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Abstract

Raindrop Size Distributions (RSDs) samples from 17 flight missions though 6 hurricanes collected by Precipitation Imaging

Probe (PIP) during National Oceanic and Atmospheric Administration’s hurricane field program in 2020 are used to study

gamma fits of the RSDs in hurricanes. The method of moment (MM) is adopted for solving for the three parameters in gamma

distribution. The results show that the usage of lower (higher) moments produces large biases for integral rain variables (IRV)

of higher (lower) moments. These biases can be alleviated by extracting the best fits from five groups that use increasing higher

orders of moments for MM. An intercept (N0)— slope (λ) relation identified from the fitted gamma distributions captures 92%

of the variance of the data, where the majority of remaining 8% can be further captured by including the impact of liquid water

content (LWC), as shown in the results from a random forest regression model.
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Key Points: 8 

● Method of moments produces bias when fitting raindrop size distribution (RSDs) but the 9 

bias can be alleviated by composite moment fitting. 10 

● The identified  𝑁 − 𝜆 relation captures 92% of the variance in the fitted RSDs that have 11 

correlation coefficients larger than 0.9.  12 

● A random forests regression model taking both 𝑁  and Liquid Water Content as inputs 13 

captures most of remaining 8% of variance in the data. 14 

  15 
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Abstract 16 

Raindrop Size Distributions (RSDs) samples from 17 flight missions though 6 hurricanes 17 

collected by Precipitation Imaging Probe (PIP) during National Oceanic and Atmospheric 18 

Administration’s hurricane field program in 2020 are used to study gamma fits of the RSDs in 19 

hurricanes. The method of moment (MM) is adopted for solving for the three parameters in 20 

gamma distribution. The results show that the usage of lower (higher) moments produces large 21 

biases for integral rain variables (IRV) of higher (lower) moments. These biases can be 22 

alleviated by extracting the best fits from five groups that use increasing higher orders of 23 

moments for MM. An intercept (𝑁 ) — slope (𝜆) relation identified from the fitted gamma 24 

distributions captures 92% of the variance of the data, where the majority of remaining 8% can 25 

be further captured by including the impact of liquid water content (LWC), as shown in the 26 

results from a random forest regression model.  27 

Plain Language Summary 28 

How well an assumed statistical distribution can represent the number of raindrops in each size 29 

bin is crucial to both accurate rainfall estimation from observed radar echo and successful 30 

forecasts of numerical weather models. Gamma distribution, one of statistical distributions, is 31 

often used and the three parameters (i.e. intercept, slope and shape) of gamma distribution are 32 

obtained by solving three equations. Different set of three equations can lead to different 33 

solutions, each of which has its advantage and disadvantage. In this study, we explore five 34 

different sets of three equations, extract the solutions that have low bias and high correlation 35 

coefficient from each set, and develop composite solutions. We investigate the relationships 36 

between each pair of the three parameters for the composite solutions and find intercept and 37 

slope are closely related. A linear fit that represents intercept-slope relationship very well already 38 

is further improved by using a machine learning model that takes into account both intercept and 39 

the mass of raindrops. 40 

 41 
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1 Introduction 42 

With the rapid advancement of computational technology, numerical models have become the 43 

most important tool in forecasting hurricane intensity and precipitation. In operational numerical 44 

models, bulk microphysics parameterization schemes are used due to their computational 45 

efficiency. The bulk schemes assume the size distributions of each hydrometeor category to be 46 

certain statistical distribution. The formulations of all the microphysical processes can then be 47 

derived from these assumed statistical distributions and other assumptions made in the scheme. 48 

The microphysical processes play a significant role in the distribution of diabatic heating, which 49 

is one of the primary driving forces of a tropical cyclone’s intensity change. The realistic 50 

representation of microphysical processes in numerical models is crucial to simulating the 51 

intensity and structure evolution of hurricanes accurately. Early studies (e.g., Marshall and 52 

Palmer 1948; Mueller and Sims 1966; Sulakvelidze 1969) have proposed many different 53 

statistical distributions representing RSDs. Among them the gamma distribution has been widely 54 

used due to their generalized representation for RSD. The gamma distribution,55 

                                                𝑁(𝐷) = 𝑁 𝐷 𝑒    (eq. 1) 56 

as shown above, with three parameters, intercept 𝑁 , shape parameter 𝜇, and slope 𝜆, is able to 57 

adequately describe the small spatiotemporal-scale variations of RSDs in most situations 58 

(Ulbrich and Atlas 1998). It reduces to the exponential distribution when the shape parameter µ 59 

is zero. The gamma distribution also makes it particularly easy to calculate the moments and 60 

formulate microphysical processes in the bulk schemes. The original interest of RSD studies is to 61 

estimate IRVs, such as rainfall (e.g., Seliga and Bringi 1976; Gorgucci et al. 1994; Ulbrich and 62 

Atlas 1998). As stated in Kozu and Nakamura (1991), assuming RSDs to be a two- or three-63 

parameter statistical distribution, measuring two or three IRVs can determine the RSD 64 

parameters, thereby enabling an accurate estimation of other IRVs. For this purpose, the method 65 

of moments (MM) has been widely used. However, studies (Haddad et al. 1996, 1997; Smith and 66 

Kliche 2005; Smith et al. 2009) pointed out MM produced biases. These biases might not have 67 

significant impact on the application of estimating certain IRVs but can drastically change the 68 

outcome of microphysics processes that are formulated based on the fitted RSDs. Therefore, for 69 

modeling purposes, it is crucial to minimize the biases while still maintain the accuracy of the 70 

calculated IRVs. 71 
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The data used this study is briefly introduced in section 2. The remainder of the paper is 72 

organized as follows. In section 3, the results of the gamma fitting to the RSDs are presented. 73 

