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Abstract

Global climate models often simulate atmospheric conditions incorrectly due to their coarse grid resolution, flaws in their

dynamics, and biases resulting from parameterization schemes. Here we document the magnitude and extent of minimum

temperature biases in the CMIP6 model ensemble, relative to ERA5. Bias in the southern Cascadia region (i.e. Pacific

Northwestern United States and southwestern British Columbia, Canada, spanning from the coast to the Rocky Mountains)

stands out relative to the rest of North America, with some models showing a bias in excess of -10°C in the 1st percentile of

daily winter minimum temperature. During the coldest minimum temperature days, the CMIP6 models show an anomalous

high in mean sea level pressure in the Northeast Pacific – an atmospheric blocking pattern that is also present in ERA5. While

this atmospheric blocking pattern is typically concurrent with cold temperatures across much of North America, terrain barriers

such as the Rockies and Cascades prevent the cold air from reaching the Pacific Northwest in observation and reanalysis. Our

results suggest that the bias in CMIP6 minimum temperatures is a result of unresolved topography in the Rockies and Cascade

mountain ranges, such that the terrain does not adequately block cold air advection from the interior of the continent.
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Substantial cold bias during wintertime cold extremes1

in the southern Cascadia region in historical CMIP62

simulations3

Rogers, M.H.1, Mauger, G.1, Cristea, N.24
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Key Points:7

• CMIP6 models show a pronounced cold bias in the coldest daily minimum tem-8

peratures for the Cascadia region of North America.9

• In both the ERA5 and CMIP6 models, the coldest temperatures in this region are10

associated with atmospheric blocking patterns in the northeast Pacific.11

• Due to their poorly resolved topography, CMIP6 models allow excessive advec-12

tion of cold continental air during atmospheric blocking events13

Corresponding author: Matthew Rogers, rawrgers@uw.edu
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Abstract14

Global climate models often simulate atmospheric conditions incorrectly due to their coarse15

grid resolution, flaws in their dynamics, and biases resulting from parameterization schemes.16

Here we document the magnitude and extent of minimum temperature biases in the CMIP617

model ensemble, relative to ERA5. Bias in the southern Cascadia region (i.e. Pacific North-18

western United States and southwestern British Columbia, Canada, spanning from the19

coast to the Rocky Mountains) stands out relative to the rest of North America, with20

some models showing a bias in excess of -10°C in the 1st percentile of daily winter min-21

imum temperature. During the coldest minimum temperature days, the CMIP6 mod-22

els show an anomalous high in mean sea level pressure in the Northeast Pacific – an at-23

mospheric blocking pattern that is also present in ERA5. While this atmospheric block-24

ing pattern is typically concurrent with cold temperatures across much of North Amer-25

ica, terrain barriers such as the Rockies and Cascades prevent the cold air from reach-26

ing the Pacific Northwest in observation and reanalysis. Our results suggest that the bias27

in CMIP6 minimum temperatures is a result of unresolved topography in the Rockies28

and Cascade mountain ranges, such that the terrain does not adequately block cold air29

advection from the interior of the continent.30

Plain Language Summary31

Global climate models, for a variety of reasons, continue to struggle with recreat-32

ing some of the observed behaviors of our Earth system. Here, we document one such33

issue: daily minimum temperatures in western Washington and Southwestern British Columbia34

that are much colder than we experience. We find that these temperatures occur when35

extremely cold air is moved from the north into western Washington and southwestern36

British Columbia. In reality, terrain barriers such as the Rocky and Cascade mountain37

ranges prevent this air from reaching western Washington and southwestern British Columbia.38

However, these mountain ranges in the models are much lower and less jagged, which39

allows the extreme cold temperatures to occur in the models.40

1 Introduction41

Global climate model (GCM) projections of future climate conditions are exten-42

sively used in analyses of climate change impacts. GCMs are the primary source of fu-43

ture climate projections, and are the basis for the majority of impact assessments used44

to inform decision-makers about potential future climate conditions(e.g. Reidmiller et45

al., 2018). Projected climate change is expected to significantly impact society by affect-46

ing necessary aspects such as water availability, human health , and food security Rei-47

dmiller et al. (2018). Thus, providing decision-makers with reliable estimates of present48

and future conditions is crucial for them to make well-informed decisions about future49

climate-related risks.50

Many studies have evaluated GCM performance by using historical simulations as51

a benchmark to compare to observations and reanalysis data (e.g. Rupp et al., 2013).52

