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Abstract

The observed retreat and anticipated further decline in Arctic sea ice hold strong climate, environmental, and societal im-

plications. In predicting climate evolution, ensembles of coupled climate models have demonstrated appreciable accuracy in

simulating sea ice area and volume trends throughout the historical period. However, individual climate models still show

significant differences in simulating the sea ice thickness distribution. To better understand individual model performance in

sea ice simulation, nine climate models previously identified to provide plausible sea ice decline and global temperature change

were evaluated in comparison with Arctic satellite and reanalysis derived sea ice thickness data, sea ice extent records, and

atmospheric reanalysis data of surface wind and air temperature. Assessment found that the simulated spatial distribution of

historical sea ice thickness varies greatly between models and that several key limitations persist among models. Primarily,

most models do not capture the thickest regimes of multi-year ice present in the Wandel and Lincoln Seas; those that do, often

possess erroneous positive bias in other regions such as the Laptev Sea or along the Eurasian Arctic Shelf. From analysis, no

model could be identified as performing best overall in simulating historic sea ice, as model bias varies regionally and seasonally.

Nonetheless, the bias maps and statistical measures derived from this analysis should enhance understanding of the limitations

of each climate model. This research is motivated in-part to inform future usage of coupled climate model projection for regional

modeling efforts and enhance climate change preparedness and resilience in the Arctic.
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Abstract 18 

The observed retreat and anticipated further decline in Arctic sea ice holds strong climate, 19 
environmental, and societal implications. In predicting climate evolution, ensembles of coupled 20 
climate models have demonstrated appreciable accuracy in simulating sea ice area and volume 21 
trends throughout the historical period. However, individual climate models still show significant 22 
differences in simulating the sea ice thickness distribution. To better understand individual 23 
model performance in sea ice simulation, nine climate models previously identified to provide 24 
plausible sea ice decline and global temperature change were evaluated in comparison with 25 
Arctic satellite and reanalysis derived sea ice thickness data, sea ice extent records, and 26 
atmospheric reanalysis data of surface wind and air temperature. Assessment found that the 27 
simulated spatial distribution of historical sea ice thickness varies greatly between models and 28 
that several key limitations persist among models. Primarily, most models do not capture the 29 
thickest regimes of multi-year ice present in the Wandel and Lincoln Seas; those that do, often 30 
possess erroneous positive bias in other regions such as the Laptev Sea or along the Eurasian 31 
Arctic Shelf.  From analysis, no model could be identified as performing best overall in 32 
simulating historic sea ice, as model bias varies regionally and seasonally. Nonetheless, the bias 33 
maps and statistical measures derived from this analysis should enhance understanding of the 34 
limitations of each climate model. This research is motivated in-part to inform future usage of 35 
coupled climate model projection for regional modeling efforts and enhance climate change 36 
preparedness and resilience in the Arctic. 37 

Plain Language Summary 38 

The expected future decline in Arctic sea ice will have far-reaching global impacts. In simulating 39 
sea ice, many global climate models have shown skill in predicting the seasonal cycle and area of 40 
sea ice, yet struggle in simulating sea ice thickness. This study evaluates the ability of nine 41 
climate models to simulate sea ice thickness in different Arctic regions and months. This is 42 
accomplished by comparing historical climate model simulations to reference data such as 43 
satellite observations. Additionally, model simulations of sea ice extent and climate variables 44 
related to sea ice dynamics (surface wind speed and air temperature) are assessed to provide 45 
insight into related and driving variables. From this process, we found that while sea ice 46 
thickness varies substantially between models, there are some common areas that models 47 
struggle to simulate. Namely, sea ice thickness is often too thin in the Wandel and Lincoln Seas, 48 
and too thick in the Laptev Sea or along the Eurasian Arctic Shelf.  No single model is identified 49 
as best due to changing performance depending on season and region. However, this analysis 50 
should give insight of model performance for those interested in utilizing climate model 51 
simulations for predicting climate change in the Arctic. 52 

 53 

1 Introduction 54 

Arctic sea ice has declined dramatically over the previous century, foremost 55 
demonstrated by a persistent negative trend in sea ice area from 1979 to the present (Doscher et 56 
al., 2014; Laxon et al., 2013; Julienne Stroeve & Notz, 2018). Thinning of sea ice regimes has 57 
also been confirmed, as the prevalence of perennial multi-year ice has diminished, being 58 
replaced by seasonal first-year ice (Kwok, 2018; Maslanik et al., 2007; Julienne Stroeve & Notz, 59 
2018). This first-year sea ice is: i) thinner than perennial sea ice (Tschudi et al., 2016), ii) more 60 
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dynamic (Kwok et al., 2013; Olason & Notz, 2014), and iii) further responsive to atmospheric 61 
and oceanic forcing (Kwok, 2018; Overland, 2020). Sea ice plays a critical role in Arctic 62 
atmosphere and ocean processes; modifying the thermal energy budget through high surface 63 
albedo and suppressing air-sea heat, moisture, and momentum fluxes (Mercè Casas-Prat & 64 
Wang, 2020; Goosse et al., 2018; Haine et al., 2015; Karlsson & Svensson, 2013; Mioduszewski 65 
et al., 2018; Julienne Stroeve & Notz, 2018; Thomson & Rogers, 2014; Timmermans & 66 
Marshall, 2020). Beyond geophysical effects, reduced Arctic sea ice cover is anticipated to have 67 
considerable societal effects with potential increases in Arctic maritime activity (Aksenov et al., 68 
2017; Chen et al., 2020; Sibul & Jin, 2021), growing regional development (Harsem et al., 2015), 69 
and greater risk of coastal hazards to impact Arctic communities (Barnhart et al., 2014; 70 
Mioduszewski et al., 2018; Williams & Erikson, 2021). As the reality of an “ice-free” summer 71 
(sea ice area less than 1×106 km2) is predicted to occur before 2050 (Chen et al., 2020; SIMIP 72 
Community, 2020; Wei et al., 2020), accurate forecasting of sea ice is crucial to facilitate 73 
understanding and preparedness for future impacts. 74 

Climate models participating in the Coupled Model Intercomparison Project’s sixth phase 75 
(CMIP6) have shown marked improvement in simulating sea ice cover in comparison to prior 76 
phases. The multimodel mean of sea ice extent (SIE) generally captures the seasonal amplitude 77 
between March peak SIE and the September low. Yet, most models underestimate the observed 78 
downward trend of sea ice extent, and there is a wide intermodel spread during the summer 79 
months when the greatest negative trend occurs (Long et al., 2021; Shen et al., 2021; Shu et al., 80 
2020; SIMIP Community, 2020). Even models shown to best follow the observed seasonal sea 81 
ice area and volume still experience numerous challenges in simulating the spatial distribution of 82 
sea ice thickness (Davy & Outten, 2020; Watts et al., 2021).   83 

