR variability between themselves, with positive trends, which change the 489 sign around the turn of the century. Piz Corvatsch, located in southeastern Switzerland, in the 490 southern part of the Alps, shows an unique long term SSR variability when compared to others. 491 This leads us to identify three main general behaviors in the SSR decadal trends in the Alps: one 492 in the western part, one in the eastern part and one in the southern part. Both western and eastern 493 parts of the Alps show indications of similar main causes for long term trends in SSR: changes in 494 cloud optical depth at high altitudes (with the exception of Col du Grand Saint Bernard, as 495 previously mentioned) and in aerosol direct effect at low altitudes (with the exception of Vienna, 496 as previously mentioned). However, the temporal variability in the forcings seems to be 497 remarkably different from one to the other. In the southern part of the Alps (also an inner part 498 from the synoptic wind perspective), at Piz Corvatsch, the available data implies a significant 499 effect of cloud cover on the SSR variability and does not indicate major changes in cloud optical depth, although, a deeper analysis with more data would be required for testing this hypothesis. 500

501 Even though here we highlighted more the cloud optical depth effect on the SSR trends, 502 the changes in cloud cover should also be considered, particularly when discussing inter-annual 503 variations. Most sites show a very positive all-sky SSR anomaly in the year 2003, for example, 504 which has been reported as an anomalous dry and hot year in Central Europe (Garcia-Herrera et 505 al., 2010). So changes in cloud cover do affect inter annual variability at all stations, but the long 506 term effects do not always play a major role for the SSR trends. This was observed for the case 507 of Saentis, for example, which shows a stable cloud cover and relative humidity (not shown) on 508 the long term from the 80s until most recent decades. However, it is very likely that any 509 significant trends in cloud cover would dominate over any trends in cloud optical depth. Thus, 510 we should highlight that the observed trends at high altitudes forced by changes in cloud optical 511 depth occurred mostly without major cloud cover trends.

512 5 Conclusions

513 In this study we presented the SSR decadal trends at several stations, at low and high 514 elevations, in and around the Swiss and Austrian Alps, and discussed their causes. The analysis 515 of the time series available revealed a spatio-temporal heterogeneity in the SSR trends in the 516 region. A remarkable spatial contrast between stations in the western, eastern and one station in 517 the southern Alps could be identified, whereas stations within each of these regions had a similar 518 general behavior in their long term trends. Further comparison between low elevation and high 519 elevation sites revealed that at lower altitudes the SSR decadal trends were mostly determined by 520 clear-sky processes, most likely related to the changes in aerosol loadings in the last two decades 521 of the last century in Europe. An exception to that is Vienna, which shows strong decadal trends 522 in cloud cover in line with SSR decadal trends. At high altitude sites, on the other hand, clear-sky 523 trends accounted for a smaller portion of the total all-sky long term variability. After the 524 identification of no major decadal changes in cloud cover in some sites, the analysis of the true 525 overcast time series showed that changes in cloud optical depth play a major role for decadal 526 SSR trends at high elevations. This could be associated with the aerosol indirect effect, as we can 527 expect based on the particle number concentration time series at Jungfraujoch and on the conceptual framework on the role of aerosols and clouds in the Global Dimming and Brightening 528

529 phenomenon (Wild, 2009). But, since we did not assess all aspects that could affect the cloud 530 optical depth, additional analysis could still be performed to further test this hypothesis. We also 531 observed that the cloud optical depth effect in SSR decadal trends at high altitude sites could be 532 amplified by the fact that these sites have a smaller fraction of the atmosphere above them to 533 attenuate radiation, resulting in higher average irradiance under true overcast conditions than 534 those stations at lower altitudes. We further identified that changes in cloud cover still can play a 535 role in all-sky SSR interannual variability, thus any long term trends in cloud cover could 536 outweigh the cloud optical depth variability. This leads us to conclude that the cloud optical 537 depth controls the decadal trends of SSR at high altitudes in the Alps as long as there are no 538 major changes in cloud cover. The hypothesis that the changes in cloud optical depth in the Alps 539 were caused mostly by the indirect aerosol effect should, however, still be subject of further 540 research.