As a result of such evaluations, GCMs have significantly improved in their simulations53

of observed atmospheric phenomena in recent years (Edwards, 2011; Sillmann et al., 2013;54

Flato et al., 2013a). GCMs have shown fidelity in simulating global quantities , and yet55

continue to have considerable bias on regional scales Flato et al. (2013b) due to a vari-56

ety of factors, including coarse grid resolution, flaws in their dynamics, and biases re-57

sulting from parameterization schemes (Taylor et al., 2012; Knutti & Sedláček, 2013; O’Gorman58

& Schneider, 2009; Wilcox & Donner, 2007; Wehrli et al., 2018). GCM bias at regional59

scales presents a barrier for decisions-makers in being well-informed on current and fu-60

ture climate conditions. Further assessment of regional GCM bias is important for un-61

derstanding how reliable GCM simulations are and to what extent they can be utilized.62
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In a preliminary investigation of Coupled Model Intercomparison Project Phase63

5 (CMIP6) models, we found that simulated cold extremes in Puget Sound were often64

below the range of observed temperature extremes. Further analysis of cold extreme events65

in these GCMs showed that the cold biases often affected much of the southern Casca-66

dia region (i.e., Pacific Northwestern United States west of the Rockies along with south-67

western British Columbia, Canada (Fig. 1). The unrealistic nature of minimum temper-68

ature values in these simulations presents a problem for their use in accurately project-69

ing future changes in temperature variability for the Pacific Northwest. Understanding70

when and why these biases occur is imperative for understanding the appropriate uses71

and limitations of minimum temperature data provided by these GCMs.72

The observed dynamics behind wintertime cold air outbreaks are well-established,73

with many previous studies connecting significant cold-air outbreaks in the United States74

with atmospheric blocking patterns in the Northeast Pacific (e.g. Carrera et al., 2004).75

Atmospheric blocking regimes in the Northeast Pacific, characterized by a persistent an-76

ticyclonic flow anomaly over the gulf of Alaska (Dole, 1986b,a; Higgins & Schubert, 1996;77

Higgins & Mo, 1997), inhibit the eastward progression of synoptic disturbances through78

strong meridional flow. This leads to anomalies in the North Pacific storm tracks (Naka-79

mura & Wallace, 1990) that ultimately advect cold air southward into the United States.80

Carrera et al. (2004) show that average daily temperature anomalies are consistently be-81

low the 10th percentile over an area stretching from British Columbia southeastward to82

the central plains of the United States when a North Pacific blocking event occurs. More83

recently, the connections between severe cold conditions during the winter of 2013-14 have84

also been correlated with an atmospheric blocking pattern in the Northeast Pacific Hart-85

mann (2015).86

For North America specifically, winter stationary wave patterns resulting from orog-87

raphy also have a significant impact on wintertime temperature variability; resulting from88

their influence on horizontal temperature advection Held et al. (2002). Horizontal tem-89

perature advection is known to be the largest contributor to synoptic temperature vari-90

ability in the Northern Hemisphere Lutsko et al. (2019), and previous research suggests91

that terrain plays an important role in how cold air is advected into the United States92

Hartjenstein & Bleck (1991), particularly during atmospheric blocking events in the North-93

east Pacific.94

Taken together, the known interactions between the atmospheric dynamics and ter-95

rain that lead to cold temperatures in southern Cascadia present two possibilities for the96

existence of the cold temperature bias in the southern Cascadia region. Namely, biases97

in the strength and location of North Pacific atmospheric blocking events leading to stronger98

cold advection into Pacific Northwwest North America, and bias in terrain simulation99

in the CMIP6 models that allows cold air to reach areas it normally would not in ob-100

servation. With this, our study has two objectives; (1) to document the magnitude and101

spatial extent of bias in cold minimum temperatures in the southern Cascadia region of102

North America and, (2) to identify when this bias occurs and assess the relative contri-103

butions to this bias from the atmospheric dynamic and terrain bias. Given the localized104

nature of the bias to the southern Cascadia region, we hypothesize that the biases in ex-105

treme daily minimum temperatures in CMIP6 models are related to bias in terrain fea-106

tures allowing cold air to move west of the Rocky and Cascade mountain ranges during107