This research seeks to assess CMIP6 climate models’ skill in simulating historic sea ice 84 
thickness, extent, and related surface climate variables in order to identify potential candidates 85 
for future dynamic downscaling. Intensive effort has been directed towards analyzing CMIP6 86 
models’ sea ice cover simulation in the interest of improving climate projection (Shen et al., 87 
2021; Shu et al., 2020; SIMIP Community, 2020; Watts et al., 2021). Accurate forecasts of sea 88 
ice are crucial to Arctic stakeholders impacted by changing sea ice conditions and dependent 89 
Arctic research efforts such as wave projections (M. Casas-Prat et al., 2018) or arctic maritime 90 
accessibility studies (Chen et al., 2020; Melia et al., 2016). By enhancing understanding of 91 
model simulation of sea ice and related surface climate variables (wind speed and surface air 92 
temperature), this research is intended to provide a resource for future Arctic research reliant on 93 
the accuracy of climate model projections. It should be recognized that accurate simulation of 94 
historic conditions does not guarantee future projection accuracy. However, the inverse, 95 
consistent bias in simulating historical conditions does imply model shortcomings, and thus the 96 
process of model selection using historical performance criteria is necessary and has been shown 97 
to significantly influence the trajectory of future projections (Docquier & Koenigk, 2021; Knutti 98 
et al., 2017). 99 

To assess model simulation, historic Arctic sea ice and related surface climate variables 100 
were evaluated from the beginning of the satellite era to the end of the CMIP6 historical 101 
experiment (1979-2014). The sea ice variables assessed included sea ice thickness (SIT) and sea 102 
ice extent (SIE), and the surface climate variables assessed  included surface wind speed (SWS) 103 
and surface air temperature (SAT). SWS and SAT were selected for analysis because they are 104 
important sea ice drivers and have Pan-Arctic availability and reasonable accuracy from 105 
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atmospheric reanalysis products.  These variables were compared monthly with remote sensing 106 
derived data, reanalysis sea ice products, and atmospheric reanalysis products. SIT simulation 107 
was evaluated in comparison to both the Pan-Arctic Ice Ocean Modeling and Assimilation 108 
System (PIOMAS) sea ice thickness reanalysis and merged CryoSat-2-SMOS sea ice thickness 109 
measurements 2011- 2014. The National Snow and Ice Data Center (NSIDC) Sea Ice Index (SII) 110 
was used to assess model simulation of average monthly SIE and trends. Finally, ERA5 111 
atmospheric reanalysis was used in assessing model simulation of both SAT and SWS variables.  112 
Supplementing the Pan-Arctic analysis, model simulation of SIT within the Canadian 113 
Archipelago and the nearby Baffin Bay was analyzed. 114 

2 Data and Methods 115 

2.1 Model Selection 116 

Models selected for evaluation were identified from a previous assessment that identified 117 
models which forecast a realistic amount of sea ice loss while concurrently simulating a plausible 118 
global mean temperature change (SIMIP Community, 2020).  The nominal horizontal resolution 119 
of the analyzed climate models differs substantially. Model resolution has been found to 120 
influence the accuracy of models, with higher resolution models tending to exhibit better 121 
simulation of oceanic heat transfer (Docquier et al., 2019). The CMIP6 historical experiment 122 
provides historical simulation data in varying temporal resolution; in this research, monthly 123 
averages of simulated variables were assessed. Multiple simulation realizations are available for 124 
all but two of the models evaluated as shown in Table 1. These two models: CNRM-CM6-1-HR 125 
and GFDL-ESM4, have only one available realization member, and thus robust conclusions 126 
pertaining to either model’s physics are indeterminate. However, this does not negate the 127 
performance of the individual realization. 128 

 129 

Table 1. Climate models evaluated within the study, individual ocean grid resolution, 130 
affiliated institution, and the number of ensemble members available/used.  131 

Climate Model Sea Ice Grid Resolution Institution ID Ensemble Members 
ACCESS-CM2 360 × 300 CSIRO-ARCCSS 5 

CESM2-WACCM 384 × 324 NCAR 3 
CNRM-CM6-1-HR 1442 × 1050 CNRM-CERFACS 1 

GFDL-ESM4 720 × 576 NOAA-GFDL 1 
GISS-E2-2-G 90 × 144 NASA-GISS 10 

MPI-ESM-1-2-HAM 256 × 220 MPI-M 3 
 MPI-ESM-1-2-HR 404 × 802 HAMMOZ-Consortium 10 

MRI-ESM2-0 363 × 360 MRI 10 
NorESM2-MM 360 × 384 NCC 3 

2.2 Sea Ice Evaluation 132 

SIT accuracy is assessed through comparison with the Alfred Wegner Institute’s 133 
combined CryoSat-SMOS (CS2SMOS) Merged Sea Ice Thickness data product (Ricker et al., 134 
2017) and PIOMAS sea ice reanalysis dataset. The merged satellite data product utilizes both 135 
CryoSat-2 and SMOS derived SIT measurements. The combined analysis SIT product is 136 
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enhanced to measure a greater range of sea ice thickness regimes – most notably thin ice from 137 
SMOS (Kwok & Cunningham, 2015; X. Wang et al., 2016).  The CS2SMOS SIT product 138 
provides monthly coverage from October through April. However, full monthly data for October 139 
and April is incomplete, with the dataset beginning in late October and terminating in early 140 
April; this may potentially introduce a positive and negative bias for both monthly means 141 
respectively. The overlap between complete CS2SMOS data and the CMIP6 historical 142 
experiment begins in 2011 and ends in 2014. Given the brevity in this period of assessment, and 143 
the inclusion of 2012 – the anomaly lowest summer SIE on record - an additional basis of 144 
assessment was needed to evaluate the mean distribution of sea ice. For this purpose, the Pan-145 
Arctic Ice Ocean Modeling and Assimilation System (PIOMAS) sea ice thickness reanalysis is 146 
used for SIT comparison monthly 1979 – 2014 (A. Schweiger et al., 2011; Zhang & Rothrock, 147 
2003). PIOMAS provides monthly full-year coverage and allows for the annual sea ice minimum 148 
occurring in September to be analyzed.  149 

The process of model SIT comparison is described as follows: i) the average was taken 150 
across ensemble members, ii) monthly sea ice grids were linearly interpolated onto either the 151 
CS2SMOS or PIOMAS grid, iii) months were averaged across the entire analysis period 152 
establishing a month SIT mean, and iv) model and reference grids were subtracted to create error 153 
maps and derive statistical measures. Grid cells where both model and reference agree on open 154 
water conditions were excluded from the derivation of statistical measures to reduce the effect of 155 
large open water areas during summer months. Following Pan-Arctic analysis, regional analysis 156 
for the Canadian Archipelago was performed, and summary statistics were derived for the area. 157 
Regional analysis limits analysis to the coordinates between latitudes 60°N to 80°N and 158 
longitudes 50°W to 130°W which effectively encompasses the Canadian Archipelago and Baffin 159 
Bay.  160 

Evaluation of climate model SIE is assessed with monthly SIE values reported from the 161 
NSIDC’s Sea Ice Index (Meier et al., 2017; Peng et al., 2013). Arctic SIE is defined as the total 162 
Arctic area possessing a minimum of 15% sea ice concentration (SIC). Each model’s native grid 163 
was used to derive SIE, then the average of all realizations was taken to create the ensemble 164 
mean SIE time series. These values are then compared with the NSIDC Sea Ice Index value to 165 
determine bias. 166 

2.3 Surface Climate Evaluation 167 

The European Center for Medium Range Forecasts’ ERA5 atmospheric reanalysis 168 
provides reference for SAT and SWS simulation analysis. Both surface air temperature and 169 
surface wind speed were analyzed in comparison to ERA5 historical atmospheric climate 170 
reanalysis data product. In a study of atmospheric reanalysis products within the Arctic, ERA5 or 171 
ERA-interim (predecessor to ERA5) simulated SAT and SWS were found to have high 172 
correlation and low error in comparison to the observed Arctic surface climate, thus qualifying 173 
the reanalysis for use in comparison (Demchev et al., 2020; Graham et al., 2019; Lindsay et al., 174 
2014). However, it should be noted that ERA5 possesses a warm bias under extremely cold 175 
winter conditions (Davy & Outten, 2020; Demchev et al., 2020; Graham et al., 2019; C. Wang et 176 
al., 2019). 177 
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3 Results 178 