541 Acknowledgments

542 This study was funded by the Swiss National Science Foundation grant no. 200020_188601.

543

544 Data Availability Statement

545 The BSRN SSR data is available at the BSRN website (https://bsrn.awi.de/). For this study it 546 was retrieved via the ftp server ftp://ftp.bsrn.awi.de/. The WRDC SSR data is available for registered users at http://wrdc.mgo.rssi.ru/. The MeteoSwiss/IDAWEB SSR data is available for 547 548 registered users at (https://gate.meteoswiss.ch/idaweb). Synop cloud cover and irradiance data from 549 the European Climate Assessment & Dataset website can be downloaded at (http://www.ecad.eu). 550 Jungfraujoch Synop cloud cover from was downloaded from Ogimet 551 (https://www.ogimet.com/synops.phtml.en). Particle Number Concentration and Cloud Condensation 552 Nuclei Number Concentration from Jungfraujoch were downloaded at the EBAS website 553 (https://ebas-data.nilu.no/).

554

555 References

- Chtirkova, B., Folini, D., Correa, L. F., & Wild, M. (2022). Internal Variability of All-Sky and
 Clear-Sky Surface Solar Radiation on Decadal Timescales. *Journal of Geophysical Research: Atmospheres*, 127(12), e2021JD036332.
- Correa, L. F., Folini, D., Chtirkova, B., & Wild, M. (2022). A method for clear-sky identification
 and long-term trends assessment using daily surface solar radiation records. *Earth and Space Science*, e2021EA002197.
- Dutton, E. G., Stone, R. S., Nelson, D. W., & Mendonca, B. G. (1991). Recent interannual
 variations in solar radiation, cloudiness, and surface temperature at the South Pole. *Journal of Climate*, 4(8), 848-858.
- Folini, D., Dallafior, T. N., Hakuba, M. Z., & Wild, M. (2017). Trends of surface solar radiation
 in unforced CMIP5 simulations. *Journal of Geophysical Research: Atmospheres*, 122(1),
 469-484.

- García-Herrera, R., Díaz, J., Trigo, R. M., Luterbacher, J., & Fischer, E. M. (2010). A review of
 the European summer heat wave of 2003. *Critical Reviews in Environmental Science and Technology*, 40(4), 267-306.
- Gilgen, H., Wild, M., & Ohmura, A. (1998). Means and trends of shortwave irradiance at the
 surface estimated from global energy balance archive data. *Journal of Climate*, *11*(8),
 2042-2061.
- Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., ... &
 Thépaut, J. N. (2020). The ERA5 global reanalysis. *Quarterly Journal of the Royal Meteorological Society*, *146*(730), 1999-2049.
- Jurányi, Z., Gysel, M., Weingartner, E., Bukowiecki, N., Kammermann, L., & Baltensperger, U.
 (2011). A 17 month climatology of the cloud condensation nuclei number concentration at the high alpine site Jungfraujoch. *Journal of Geophysical Research: Atmospheres*, *116*(D10).
- 581 Klein Tank, A. M. G., Wijngaard, J. B., Können, G. P., Böhm, R., Demarée, G., Gocheva, A., ...
 582 & Petrovic, P. (2002). Daily dataset of 20th-century surface air temperature and
 583 precipitation series for the European Climate Assessment. *International Journal of*584 *Climatology: A Journal of the Royal Meteorological Society*, 22(12), 1441-1453.
- 585 Krüger, O., & Graßl, H. (2002). The indirect aerosol effect over Europe. *Geophysical Research* 586 *Letters*, 29(19), 31-1.
- Manara, V., Brunetti, M., Celozzi, A., Maugeri, M., Sanchez-Lorenzo, A., & Wild, M. (2016).
 Detection of dimming/brightening in Italy from homogenized all-sky and clear-sky
 surface solar radiation records and underlying causes (1959–2013). *Atmospheric Chemistry and Physics*, 16(17), 11145-11161.
- Ohmura, A., & Lang, H. (1989). Secular variation of global radiation over Europe, in Current
 Problems in Atmospheric Radiation. *edited by J. Lenoble, & JF Geleyn*, 98, 301.
- Panziera, L., Giovannini, L., Laiti, L., & Zardi, D. (2015). The relation between circulation types
 and regional Alpine climate. Part I: synoptic climatology of Trentino. *International Journal of Climatology*, 35(15), 4655-4672
- 596 Philipona, R. (2013). Greenhouse warming and solar brightening in and around the Alps.
 597 *International journal of climatology*, 33(6), 1530-1537.
- Power, H. C. (2003). Trends in solar radiation over Germany and an assessment of the role of
 aerosols and sunshine duration. *Theoretical and Applied Climatology*, 76(1), 47-63.
- Rotach, M. W., & Zardi, D. (2007). On the boundary-layer structure over highly complex terrain:
 Key findings from MAP. *Quarterly Journal of the Royal Meteorological Society: A journal of the atmospheric sciences, applied meteorology and physical oceanography, 133*(625), 937-948.
- Ruckstuhl, C., Philipona, R., Morland, J., & Ohmura, A. (2007). Observed relationship between
 surface specific humidity, integrated water vapor, and longwave downward radiation at
 different altitudes. *Journal of Geophysical Research: Atmospheres*, *112*(D3).