North Pacific atmospheric blocking events.108

2 Data & Methods109

We use daily mean sea level pressure, daily minimum temperature data, and grid110

cell elevation data from historical simulations of 13 CMIP6 global climate models (Ta-111

ble 1), obtained using the Pangeo cloud storage platform (https://pangeo.io). For val-112

idation, we compare the CMIP6 results to data from the European Centre for Medium-113
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Model Citation Native Resolution
ACCESS-CM2 Dix et al. (2019) 1.25° x 1.875°
ACCESS-ESM1-5 Ziehn et al. (2019) 1.875° x 1.25°
AWI-ESM-1-1-LR Danek et al. (2020) 1.875° x 1.875°
CanESM5 Swart et al. (2019) 2.8125° x 2.8125°
CMCC-ESM2 Lovato et al. (2021) 0.9375° x 1.25°
MIROC6 Tatebe & Watanabe (2018) 1.40625°x 1.40625°
MPI-ESM1-2-LR Wieners et al. (2019) 1.875° x 1.875°
MPI-ESM1-2-HR Jungclaus et al. (2019) 0.9375° x 0.9375°
MRI-ESM2-0 Yukimoto et al. (2019) 2.8125° x 2.8125°
NorCPM1 Bethke et al. (2019) 1.875° x 2.5°
NorESM2-MM Bentsen et al. (2019) 0.9375° x 1.25°
SAM0-UNICON Park & Shin (2019) 0.9375° x 1.25°
TaiESM1 Lee & Liang (2019) 0.9375° x 1.25°

Range Weather Forecasts Reanalysis version 5 (ERA5) Hersbach et al. (2020), which was114

chosen for its fine default resolution of 0.25° x 0.25° latitude by longitude grid and over-115

all reliability as an accurate reanalysis produce Tarek et al. (2020). All data was regrid-116

ded to a 1°x1° latitude by longitude grid via bilinear interpolation unless otherwise noted,117

and all reported bias for the CMIP6 models is relative to ERA5 data.118

We evaluate biases in the 1st percentile of daily minimum temperature in order to119

ensure an adequate sample size for the selected time period (1981-2010), though our anal-120

ysis indicates that the results would be the same for a variety of definitions of cold min-121

imum temperatures. Hereafter we refer to values below the 1st percentile threshold as122

“extreme cold”.123

3 Results124

Our results are divided into two sections. The first section focuses on the documen-125

tation of extreme minimum temperature bias, its spatial extent and how pervasive it is126

across CMIP6 models. The second section investigates the source of wintertime extreme127

minimum temperature bias in the southern Cascadia region in CMIP6 models.128

3.1 Bias Documentation129

Preliminary findings have shown isolated events with minimum temperatures well130

below observed values in the Puget Sound region; however, the extent and magnitude131

of this bias has yet to be assessed. Fig. 1a shows the bias in the multi-model mean 1st132

percentile minimum DJF temperature (1981-2010) for CMIP6 models relative to ERA5133

for North America. The bias in the southern Cascadia region extending southeast into134

the mountain west region stands out relative to the rest of North America, excluding per-135

haps the southern coast of Alaska. The magnitude of the extreme minimum tempera-136

ture bias for several grid cells within this region shows an ensemble average bias exceed-137

ing -5°C, which is a stark departure from observed values. Fig. 1b shows that the sign138

of the bias is the same for all CMIP6 models analyzed, without exception. These results139

suggest two things: (1) CMIP6 models have a systematic problem in simulating realis-140

tic extreme cold air in the southern Cascadia region; and (2) the source of this bias is141

likely specific to this region, given that biases in other regions are not as large, are not142

necessarily of the same sign, and show less consistency among models. Hereafter, our anal-143

ysis will be focused on this region, though we note that there are other regions with sim-144

ilar bias characteristics (e.g., southeastern Alaska). We select a sub-region that isolates145
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the largest magnitude and agreement in the sign of bias in the CMIP6 ensemble (Fig.146