3.1 Sea Ice Thickness 179 

The European Center for Medium Range Forecasts’ ERA5 atmospheric reanalysis 180 
provides reference for SAT and SWS simulation analysis. Both surface air temperature and 181 
surface wind speed were analyzed in comparison to ERA5 historical atmospheric climate 182 
reanalysis data product. In a study of atmospheric reanalysis products within the Arctic, ERA5 or 183 
ERA-interim (predecessor to ERA5) simulated SAT and SWS were found to have high 184 
correlation and low error in comparison to the observed Arctic surface climate, thus qualifying 185 
the reanalysis for use in comparison (Demchev et al., 2020; Graham et al., 2019; Lindsay et al., 186 
2014). However, it should be noted that ERA5 possesses a warm bias under extremely cold 187 
winter conditions (Davy & Outten, 2020; Demchev et al., 2020; Graham et al., 2019; C. Wang et 188 
al., 2019). 189 

Comparison of model-simulated monthly SIT and averaged CS2SMOS observations for 190 
October and March over the four-year period 2011-2014 yields bias plots for October (Fig. 1a) 191 
and March (Fig. 1b). The summary statistics for both months are presented in Table 2 along with 192 
the overall statistics averaged over October through April. CS2SMOS data is unavailable for the 193 
annual sea ice minimum month (September) and does not start until the latter half of the month 194 
of October. This potentially introduces a positive SIT bias into the month’s average used for 195 
comparison.  Despite this, over half the models exhibit a positive bias for October, ranging from 196 
16cm to over 1m. For most models, this stems from an erroneous region of thick sea ice in 197 
Eastern Siberian and Chukchi Seas, most pronounced in the ACCESS-CM2, CESM2-WACCM, 198 
MPI-ESM-1-2-HAM, and NorESM2-MM models. This phenomenon has been previously 199 
observed as common to the majority of CMIP5 models analyzed (J. Stroeve et al., 2014), and it 200 
is notable that several models do not possess this feature. The three models with the highest 201 
mean positive bias for October are CESM2-WACCM, MPI-ESM-1-2-HAM, and NorESM2-MM 202 
having mean bias values of 0.31m, 0.44m, 1.06m respectively. CESM2-WACCM incorrectly 203 
calculates a region of very thick ice (>2m) at the outer edge of the sea ice areas for October. It 204 
also simulates extremely thick ice (>6m) at several locations within the Canadian Archipelago. 205 
MPI-ESM-1-2-HAM shows positive bias (>1m) near the Laptev Sea and NorESM2-MM model 206 
has significant positive bias throughout the Arctic.  207 

Previous climate model evaluations have shown models typically underestimate 208 
especially thick sea ice regimes. This holds true with the majority of models evaluated which 209 
undercalculated the thick multi-year ice observed at the Wandel Sea, Lincoln Sea, and north of 210 
the Canadian Archipelago. CESM2-WACCM is able to simulate part of the sea ice regime 211 
occurring along the northern coast of Greenland; yet it underestimates the continuation of the 212 
field towards the pole. MPI-ESM-1-2-HAM shows only slight underestimation (≈ -0.5m) of the 213 
thickest sea ice region during October, with bias growing into March. The only model to 214 
overrepresent ice in this region is the NorESM2-MM model, which shows significant positive 215 
bias throughout the Arctic. Recent research has shown the multi-year ice dominant in this region 216 
is more vulnerable to climate change than previously thought (A. J. Schweiger et al., 2021), and 217 
thus may be more responsive to climatic forcing (Overland, 2020).  In March, nearly all models 218 
show improved spatial correlation in comparison to October – as models typically struggle to 219 
capture the annual sea ice minimum. Conversely, GISS-E2-1-G spatial correlation drops 220 
significantly from 0.72 to 0.51 from October to March; this is primarily attributed to significant 221 
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overestimation of March sea ice area far into southern Bering Sea and extending into the Pacific 222 
Ocean. All models show positive bias of varying magnitude and extent in the Laptev Sea and 223 
commonly extending into the Eastern Siberian Sea. Models maintaining a correlation of r ≥ 0.8 224 
overall are CNRM-CM6-1-HR, GFDL-ESM4, MPI-ESM-1-2-HAM, and MPI-ESM-1-2-HR. Of 225 
these, MPI-ESM-1-2-HR shows the lowest mean bias and the highest correlation coefficient. 226 

Table 2. Statistics of error between each model’s ensemble average and the reference 227 
CS2SMOS Analysis SIT for the individual months of October and March; and an average 228 
of winter months (October through April) 2011 to 2014.  RMSE and Mean Bias have a unit 229 
of meters. 230 

MODEL ACCESS-
CM2 

CESM2-
WACCM 

CNRM-
CM6-1-HR 

GFDL-
ESM4 

GISS-
E2-1-G 

MPI-ESM-
1-2-HAM 

MPI-ESM-
1-2-HR 

MRI-
ESM2-0 

NorESM
2-MM 

OCTOBER          
RMSE 0.62 0.93 0.68 0.52 0.35 0.72 0.46 0.53 1.41 
MEAN BIAS 0.27 0.31 -0.34 -0.19 0.17 0.44 -0.09 -0.10 1.06 
R 0.66 0.28 0.77 0.80 0.72 0.72 0.85 0.74 0.65 
MARCH         
RMSE 0.68 0.77 0.57 0.57 0.90 0.66 0.55 0.58 1.16 
MEAN BIAS 0.34 0.22 -0.13 -0.09 0.66 0.29 0.08 0.08 0.80 
R 0.79 0.67 0.83 0.81 0.51 0.83 0.82 0.79 0.76 
AVERAGE (OCT – APR)         
RMSE 0.64 0.76 0.58 0.53 0.72 0.64 0.51 0.54 1.18 
MEAN BIAS 0.28 0.15 -0.20 -0.12 0.48 0.30 0.01 -0.03 0.81 
R 0.77 0.61 0.80 0.80 0.54 0.81 0.82 0.78 0.74 

 231 
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Figure 1. Sea ice thickness bias (meters) between model ensemble mean and CS2SMOS for 233 
October (a) and March (b), over the period 2011-2014. 234 

Supplementing the comparison via CS2SMOS data, climate models were evaluated using 235 
the extended PIOMAS sea ice reanalysis 1979 – 2014. Differing in this step of assessment – 236 
September monthly averages are compared rather than October used for CS2SMOS. Almost all 237 
models show increased agreement with PIOMAS; suspected drivers of this result include the 238 
lengthened time series, and the fact that PIOMAS itself exhibits bias in several regions common 239 
to climate models including the aforementioned positive bias in the Eastern Siberian and 240 
Chukchi seas (J. Stroeve et al., 2014). Three models (ACCESS-CM2, CESM2-WACCM, MPI-241 
ESM-1-2-HAM) simulate the thick sea ice north of Greenland with negative bias less than >1m 242 
in both March and September; all other models underpredict SIT in this region with exception of 243 
NorESM2-MM possessing a Pan-Arctic positive bias. Similar to the CS2SMOS comparison for 244 
October, CESM2-WACCM again has erroneous high SIT at the outer edge of September Sea ice 245 
area which drives low correlation and high bias. While MPI-ESM-1-2-HR performed best in 246 
comparison to CS2SMOS overall, MPI-ESM-1-2-HAM and GISS-E2-1-G perform markedly 247 
better in comparisons to PIOMAS. The improved correlation of GISS-E2-1-G is notable, as this 248 
model exhibited the lowest correlation with CS2SMOS data. Further inspection into this result 249 
shows that this model exhibits negative bias in comparison to PIOMAS and large positive bias in 250 
comparison to the CS2SMOS data; suggesting that the model may not capture the thinning of sea 251 
ice regimes in later years. 252 
 253 