- Ruckstuhl, C., Norris, J. R., & Philipona, R. (2010). Is there evidence for an aerosol indirect
 effect during the recent aerosol optical depth decline in Europe?. *Journal of Geophysical Research: Atmospheres*, 115(D4).
- Russak, V. (1990). Trends of solar radiation, cloudiness and atmospheric transparency during
 recent decades in Estonia. *Tellus B*, 42(2), 206-210.
- 612 Serafin, S., Adler, B., Cuxart, J., De Wekker, S. F., Gohm, A., Grisogono, B., ... & Zardi, D.
 613 (2018). Exchange processes in the atmospheric boundary layer over mountainous terrain.
 614 *Atmosphere*, 9(3), 102.
- 615 Stanhill, G., & Moreshet, S. (1992). Global radiation climate changes: The world
 616 network. *Climatic Change*, 21(1), 57-75
- 617 Stern, D. I. (2006). Reversal of the trend in global anthropogenic sulfur emissions. *Global* 618 *Environmental Change*, 16(2), 207-220.
- 619 Stjern, C. W., Kristjánsson, J. E., & Hansen, A. W. (2009). Global dimming and global
 620 brightening—An analysis of surface radiation and cloud cover data in northern Europe.
 621 *International Journal of Climatology: A Journal of the Royal Meteorological Society*,
 622 29(5), 643-653.
- Streets, D. G., Yan, F., Chin, M., Diehl, T., Mahowald, N., Schultz, M., ... & Yu, C. (2009).
 Anthropogenic and natural contributions to regional trends in aerosol optical depth,
 1980–2006. Journal of Geophysical Research: Atmospheres, 114(D10).
- Tørseth, K., Aas, W., Breivik, K., Fjæraa, A. M., Fiebig, M., Hjellbrekke, A. G., ... & Yttri, K. E.
 (2012). Introduction to the European Monitoring and Evaluation Programme (EMEP) and
 observed atmospheric composition change during 1972–2009. *Atmospheric Chemistry and Physics*, 12(12), 5447-5481.
- 630 Voeikov Main Geophysical Observatory. (2022). World Radiation Data Centre website.
 631 <u>http://wrdc.mgo.rssi.ru/</u>
- Weber, R. O., & Furger, M. (2001). Climatology of near-surface wind patterns over Switzerland.
 International Journal of Climatology: A Journal of the Royal Meteorological Society,
 21(7), 809-827.
- Wild, M., Gilgen, H., Roesch, A., Ohmura, A., Long, C. N., Dutton, E. G., ... & Tsvetkov, A.
 (2005). From dimming to brightening: Decadal changes in solar radiation at Earth's
 surface. *Science*, *308*(5723), 847-850.
- Wild, M. (2009). Global dimming and brightening: A review. *Journal of Geophysical Research: Atmospheres*, *114*(D10).
- Wild, M. (2012). Enlightening global dimming and brightening. *Bulletin of the American Meteorological Society*, 93(1), 27-37.
- Wild, M., Wacker, S., Yang, S., & Sanchez-Lorenzo, A. (2021). Evidence for clear-sky dimming
 and brightening in central Europe. *Geophysical Research Letters*, 48(6),
 e2020GL092216.

645 Yang, S., Zhou, Z., Yu, Y., & Wild, M. (2021). Cloud 'shrinking'and 'optical thinning'in the
646 'dimming' period and a subsequent recovery in the 'brightening' period over China.
647 *Environmental Research Letters*, 16(3), 034013.