1a, b: 46.5N - 51.5N, 125W - 116W).147

Our first goal is to determine whether the bias in the minimum temperature is unique148

to the coldest temperatures or is present throughout the entire distribution of winter-149

time minimum temperatures. Fig. 2a compares the probability distributions of daily win-150

tertime minimum temperatures (1981-2010) averaged over the southern Cascadia region151

for ERA5 and the CMIP6 models. The daily minimum temperature distributions for most152

models shown in Fig. 2a are more left skewed relative to ERA5, meaning that CMIP6153

models in this region consistently simulate colder minimum temperatures than in the ob-154

servations. This does not appear to be a result of a shifted distribution, since the right155

tail of the distributions are similar. Instead, the bias appears to be confined to the lower156

end of the minimum temperature distributions in ERA5 and CMIP6 models. The cold157

bias is consistently present across a range of the lower quantiles in the distribution, but158

begins to be less consistently negative around the XXth percentile.159

To better visualize how the bias in 1st percentile minimum temperatures compares160

to bias in the median, Fig. 2b shows the bias in 50th percentile and 1st percentile daily161

minimum wintertime temperatures for each model in this study, averaged over the suth-162

ern Cascadia region. Consistently across the ensemble, the bias in the 1st percentile min-163

imum temperatures far exceeds the bias in the median for the southern Cascadia region,164

again suggesting that the distributions for minimum temperature in CMIP6 models for165

the southern Cascadia region are skewed left relative to ERA5. Notably, the absolute166

magnitude of the 1st percentile bias for many models exceeds -10°C. The results show167

highly skewed probability distributions (Fig. 2a) and a larger magnitude of bias in the168

1st percentiles relative to the median relative to ERA5, suggesting that the bias in ex-169

treme minimum temperatures is uncoupled from systematic bias in the minimum tem-170

perature distributions.171

We have shown that a large bias in minimum temperature extremes for the CMIP6172

models is isolated to the southern Cascadia region (Fig. 1). We have also demonstrated173

that this bias in minimum temperatures is unique to the cold extremes (Fig. 2). Next,174

we investigate potential sources for this minimum temperature bias175

3.2 Sources of Cold Minimum Temperature Bias176

Informed by previous research focused on cold temperatures in North America, we177

hone in on two potential contributors to the cold minimum temperature bias in south-178

ern Cascadia in the CMIP6 models: (1) biases in the strength and location of North Pa-179

cific atmospheric blocking events, and (2) bias in terrain simulation in the CMIP6 mod-180

els. We begin this section by analyzing (1).181

To investigate the role of cold air advection in the southern Cascadia extreme min-182

imum temperature bias we start by identifying the associated synoptic weather patterns183

in the models and reanalysis. Fig. 3 shows a composite of mean sea level pressure (MSLP)184

anomalies relative to DJF average (1981-2010) during days with minimum temperature185

below the 1st percentile. Results for both ERA5 and the CMIP6 multi-model mean show186

large areas of positive MSLP anomalies over Alaska and the Gulf of Alaska, which is con-187

sistent with the Northeast Pacific atmospheric blocking pattern we would expect dur-188

ing the coldest temperatures over much of North America. The CMIP6 multi-model mean189

shows anomaly magnitudes less than ERA5, but, upon further investigation, this is a re-190

sult of the CMIP6 models simulating slightly different positions of the block and not a191

result of a deficiency in simulated anomaly magnitude. The similarities between the anomaly192

patterns in Fig. 3 indicates that the CMIP6 models capture the synoptic MSLP anomaly193

pattern associated with the coldest minimum temperatures in the southern Cascadia re-194

gion. The similar patterns suggest that the associated synoptic-scale conditions are sim-195

ulated accurately by the CMIP6 models. Thus, we infer that the primary cause of the196
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bias is not the synoptic-scale weather patterns but how they manifest conditions at the197

surface.198

To further investigate whether synoptic patterns during the coldest days in the south-199

ern Cascadia region in ERA5 and the CMIP6 models are similar, we compare MSLP anoma-200

lies over Alaska against minimum daily temperatures in the southern Cascadia region201