Table 3. Statistics of error between each model’s ensemble average and the reference 254 
PIOMAS reanalysis SIT for the individual months of September and March; and an 255 
average of all months 1979 through 2014.  RMSE and Mean Bias have a unit of meters. 256 

MODEL ACCESS-
CM2 

CESM2-
WACCM 

CNRM-
CM6-1-HR 

GFDL-
ESM4 

GISS-
E2-1-G 

MPI-ESM-
1-2-HAM 

MPI-ESM-
1-2-HR 

MRI-
ESM2-0 

NorESM
2-MM 

SEPTEMBER         
RMSE 1.04 1.57 1.02 0.90 0.68 0.66 0.64 0.70 2.01 

MEAN BIAS 0.68 1.05 -0.68 -0.59 -0.30 0.31 -0.30 0.07 1.65 
R 0.72 0.45 0.82 0.75 0.87 0.84 0.87 0.76 0.67 

MARCH         
RMSE 0.76 0.89 0.93 0.84 0.67 0.60 0.67 0.69 1.31 

MEAN BIAS 0.27 0.15 -0.60 -0.53 -0.23 0.01 -0.24 -0.42 0.77 
R 0.83 0.73 0.87 0.86 0.89 0.87 0.88 0.93 0.78 

ANNUAL         
RMSE 0.91 1.13 0.96 0.83 0.66 0.60 0.65 0.73 1.61 

MEAN BIAS 0.46 0.44 -0.63 -0.51 -0.23 0.12 -0.24 -0.21 1.11 
R 0.78 0.62 0.85 0.84 0.89 0.87 0.87 0.82 0.73 

 257 
 258 
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 Figure 2. Sea ice thickness bias (meters) between model ensemble mean and PIOMAS for 260 
October (a) and March (b), over the period 2011-2014. 261 

3.2 Canadian Archipeligo Sea Ice Thickness 262 

CMIP6 climate models have demonstrated positive biases for SIT within the Canadian 263 
Archipelago (Davy & Outten, 2020). Investigating the performance of individual models in this 264 
region is relevant to understanding future development and maritime travel along Arctic sea 265 
routes such as the Northwest Passage. Analysis we performed in comparison to PIOMAS and the 266 
localized summary statistics in this area defined by latitudes 60°N to 80°N and longitudes 50°W 267 
to 130°W can be seen in Table 3. CNRM-CM6-1-HR, GFDL-ESM4, GISS-E2-1-G, and MPI-268 
ESM-1-2-HAM models have correlation coefficient r ≥ 0.8, with MPI-ESM-1-2-HAM having 269 
the lowest RMSE (as it did for the pan-Arctic assessment). The majority of models show positive 270 
bias through most of the Canadian Archipelago, yet the three models with highest resolution 271 
(CNRM-CM6-1-HR, GFDL-ESM4, MPI-ESM-1-2-HR) trend toward negative bias for most of 272 
the region. These three models have similar SIT spatial distributions as seen in Figure 3 and 273 
possess strong negative bias in the Queen Elizabeth Islands in the northern part of the 274 
archipelago. GISS-E2-1-G trends toward overestimation of SIT throughout the region with 275 
several isolated locations of intense SIT along the western part of Baffin Bay. As the model with 276 
coarsest spatial resolution, GISS-E2-1-G’s high correlation coefficient,  comparable to that of the 277 
high-resolution models (CNRM-CM6-1-HR, MPI-ESM-1-2-HR) is unexpected – as model 278 
resolution would be expected to be a key factor in simulating sea ice dynamics within the region 279 
(Docquier et al., 2019). Within the northern part of the Canadian Archipelago, CESM2-WACCM 280 
simulates localized extreme SIT values exceeding 10 meters; this in part drives the poor spatial 281 
correlation and high error statistics for this model. By applying a SIT cutoff at 6m (such as that 282 
applied by Watts et al. (Watts et al., 2021)) the model performance is improved markedly, as the 283 
correlation coefficient rises to 0.52 while RMSE and mean bias fall to 1.3m and 44cm 284 
respectively. 285 

Table 4. Regional Summary statistics of error for the Canadian Archipelago and Baffin 286 
Bay between each climate model and the reference PIOMAS SIT compared September 287 
1979 - 2014.  Mean, and RMSE have a unit of meters. 288 

MODEL ACCESS-
CM2 

CESM2-
WACCM 

CNRM-
CM6-1-HR 

GFDL-
ESM4 

GISS-
E2-1-G 

MPI-ESM-
1-2-HAM 

MPI-ESM-
1-2-HR 

MRI-
ESM2-0 

NorESM
2-MM 

SEPTEMBER         
RMSE 0.93 1.70 0.90 0.98 0.72 0.62 0.74 0.69 1.81 

MEAN BIAS -0.01 0.53 -0.62 -0.75 -0.29 -0.07 -0.34 -0.09 0.95 
R 0.61 0.45 0.80 0.80 0.80 0.82 0.78 0.77 0.64 

 289 
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 290 

Figure 3. Sea ice thickness bias (meters) between model ensemble mean and PIOMAS for 291 
September within the Canadian Archipelago 1979 -2014. The delineation boundary is 292 
shown for selection of data used in deriving statistical measures. 293 

3.3 Sea Ice Extent 294 

Sea ice coverage within the Arctic is a critical parameter in governing Arctic surface 295 
exchange of heat, mass, and momentum and thus has been the topic of several CMIP6 and 296 
CMIP5 studies (Shen et al., 2021; Shu et al., 2020). The current generation of CMIP6 climate 297 
models typically over-represent SIE during both the seasonal maximum during March and the 298 
annual minimum during September (Shu et al., 2020). In this analysis, the majority of models 299 
overpredict SIE in summer months, yet are more evenly distributed during winter months as seen 300 
in Figure 4. One model, GISS-E2-1-G, shows considerably large positive bias throughout the 301 
year and peaking in March.  CESM2-WACCM, GFDL-ESM4, CNRM-CM6-1-HR and MPI-302 
ESM-1-2-HR have a mean absolute percentage error less than 4% annually and for September. 303 
These same models have the lowest September percent error among all models. GFDL-ESM4 304 
and MPI-ESM-1-2-HR are closest to the mean September SIE area, with 1% and -1% percent 305 
error respectively. The observed and simulated linear trends in SIE loss for the month of 306 
September 1979 - 2014 is shown in Figure 4b and corresponding statistics are provided in Table 307 
4. The best fit line to observed SII September SIE has a slope of -0.83 × 106 km2/decade. The 308 
models with the nearest trend are MPI-ESM-1-2-HR and MRI-ESM2-0 – both having a rate of -309 
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0.72 × 106 km2/decade. All models except for CESM2-WACCM underpredict the rate of sea ice 310 
decline for this period – a trait previously observed common to most climate models (SIMIP 311 
Community, 2020).    312 

 313 

 314 

Figure 4. Average monthly SIE bias for each climate model over the period 1979 – 2014. 315 
(b): Observed and simulated September SIE linear trend compared to the NSIDC record.  316 
GISS-E2-1-G is not shown in the plot (a), as error for this model exceeds +2.5 × 106  km2 317 
for all months. 318 
 319 

Table 5. Monthly percent error in comparison to the NSIDC observations and September 320 
SIE linear trend (106 km2/decade)  through the period 1979 – 2014. 321 

MODEL: ACCESS-
CM2 

CESM2-
WACCM 

CNRM-
CM6-1-HR 

GFDL-
ESM4 

GISS-
E2-1-G 

MPI-ESM-
1-2-HAM 

MPI-ESM-
1-2-HR 

MRI-
ESM2-0 

NorESM
2-MM 

March 
Percent Error 10% -4% 2% -4% 35% 3% 0.0% -4% -2% 

September 
Percent Error 10% 4% 8% 1% 49% 19% -1% -11% 32% 

Annual 
Percent Error 10% 1% 4% -2% 40% 4% -2% -5% 9% 

Mean Absolute 
% Error 9.8% 3.7% 3.9% 3.6% 39.7% 4.6% 3.3% 5.1% 9.9% 

September SIE 
Linear Trend 
(106km2/decade) 

-0.68 -1.03 -0.44 -0.57 -0.62 -0.57 -0.72 -0.72 -0.32 

3.4 Suface Air Temperature 322 

The summary statistics derived from SAT analysis are presented in Table 5. Here, 323 
correlation coefficients are omitted from the statistical measure, as all models maintain annual 324 
correlation ≥0.97 when compared with ERA5 data. Examining mean error, all models except for 325 
MRI-ESM2-0 have negative annual bias. As previously mentioned, this is most likely driven by 326 
a previously acknowledged positive bias in ERA5 Arctic temperatures during the coldest winter 327 
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months and further evidenced by the large negative mean bias values for the month of the March 328 
shown in Table 5. Considering the potential effect this bias may have during colder months, 329 
assessment should prioritize September SAT performance where the ERA5 negative bias is not 330 
present and climate model mean bias values are more evenly distributed. 331 
 332 

Table 6. Summary statistics for each climate model’s surface air temperature in Celsius 333 
(°C) compared with ERA5 monthly surface air temperature within the region from 1979 - 334 
2014. 335 

Model ACCESS-
CM2 

CESM2-
WACCM 

CNRM-
CM6-1-HR 

GFDL-
ESM4 

GISS-
E2-1-G 

MPI-ESM-
1-2-HAM 

MPI-ESM-
1-2-HR 

MRI-
ESM2-0 

NorESM
2-MM 

SEPTEMBER         
RMSE 2.5 1.5 1.7 1.2 4.1 2.4 1.0 1.6 1.6 

MEAN BIAS -2.2 0.6 -1.2 0.7 -3.9 -2.0 -0.1 1.4 -1.2 
MARCH         

RMSE 7.2 3.0 6.6 6.1 8.7 5.8 2.4 1.6 5.8 
MEAN BIAS -6.8 -2.0 -5.9 -5.2 -7.8 -5.0 -1.7 -0.4 -5.3 

ANNUAL         
RMSE 5.1 2.2 4.7 3.9 5.8 3.8 1.9 1.9 4.4 

MEAN BIAS -4.1 -0.8 -3.7 -2.4 -4.8 -2.9 -0.6 0.2 -3.5 

Temperature bias contour maps for the month of September can be seen in Figure 5. For 336 
September, the model with the lowest RMSE and mean bias is MPI-ESM-1-2-HR at 1.0°C   and 337 
-0.1°C respectively. Examining the spatial bias of this model in Figure 5, it overestimates 338 
temperature for most of the seas surrounding Greenland and within the Canadian Archipelago (a 339 
feature observed in the majority of models) yet has minimal underestimation for the remainder of 340 
the Arctic. CNRM-CM6-1-HR, GFDL-ESM4, MPI-ESM-1-2-HAM, MPI-ESM-1-2-HR, and 341 
MRI-ESM2-0 all exhibit similar trends in high positive bias through the  Canadian Archipelago, 342 
Baffin Bay, and the Greenland Sea. GISS-E2-1G, ACCESS-CM2 and MPI-ESM-1-2-HAM have 343 
consistent Pan-Arctic negative bias while ACCESS-CM2 and MPI-ESM-1-2-HAM also have 344 
large areas of negative bias reaching from the North Pole through the East Siberian and into the 345 
Bearing Sea. MRI-ESM2-0 has the lowest mean annual bias of 0.2°C and is even with MPI-346 
ESM-1-2-HR with the lowest annual RMSE of 1.9°C. Investigating this result, the model shows 347 
minimal error during winter months (a result potentially driven by positive bias in ERA5 winter 348 
temperatures and discussed in section 4) as shown for the month of March in Table 5. The 349 
previously discussed SAT positive bias within ERA5 under extreme cold weather may have had 350 
significant influence in this result and thus demand future investigation and confirmation. 351 
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 352 

Figure 5.  Surface air temperature bias for the month of September averaged over 1979-353 
2014. Temperatures over land have been excluded from analysis and masked over for 354 
mapping. 355 

3.5 Suface Wind Speed 356 

Analysis of SWS yields the summary statistics shown in Table 6. The spread in annual 357 
RMSE between models is less than 0.7 m/s and the range in annual bias values does not exceed 2 358 
m/s. MPI-ESM-1-2-HR maintains the lowest RMSE out of all the models for September, March, 359 
and annually.  Most models (excepting NorESM2-MM) show improved correlation for March in 360 
comparison to September, with GFDL-ESM4 experiencing the largest improvement. 361 

In Figure 6, the spatial bias contours can be used to elucidate the September statistics 362 
provided in Table 6. CNRM-CM6-1-HR and MRI-ESM2-0 immediately stand out as exhibiting 363 
pervasive positive bias for not only oceanic regions but also within coastal areas. A common 364 
feature in many of the models shown is a tendency for coastal areas to have considerable 365 
negative bias. This can be observed for the majority of models in the Beaufort Sea or along the 366 
southeast coast of Greenland. MPI-ESM-1-2-HR shows noticeably little bias exceeding 0.5m/s, 367 
demonstrating the accuracy of the model.    368 

 369 
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Table 7. Summary statistics for each climate model’s surface wind speed simulation with 370 
ERA-5 monthly surface wind speed within the region north of 60°N from 1979 to 2014. 371 
RMSE and mean bias have units of m/s. 372 

MODEL ACCESS-
CM2 

CESM2-
WACCM 

CNRM-
CM6-1-HR 

GFDL-
ESM4 

GISS-
E2-1-G 

MPI-ESM-
1-2-HAM 

MPI-ESM-
1-2-HR 

MRI-
ESM2-0 

NorESM
2-MM 

SEPTEMBER         
RMSE 0.79 0.33 0.68 0.63 0.49 0.70 0.29 1.02 0.51 

MEAN BIAS -0.63 -0.08 0.62 0.35 -0.24 -0.60 -0.05 0.99 -0.41 
R 0.90 0.93 0.93 0.75 0.84 0.91 0.93 0.95 0.95 

MARCH         
RMSE 0.69 0.68 0.46 0.51 0.74 0.57 0.44 1.27 1.03 

MEAN BIAS -0.40 -0.42 0.21 0.13 -0.37 -0.40 -0.19 1.22 -0.92 
R 0.91 0.94 0.96 0.93 0.88 0.96 0.96 0.97 0.95 

ANNUAL         
RMSE 0.75 0.63 0.56 0.54 0.62 0.69 0.41 1.07 0.94 

MEAN BIAS -0.51 -0.39 0.37 0.13 -0.23 -0.54 -0.16 0.99 -0.73 
R 0.90 0.93 0.94 0.90 0.88 0.95 0.95 0.96 0.89 

 373 

 374 

Figure 6.  Monthly surface wind speed bias averaged for all months 1979 through 2014. 375 
Only surface winds corresponding to oceanic grid cells were considered for analysis. 376 