(Fig. 4). MSLP anomalies are averaged over an area encompassing the largest anoma-202

lies, as outlined in Fig. 3. The range of pressure anomalies in CMIP6 models is much203

more consistent with the range in ERA5, though the largest anomalies are slightly higher204

than in ERA5 and the mode of the distribution is lower. In contrast, the minimum tem-205

perature anomalies have very different distributions. In particular, the lowest temper-206

atures in the CMIP6 models are up to 10°C colder than in ERA5, primarily occurring207

when the maximum SLP anomalies over Alaska are large. Taken together, the similar-208

ities in SLP magnitudes (Fig. 4) and patterns (Fig. 3) in the CMIP6 models and ERA5,209

along with the differences in minimum temperature anomalies, suggest that incorrect sim-210

ulation of dynamics is not the primary cause of the minimum temperature bias. If in-211

correct simulation of underlying dynamics of cold minimum temperatures were the cause212

of this bias, we would expect to see considerable differences in the SLP anomaly pattern213

or magnitude, or both.214

Since the minimum temperature biases are large (some exceeding -10°C, Fig. 2)215

despite no major biases in dynamics, we have hypothesized that how temperature ad-216

vection manifests at the surface plays the main role in driving the bias. A previous eval-217

uation of land surface energy fluxes in the CMIP6 models do not identify the southern218

Cascadia region as having significant bias in sensible, latent, or ground heat flux Li et219

al. (2021), again suggesting that cold air advection is the primary explanation for the220

extreme minimum temperature bias. To examine this more closely, we estimate the hourly221

contributions of the diabatic and adiabatic terms of the temperature tendency formula222

Holton & Hakim (2013) to identify relative contributions to temperature change lead-223

ing up to the 10 coldest minimum temperature days (SI 1). Of the select GCMs, all five224

models (BCC-CSM2-MR, BCC-ESM1, CanESM5, CMCC-ESM1, NorCPM1) analyzed225

indicate that the primary driver of cold temperatures is cold air advection. Further, some226

of the GCMs indicate minimum values of temperature advection upwards of -2°C/hr, which227

is considerably more than shown in ERA5. Taken together, the synoptic MSLP patterns228

(Fig. 3), the distribution of pressure anomalies versus minimum temperatures (Fig. 4),229

and the contribution of temperature advection to temperature change in the southern230

Cascadia region (SI 1), all of the evidence suggests that anomalous cold air advection231

is the primary cause of the extreme minimum temperature bias in CMIP6 models. Thus,232

we shift our focus to potential contributor (2), bias in terrain simulation in the CMIP6233

models.234

Topographic barriers play a large role in the spatial distribution of cold temper-235

atures during cold air outbreaks. This means that some bias in extreme minimum tem-236

peratures is likely associated with the coarse resolution of CMIP6 models and the result-237

ing inadequacy in resolving the elevation profile of the southern Cascadia region. Fig.238

5 shows the terrain elevation for western North America for ERA5 and CMIP6. Sim-239

ilar to the results from (Mahony et al., 2021), the terrain in the CMIP6 models is much240

smoother and generally lower in elevation than the terrain in ERA5 (Fig. 5b), especially241

in Western Washington and the Rockies just northeast of Vancouver Island. The Cas-242

cade Range, for example, is essentially missing in the models, while the Rockies are more243

broad, with a crest that is several hundred meters below the maximum in ERA5.244

An elevation cross section through the southern Cascadia region extending into cen-245

tral Canada (Fig. 6; black shading) illustrates the stark difference in the elevation pro-246

files for the CMIP6 models (multi-model mean) and ERA5. The Cascade and Olympic247

mountain ranges are absent from the CMIP6 elevation profile, and, as shown in Fig. 5,248

the apex of the Rocky mountains is considerably lower than in ERA5. When overlaid249
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with the average potential temperature during the coldest percentile in minimum tem-250

perature days (Fig. 6; black lines) we see that the west-east potential temperature gra-251

dient is relatively small, whereas in ERA5 the gradient between the west and east side252

of the Cascades and Rocky mountains is large. Furthermore, if we neglect diabatic ef-253

fects then potential temperature is conserved and can be considered a tracer for air masses254

as they are advected. Taking this angle, we focus on the 260K potential temperature con-255

tour in Fig. 6. In ERA5, this contour is confined to the east of the Rockies and Cascades,256

while in the CMIP6 models this contour extends all the way to the coast. This suggests257

that the cold air mass with potential temperature of 260K, when advected into the re-258

gion, was able to advect over the terrain to the coast of the southern Cascadia region259

in the CMIP6 models, whereas in ERA5 the cold air was unable to be advected to the260

coast.261

4 Discussion & Conclusions262

This study identified bias in extreme minimum temperatures in the southern Cas-263

cadia region of North America in the CMIP6 models, which we showed were a likely re-264

sult of unresolved terrain features. Our results suggest the bias is unique to the region265

given the high level of agreement and magnitude of the bias in 1st percentile wintertime266

daily minimum temperatures (Fig. 1). We also showed that the median bias is not con-267

sistent with the bias in extreme minimum temperatures for all models, indicating that268

the bias is due to a misrepresentation of the mechanisms affecting the coldest events in269

this region.270

Prior research on synoptic weather patterns has shown that cold temperatures across271