4  Discussion and Conclusion 377 

Assessment of climate model historical simulation of SIT shows that the spatial 378 
distribution diverges greatly between models. Mean annual SIT bias derived from comparison to 379 
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PIOMAS ranges from -0.63m to 1.11m and the comparison from CS2SMOS yields winter SIT 380 
bias ranging from -0.2m to 0.81m. Models have improved spatial correlation with PIOMAS over 381 
CS2SMOS; these results are partially expected, as PIOMAS shares several regions of inaccurate 382 
simulated SIT common to the climate models (J. Stroeve et al., 2014). Yet this may also stem 383 
from the brevity of the CS2SMOS time series used to establish the mean monthly SIT 384 
distribution and the inclusion of the anomalous 2012 September sea ice minimum. Despite the 385 
considerable inter-model variance observed, there are several trends common to the majority of 386 
models. Foremost, many of the models that otherwise show minimal error throughout most of the 387 
Arctic, fail to simulate the thickest sea ice regimes at the Lincoln Sea and extending towards 388 
north of the Canadian Archipelago. This strong negative bias (≤-1m) is present year-round for 389 
more than half the models. Notably, however, this bias is reduced for CS2SMOS in comparison 390 
to PIOMAS; suggesting that the models are perhaps more capable of simulating thinner ice 391 
(more sensitive to climate and oceanic forcing (Overland, 2020)) in the latter part of the time 392 
series. 393 

Examining SIE simulation skill, all models are capable of simulating the basic features of 394 
the seasonal cycle, with maximum extent occurring in March and the minimum occurring in 395 
September. Most models exhibit positive bias for September and reduced error for March. 396 
Examining trends in September SIE, all models except for one (CESM2-WACCM) 397 
underestimate the rate of sea ice decline by at least 0.1 km2/decade. Both these results are in 398 
agreement with other studies showing that CMIP6 climate models generally underestimate the 399 
rate of sea ice retreat and struggle to capture the annual sea ice minimum.  The MPI-ESM-1-2-400 
HR ensemble average has very little bias for September mean SIE, the lowest annual absolute 401 
mean percentage error, and a comparable September SIE trend through the time series.  402 

 SAT comparison between climate models and ERA5 shows that nearly all models have 403 
an annual cold bias. This result is believed to have been driven by a warm bias present in the 404 
ERA5 dataset used in climate model assessment. Several studies have confirmed that ERA5 or 405 
ERA-Interim (predecessor to ERA5) possesses a sizeable Arctic SAT warm bias (+3.9°C to 406 
+5.4°C) during the winter months in extreme cold weather conditions (Demchev et al., 2020; 407 
Graham et al., 2019; C. Wang et al., 2019). The exact spatial and temporal characteristics of this 408 
warm bias are unclear and thus cannot be corrected; yet it is clear that the warm bias grows as air 409 
temperatures become colder, peaking in winter months at high latitudes. For this reason, 410 
emphasis in assessment should be placed on warmer months, such as the metrics derived for 411 
September. For September, the range of bias spans from -3.9°C to 1.4°C for the models GISS-412 
E2-1-G and MRI-ESM2-0 respectively. For March, the inter-model bias ranges from -0.4°C to -413 
7.8°C – yet the significance of these results are questionable given the acknowledged ERA5 bias. 414 
It is recommended that an alternative data source be used for SAT analysis in future analysis. 415 
Multiple atmospheric reanalysis products have been shown to possess a similar warm bias during 416 
extreme cold temperatures (Graham et al., 2019); however, this trend is especially pertinent in 417 
ERA5. Otherwise, the use of in situ data could be considered for comparison at the cost of losing 418 
spatial coverage and continuous data availability.  Model simulations of wind show that most 419 
models have reliably high correlation values and annual bias not exceeding 1m/s. Most models 420 
commonly underestimate SWS in coastal areas and only two models exhibit a pervasive positive 421 
bias. MPI-ESM-1-2-HR has the lowest RMSE through all seasons and the highest annual 422 
correlation. 423 
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Climate model simulation of historical Arctic sea ice thickness, extent, surface wind 424 
speed, and temperature were analyzed against satellite, sea ice reanalysis, and atmospheric 425 
reanalysis data to derive skill metric statistic and bias contour maps. Coupled climate models 426 
represent an invaluable source of future climate data for regional modeling and research efforts. 427 
Individual climate models participating within CMIP6 may diverge substantially in ability to 428 
simulate historical sea ice and related climate variables, thus contributing to the uncertainty in 429 
projecting the future sea ice decline. By this rational, the evaluation and understanding of 430 
individual model historical simulation is desirable. Models were shown to present considerable 431 
differences in simulating the spatial distribution of SIT within the Arctic and no one model could 432 
be identified as presenting a totally resolved sea ice distribution representing observed 433 
conditions. Nonetheless, results and conclusions of this study contribute to the body of 434 
knowledge of climate model performance and may be used to inform model selection for reliant 435 
Arctic research. In comparison to CS2SMOS satellite data, MPI-ESM-1-2-HR led in all 436 
performance metrics overall and presented competitive performance in comparison to PIOMAS.  437 
For SAT, MRI-ESM2-0 presents the lowest annual mean bias and RMSE; however, this result is 438 
contentious due to a strong warm bias within the ERA5 data for winter months. Considering the 439 
rapid climate change in the Arctic, the ability to accurately predict the evolution and decline of 440 
sea ice within this region is crucial to predicting the timeline and scope of effects that will be felt 441 
worldwide. The findings in this study are presented with the intention of aiding regional Arctic 442 
research reliant on climate model forecasting data.    443 

Acknowledgments 444 

This material is based upon work supported by the National Science Foundation under 445 
Grant No. # 1927785. This funding is gratefully acknowledged but implies no endorsement of 446 
the findings. The authors would also like to thank NSF for the scholarships to the first, fourth, 447 
and fifth authors 448 
 449 

Open Research 450 

The climate model data from the World Climate Research Programme used within this 451 
study is freely available at: https://esgf-node.llnl.gov/projects/cmip6/ .  Merged CryoSat-452 
2/SMOS sea ice thickness is accessible via https://spaces.awi.de/display/CS2SMOS and 453 
PIOMAS sea ice thickness can be accessed through http://psc.apl.uw.edu/data/ . ERA5 surface 454 
wind speed and air temperature are available at  https://cds.climate.copernicus.eu/ . 455 
  456 

References 457 

Aksenov, Y., Popova, E. E., Yool, A., Nurser, A. J. G., Williams, T. D., Bertino, L., & Bergh, J. 458 

(2017). On the future navigability of Arctic sea routes: High-resolution projections of the Arctic 459 

Ocean and sea ice. Marine Policy, 75, 300–317. https://doi.org/10.1016/j.marpol.2015.12.027 460 



Journal of Geophysical Research: Oceans 

 

 461 

Barnhart, K. R., Overeem, I., & Anderson, R. S. (2014). The effect of changing sea ice on the 462 

physical vulnerability of Arctic coasts. Cryosphere, 8(5), 1777–1799. https://doi.org/10.5194/tc-463 

8-1777-2014 464 

 465 

Casas-Prat, M., Wang, X. L., & Swart, N. (2018). CMIP5-based global wave climate projections 466 

including the entire Arctic Ocean. Ocean Modelling, 123(January), 66–85. 467 

https://doi.org/10.1016/j.ocemod.2017.12.003 468 

 469 

Casas-Prat, Mercè, & Wang, X. L. (2020). Sea Ice Retreat Contributes to Projected Increases in 470 

Extreme Arctic Ocean Surface Waves. Geophysical Research Letters, 47(15). 471 

https://doi.org/10.1029/2020GL088100 472 

 473 

Chen, J., Kang, S., Chen, C., You, Q., Du, W., Xu, M., Zhong, X., Zhang, W., & Jizu, C. (2020). 474 

Changes in sea ice and future accessibility along the Arctic Northeast Passage. Global and 475 

Planetary Change, 195, 103319. https://doi.org/10.1016/j.gloplacha.2020.103319 476 

 477 

Davy, R., & Outten, S. (2020). The arctic surface climate in CMIP6: Status and developments 478 

since CMIP5. Journal of Climate, 33(18), 8047–8068. https://doi.org/10.1175/JCLI-D-19-0990.1 479 

 480 

Demchev, D. M., Kulakov, M. Y., Makshtas, A. P., Makhotina, I. A., Fil’chuk, K. V, & Frolov, 481 

I. E. (2020). Verification of ERA-Interim and ERA5 Reanalyses Data on Surface Air 482 

Temperature in the Arctic. Russian Meteorology and Hydrology, 45(11), 771–777. 483 



Journal of Geophysical Research: Oceans 

 

 484 

Docquier, D., Grist, J. P., Roberts, M. J., Roberts, C. D., Semmler, T., Ponsoni, L., Massonnet, 485 

F., Sidorenko, D., Sein, D. V., Iovino, D., Bellucci, A., & Fichefet, T. (2019). Impact of model 486 

resolution on Arctic sea ice and North Atlantic Ocean heat transport. Climate Dynamics, 53(7–487 

8), 4989–5017. https://doi.org/10.1007/s00382-019-04840-y 488 

 489 

Docquier, D., & Koenigk, T. (2021). Observation-based selection of climate models projects 490 

Arctic ice-free summers around 2035. Communications Earth and Environment, 2(1), 1–8. 491 

https://doi.org/10.1038/s43247-021-00214-7 492 

 493 

Doscher, R., Vihma, T., & Maksimovich, E. (2014). Recent advances in understanding the Arctic 494 

climate system state and change from a sea ice perspective: a review. Atmospheric Chemistry 495 

and Physics, 14(24), 13571–13600. 496 

 497 

Goosse, H., Kay, J. E., Armour, K. C., Bodas-Salcedo, A., Chepfer, H., Docquier, D., Jonko, A., 498 

Kushner, P. J., Lecomte, O., Massonnet, F., Park, H. S., Pithan, F., Svensson, G., & 499 

Vancoppenolle, M. (2018). Quantifying climate feedbacks in polar regions. Nature 500 

Communications, 9(1). https://doi.org/10.1038/s41467-018-04173-0 501 

 502 

Graham, R. M., Cohen, L., Ritzhaupt, N., Segger, B., Graversen, R. G., Rinke, A., Walden, V. 503 

P., Granskog, M. A., & Hudson, S. R. (2019). Evaluation of Six Atmospheric Reanalyses over 504 

Arctic Sea Ice from Winter to Early Summer. Journal of Climate, 32(14), 4121–4143. 505 

 506 



Journal of Geophysical Research: Oceans 

 

Haine, T. W. N., Curry, B., Gerdes, R., Hansen, E., Karcher, M., Lee, C., Rudels, B., Spreen, G., 507 

de Steur, L., Stewart, K. D., & Woodgate, R. (2015). Arctic freshwater export: Status, 508 

mechanisms, and prospects. Global and Planetary Change, 125, 13–35. 509 

https://doi.org/10.1016/j.gloplacha.2014.11.013 510 

 511 

Harsem, Ø., Heen, K., Rodrigues, J. M. P., & Vassdal, T. (2015). Oil exploration and sea ice 512 

projections in the Arctic. Polar Record, 51(1), 91–106. 513 

 514 

Karlsson, J., & Svensson, G. (2013). Consequences of poor representation of Arctic sea-ice 515 

albedo and cloud-radiation interactions in the CMIP5 model ensemble. Geophysical Research 516 

Letters, 40(16). https://doi.org/10.1002/grl.50768 517 

 518 

Knutti, R., Sedláček, J., Sanderson, B. M., Lorenz, R., Fischer, E. M., & Eyring, V. (2017). A 519 

climate model projection weighting scheme accounting for performance and interdependence. 520 

Geophysical Research Letters, 44(4), 1909–1918. https://doi.org/10.1002/2016GL072012 521 

 522 

Kwok, R. (2018). Arctic sea ice thickness, volume, and multiyear ice coverage: Losses and 523 

coupled variability (1958-2018). In Environmental Research Letters (Vol. 13, Issue 10). Institute 524 

of Physics Publishing. https://doi.org/10.1088/1748-9326/aae3ec 525 

 526 

Kwok, R., & Cunningham, G. F. (2015). Variability of arctic sea ice thickness and volume from 527 

CryoSat-2. Philosophical Transactions of the Royal Society A: Mathematical, Physical and 528 

Engineering Sciences, 373(2045). https://doi.org/10.1098/rsta.2014.0157 529 



Journal of Geophysical Research: Oceans 

 

 530 

Kwok, R., Spreen, G., & Pang, S. (2013). Arctic sea ice circulation and drift speed: Decadal 531 

trends and ocean currents: ARCTIC SEA ICE MOTION. Journal of Geophysical Research. 532 

Oceans, 118(5), 2408–2425. 533 

 534 

Laxon, S. W., Giles, K. A., Ridout, A. L., Wingham, D. J., Willatt, R., Cullen, R., Kwok, R., 535 

Schweiger, A., Zhang, J., Haas, C., Hendricks, S., Krishfield, R., Kurtz, N., Farrell, S., & 536 

Davidson, M. (2013). CryoSat-2 estimates of Arctic sea ice thickness and volume. Geophysical 537 

Research Letters, 40(4), 732–737. https://doi.org/10.1002/grl.50193 538 

 539 

Lindsay, R., Wensnahan, M., Schweiger, A., & Zhang, J. (2014). Evaluation of seven different 540 

atmospheric reanalysis products in the arctic. Journal of Climate, 27(7), 2588–2606. 541 

https://doi.org/10.1175/JCLI-D-13-00014.1 542 

 543 

Long, M., Zhang, L., Hu, S., & Qian, S. (2021). Multi-aspect assessment of cmip6 models for 544 

arctic sea ice simulation. Journal of Climate, 34(4), 1515–1529. https://doi.org/10.1175/JCLI-D-545 

20-0522.1 546 

 547 

Maslanik, J. A., Fowler, C., Stroeve, J., Drobot, S., Zwally, J., Yi, D., & Emery, W. (2007). A 548 

younger, thinner Arctic ice cover: Increased potential for rapid, extensive sea-ice loss. 549 

Geophysical Research Letters, 34(24), L24501-n/a. 550 

 551 



Journal of Geophysical Research: Oceans 

 