North America are associated with atmospheric blocking patterns in the Northeast Pa-272

cific. We confirm that both the ERA5 and CMIP6 models show synoptic MSLP patterns273

that are consistent with this finding (Fig. 3). Additional analysis shows that the MSLP274

distributions for CMIP6 are similar to those for ERA5 over Alaska and the northeast275

Pacific (Fig. 4). While the magnitudes of the MSLP anomalies in Alaska are similar in276

ERA5 and the CMIP6 models, the coldest minimum temperatures in the southern Cas-277

cadia region are considerably colder in CMIP6 models relative to ERA5. The highly lo-278

calized nature of the bias, the demonstrated association with atmospheric blocking in279

the Northeast Pacific (Figs. 3, 4), and the relative absence of diabatic influences on tem-280

peratures during these events all point to errors in simulating cold air advection across281

the Cascade and Rocky mountain ranges. This is consistent with previous studies show-282

ing the importance of terrain in influencing how cold air is advected into North Amer-283

ica during atmospheric blocking events in the Northeast Pacific.284

The CMIP6 multi-model mean orography showed that models under-resolve the285

Cascade and Rocky mountains. A horizontal cross section across this domain confirmed286

that GCM topography differs substantially from actual elevations. Potential tempera-287

ture contours composited over the coldest minimum temperature days showed the cold-288

est air being confined to the east of the Rockies in ERA5. The same cross section in CMIP6289

shows that this cold air mass is much less restricted due to inadequate representation290

of the terrain barriers, resulting in a significantly diminished temperature contrast be-291

tween the maritime vs continental sides of each range. Taken together, the results again292

suggest that adequate resolution of the terrain is needed to accurately simulate extreme293

minimum temperatures in the southern Cascadia region of North America.294

There are several limitations to this study. The number of models used in this study295

was limited to 13, with only 3 having the hourly temperature and wind data needed to296

estimate temperature advection during extreme minimum temperature events. In order297

to make a generalized statement about all CMIP6 models, and confidently rule out po-298

tential contributions from diabatic heating, more CMIP6 results would need to be an-299

alyzed.300
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Further, this study did not consider the role of ocean-atmosphere interactions on301

cold minimum temperatures, which are likely to exhibit a controlling factor on temper-302

ature variations in the southern Cascadia region. While latent and sensible heat fluxes303

contribute to the diabatic term of the temperature tendency formula (SI XXX), the lack304

of hourly data for the CMIP6 models limits our analysis of how this contributes to ex-305

treme minimum temperatures in the southern Cascadia region. It is likely, however, that306

given the coarse resolution of the CMIP6 models, heat fluxes from complex bays such307

as Puget Sound are under-represented. Indeed, Fig. 6 appears to show warmer poten-308

tial temperatures west of the Cascade mountain range in ERA5 compared to the CMIP6309

models, which may be evidence of Puget Sound’s moderating influence. Although the310

evidence suggests that cold air advection is a primary driver of extreme wintertime min-311

imum temperature bias in the CMIP6 models, a secondary explanation could be related312

to CMIP6 model representation of marine air influence in the southern Cascadia region.313

This may be one reason the cold biases are greater west of the Cascades than they are314

between the Cascades and the Rockies. Future work could use GCM surface fluxes to315

estimate the relative contributions of diabatic heating relative to cold advection.316

Resources for assessing future climate change are largely limited to the climate change317

simulations produced for the Coupled Model Intercomparison Projects. In order to plan318

for climate change impacts it is particularly important to identify and address GCM bi-319

ases. Strategies to address the extreme minimum temperature bias could include finer320

resolution GCM simulations, dynamical downscaling over a domain that encompasses321

all relevant topography, and analyses of historical events to understand the relationships322

between large-scale conditions and extreme minimum temperatures in the southern Cas-323

cadia region. To better elucidate the causes of this bias, future GCM simulations should324

include the hourly fields needed to estimate the temperature tendency: At a minimum,325

hourly wind and temperature data, and ideally also latent, sensible, and radiative fluxes326

at the surface. Finer spatial scales may eliminate the issue of the cold minimum tem-327

perature bias altogether if it captures terrain features in Cascadia sufficiently.328