Meier, W., Fetterer, F., Savoie, M., Mallory, S., Duerr, R., & Stroeve, J. (2017). NOAA/NSIDC 552 

Climate Data Record of Passive Microwave Sea Ice Concentration. In Boulder, Colorado USA: 553 

National Snow and Ice Data Center. https://doi.org/https://doi.org/10.7265/N59P2ZTG 554 

 555 

Melia, N., Haines, K., & Hawkins, E. (2016). Sea ice decline and 21st century trans‐Arctic 556 

shipping routes. Geophysical Research Letters, 43(18), 9720–9728. 557 

 558 

Mioduszewski, J., Vavrus, S., & Wang, M. (2018). Diminishing Arctic sea ice promotes stronger 559 

surface winds. Journal of Climate, 31(19), 8101–8119. https://doi.org/10.1175/JCLI-D-18-560 

0109.1 561 

 562 

Olason, E., & Notz, D. (2014). Drivers of variability in Arctic sea-ice drift speed. Journal of 563 

Geophysical Research. Oceans, 119(9), 5755–5775. 564 

 565 

Overland, J. E. (2020). Less climatic resilience in the Arctic. Weather and Climate Extremes, 30, 566 

100275-. 567 

 568 

Peng, G., Meier, W. N., Scott, D. J., & Savoie, M. H. (2013). A long-term and reproducible 569 

passive microwave sea ice concentration data record for climate studies and monitoring. Earth 570 

System Science Data, 5(2), 311–318. https://doi.org/10.5194/essd-5-311-2013 571 

 572 



Journal of Geophysical Research: Oceans 

 

Ricker, R., Hendricks, S., Kaleschke, L., Tian-Kunze, X., King, J., & Haas, C. (2017). A weekly 573 

Arctic sea-ice thickness data record from merged CryoSat-2 and SMOS satellite data. The 574 

Cryosphere, 11(4), 1607–1623. https://doi.org/10.5194/tc-11-1607-2017 575 

 576 

Schweiger, A. J., Steele, M., Zhang, J., Moore, G. W. K., & Laidre, K. L. (2021). Accelerated 577 

sea ice loss in the Wandel Sea points to a change in the Arctic’s Last Ice Area. Communications 578 

Earth & Environment, 2(1), 1–12. https://doi.org/10.1038/s43247-021-00197-5 579 

 580 

Schweiger, A., Lindsay, R., Zhang, J., Steele, M., Stern, H., & Kwok, R. (2011). Uncertainty in 581 

modeled Arctic sea ice volume. Journal of Geophysical Research: Oceans, 116(9), 1–21. 582 

https://doi.org/10.1029/2011JC007084 583 

 584 

Shen, Z., Duan, A., Li, D., & Li, J. (2021). Assessment and ranking of climate models in Arctic 585 

Sea ice cover simulation: From CMIP5 to CMIP6. Journal of Climate, 34(9), 3609–3627. 586 

https://doi.org/10.1175/JCLI-D-20-0294.1 587 

 588 

Shu, Q., Wang, Q., Song, Z., Qiao, F., Zhao, J., Chu, M., & Li, X. (2020). Assessment of Sea Ice 589 

Extent in CMIP6 With Comparison to Observations and CMIP5. Geophysical Research Letters, 590 

47(9). https://doi.org/10.1029/2020GL087965 591 

 592 

Sibul, G., & Jin, J. G. (2021). Evaluating the feasibility of combined use of the Northern Sea 593 

Route and the Suez Canal Route considering ice parameters. Transportation Research Part A: 594 

Policy and Practice, 147(March), 350–369. https://doi.org/10.1016/j.tra.2021.03.024 595 



Journal of Geophysical Research: Oceans 

 

 596 

SIMIP Community. (2020). Arctic Sea Ice in CMIP6. Geophysical Research Letters, 47(10). 597 

https://doi.org/10.1029/2019GL086749 598 

 599 

Stroeve, J., Barrett, A., Serreze, M., & Schweiger, A. (2014). Using records from submarine, 600 

aircraft and satellites to evaluate climate model simulations of Arctic sea ice thickness. 601 

Cryosphere, 8(5), 1839–1854. https://doi.org/10.5194/tc-8-1839-2014 602 

 603 

Stroeve, Julienne, & Notz, D. (2018). Changing state of Arctic sea ice across all seasons. In 604 

Environmental Research Letters (Vol. 13, Issue 10). Institute of Physics Publishing. 605 

https://doi.org/10.1088/1748-9326/aade56 606 

 607 

Thomson, J., & Rogers, W. E. (2014). Swell and sea in the emerging Arctic Ocean. Geophysical 608 

Research Letters, 41(9), 3136–3140. https://doi.org/10.1002/2014GL059983 609 

 610 

Timmermans, M. L., & Marshall, J. (2020). Understanding Arctic Ocean Circulation: A Review 611 

of Ocean Dynamics in a Changing Climate. Journal of Geophysical Research: Oceans, 125(4), 612 

1–35. https://doi.org/10.1029/2018JC014378 613 

 614 

Tschudi, M. A., Stroeve, J. C., & Stewart, J. S. (2016). Relating the Age of Arctic Sea Ice to its 615 

Thickness, as Measured during NASA’s ICESat and IceBridge Campaigns. Remote Sensing 616 

(Basel, Switzerland), 8(6), 457. 617 

 618 



Journal of Geophysical Research: Oceans 

 

Wang, C., Graham, R. M., Wang, K., Gerland, S., & Granskog, M. A. (2019). Comparison of 619 

ERA5 and ERA-Interim near-surface air temperature, snowfall and precipitation over Arctic sea 620 

ice: effects on sea ice thermodynamics and evolution. The Cryosphere, 13(6), 1661–1679. 621 

https://doi.org/10.5194/tc-13-1661-2019 622 

 623 

Wang, X., Key, J., Kwok, R., & Zhang, J. (2016). Comparison of Arctic sea ice thickness from 624 

satellites, aircraft, and PIOMAS data. Remote Sensing, 8(9). https://doi.org/10.3390/rs8090713 625 

 626 

Watts, M., Maslowski, W., Lee, Y. J., Kinney, J. C., & Osinski, R. (2021). A spatial evaluation 627 

of arctic Sea ice and regional limitations in CMIP6 historical simulations. Journal of Climate, 628 

34(15), 6399–6420. https://doi.org/10.1175/JCLI-D-20-0491.1 629 

 630 

Wei, T., Yan, Q., Qi, W., Ding, M., & Wang, C. (2020). Projections of Arctic sea ice conditions 631 

and shipping routes in the twenty-first century using CMIP6 forcing scenarios. Environmental 632 

Research Letters, 15(10). 633 

 634 

Williams, D. M., & Erikson, L. H. (2021). Knowledge Gaps Update to the 2019 IPCC Special 635 

Report on the Ocean and Cryosphere: Prospects to Refine Coastal Flood Hazard Assessments 636 

and Adaptation Strategies With At-Risk Communities of Alaska. Frontiers in Climate, 637 

3(December), 1–11. https://doi.org/10.3389/fclim.2021.761439 638 

 639 



Journal of Geophysical Research: Oceans 

 

Zhang, J., & Rothrock, D. A. (2003). Modeling global sea ice with a thickness and enthalpy 640 

distribution model in generalized curvilinear coordinates. Monthly Weather Review, 131(5), 641 

845–861. https://doi.org/10.1175/1520-0493(2003)131<0845:MGSIWA>2.0.CO;2 642 