Alternatively, statistically or dynamically downscaling could be designed to bet-329

ter capture extreme minimum temperatures. In order to address the issue, downscaling330

approaches would need to be designed so as not to erroneously pass along biases from331

the input GCM data . For the minimum temperature bias documented here, the bias332

for southern Cascadia was originally discovered in dynamically downscaled CMIP5 data.333

In the case of these simulations, the domain of the downscaling covered the US Pacific334

Northwest, but did not extend far enough north to capture the topography of the Cana-335

dian Cascades and Rockies, and therefore could not correct for the anomalous cold ad-336

vection through this topography in the GCMs.337

In the meantime, communities needing to plan for changes in extreme cold condi-338

tions are limited by a lack of suitable GCM or downscaled projections. In areas where339

the extreme minimum temperature bias is present, stakeholders should consider alter-340

native approaches to assessing impacts. Alternatives could include sensitivity testing in341

order to identify thresholds for impact, assuming that extreme minimum temperatures342

warm at the same rate as the annual or seasonal average temperature, or assessing trends343

from observations. While GCMs remain the primary information resource for prepar-344

ing for climate change, these alternatives can provide decision-makers with important345

information to help them prepare for the impacts of climate change.346

5 Open Research347

CMIP6 data used in this study was accessed using the Pangeo cloud catalog ( https://pangeo.io)348

(Abernathey et al., 2017), and ERA5 data is available for download from the Coperni-349

cus climate data store (https://cds.climate.copernicus.eu) (Hersbach et al., 2020). Fig-350

ures in this study were created with Matplotlib version 3.4.3, available at https://matplotlib.org/.351
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Figure 1. (column a) multi-model mean bias in 1st percentile daily minimum winter (DJF)

temperature (1981-2010) for 13 CMIP6 models relative to ERA5, and (column b) model agree-

ment on positive sign of bias. The black boxes denote the area of interest for this study (46.5°N-

51.5°N,125°W-116°W)
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Figure 2. (a) Probability density functions (PDFs) of DJF daily minimum temperatures (°C)
averaged over the domain 46.5N - 51.5N and 125W - 116W for 13 CMIP6 models (gray) and

ERA5 (red) from 1981-2010, and (b) individual CMIP6 model bias in the 1st (purple) and 50th

(blue) percentile daily minimum temperature (°C) over the same domain and time period as (a).
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Figure 3. (a) Composite mean sea level pressure anomalies (MSLP; hPa) during days when

the average minimum temperature in the PNW region is below the 1st percentile for ERA5, and

(b) multi-model mean composite MSLP anomalies during days when the average minimum tem-

perature in the PNW region is below the 1st percentile for the CMIP6 models . Black stippling

indicates statistical significance at the 95% confidence level using a bootstrapping method with

1000 iterations. Black box indicates the region of interest for investigating MSLP anomalies is

the next analysis.
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Figure 4. Density plot of daily minimum temperature averaged over the southern Cascadia

region ((46.5°N-51.5°N,125°W-116°W)) vs. the minimum daily MSLP anomalies over the Gulf

of Alaska (48°N-67°N,190°W-230°W) for the days below the 1st percentile minimum daily tem-

perature in the southern cascadia region. ERA5 data is in red and the 13 CMIP6 models are in

blue. External probability functions are shown for daily minimum temperatures (x-axis; top) and

minimum dails MSLP anomalies (y-axis; top).
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Figure 5. Elevation of grid cells in (a) ERA5 and (b) CMIP6 multi-model mean. CMIP6

grids were interpolated to the ERA5 grid (0.25° latitude x 0.25° longitude) using bilinear inter-

polation. Area outlined by the black box in each subplot (46.5°N-51.5°N,125°W-116°W) is the

southern Cascadia region, or the selected high-bias-high-agreement area.
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Figure 6. Vertical cross-section (red line) of mean potential temperature (contours) for days

below the 1st percentile in spatially-averaged DJF minimum temperature for the area bounded

by 46.5°N-51.5°N and 125°W-116°W (black box) for (a) ERA5 and (b) CMIP6 multi-model mean.
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