The identified  𝑁 − 𝜆 relation is presented in section 4. An improved 𝑁 − 𝜆 relation using 74 

random forests (RF) regression model is demonstrated in section 5 and followed by a discussion 75 

and conclusion section. 76 

2. Data 77 

The RSD observations are from National Oceanic and Atmospheric Administration’s hurricane 78 

field program in 2020. They were collected by the Droplet Measurement Technologies (DMT) 79 

Precipitation Imaging Probe in 6 hurricanes from 17 flights, i.e., 4 flights from Hanna, 3 flights 80 

from Isaias, 2 flights from Laura, 3 flights from Sally, 1 flight from Zeta, and 4 flights from 81 

Delta. Observations taken within the 500-km radius of the storm center are included. The number 82 

of total RSD observations used is 18076 in this study. The detailed description of the data set is 83 

provided in Leighton et al. (2022) 84 

3 Methodology 85 

The moment of a raindrop size distribution is defined as: 86 𝑀 =  𝐷 𝑁(𝐷)𝑑𝐷              (Eq. 2) 87 

Where 𝑚 is the number of moments, 𝑁(𝐷) is the raindrop size distribution as the function of 88 

diameter 𝐷. Inserting Eq. 1 into Eq.2 above, we arrive at 89 

𝑀 =  𝑁 ( )                 (Eq. 3) 90 

Given the special property of gamma function, 91 Γ(𝛼 + 1) =  𝛼 Γ(𝛼)       (Eq. 4) 92 

any group of three consecutive moments gives a set of unique solutions of the three parameters 93 

for the gamma distribution. After manipulating Eq.3 for three consecutive moments (e.g. m, m+1 94 

and m+2), we obtain the solutions as following, 95 
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           𝜇 =               (Eq. 5) 96 

                                                           𝜆 = 𝐵(𝑚 + 𝜇 + 1)        (Eq. 6) 97 

                                                                   𝑁 =   ( )              (Eq. 7) 98 

Where 𝐶 is   and B is . 𝑀 , 𝑀 , 𝑎𝑛𝑑 𝑀  are three consecutive moments 99 

calculated from Eq. 2 where 𝑁(𝐷) is the observed RSDs.  100 

In this study, we explore five different combinations of three consecutive moments, i.e. moments 101 

0, 1, 2 (m012), moments 1, 2, 3 (m123), moments 2, 3, 4 (m234), moments 3, 4, 5 (m345), and 102 

moments 4, 5, 6 (m456). It is worth noting that the moments above are calculated directly from 103 

the observed RSDs and the calculated moments might not correspond to the IRVs of the same 104 

moments. For example, the 3rd moment calculated above is not the same as LWC since the 105 

density of water is not taken into account. The performance of gamma fits is evaluated from two 106 

aspects: 1) comparing the IRVs calculated from the fitted gamma distributions and that from the 107 

observed RSDs, and 2) comparing RSD shapes by calculating the correlation coefficient between 108 

the fitted RSD and the observed RSD. The five IRVs used for evaluating the performance of the 109 

fitted RSDs are total number of concentrations, mass-weighted-diameter, LWC, radar reflectivity 110 

and rainfall rate. The calculations of these IRVs are shown in the following from equations 5-9: 111 

𝑁 =  𝑁(𝐷)𝑑𝐷             (Eq. 8) 112 

𝐷 =  ( )( )              (Eq. 9) 113 

𝐿𝑊𝐶 =  𝜌 𝐷 𝑁(𝐷) 𝑑𝐷             (Eq. 10) 114 

𝑅𝑒𝑓 = 10 𝑙𝑜𝑔 𝐷 𝑁(𝐷)𝑑𝐷             (Eq. 11) 115 

𝑅𝑅 =  𝜌 𝐷 𝑁(𝐷) 𝑉 (𝐷)𝑑𝐷             (Eq. 12) 116 
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As shown in Fig. 1, the IRVs calculated from the gamma fitting that uses three lowest moments 134 

(m012) have the highest correlation coefficients, and 76% of fits having correlation 135 

coefficients >0.9. This ratio decreases with the increasing order of moments and is only 23% for 136 

m456. This is consistent with Smith and Kliche (2005) and Smith et al. (2009), who showed that 137 

errors of the estimates of the RSD parameters using MM are usually larger when higher-order 138 

moments are employed and suggested using the lowest-order sample moments. However, when 139 

evaluated by the calculated IRVs, the MM using the lowest-order moments has the worst 140 

performance for most of the calculated IRVs. Figure 1 (panel 1-5) shows that m012 slightly 141 

overestimates the total number concentration but severely underestimates mass-weighted-142 

diameter, especially for the large drops. Consequently, radar reflectivity is drastically 143 

underestimated in m012. The rainfall rate is also underestimated for rainfall rates <100 mm hr-1. 144 

The LWC from m012 is in good agreement with the observation. As the order of moments 145 

increases to 3, 4 and 5 in Fig 1 (panel 16-20)), the calculation of higher moments reaches the 146 

optimum. The LWC, reflectivity and rainfall rate all agree well with the observation. Yet the 147 

number concentration degrades significantly, even compared to m234. As the order of moments 148 

increases to 4, 5 and 6, mass-weighted-diameter is mostly overestimated and so is the LWC. 149 

However, this overestimation is offset by the underestimation of number concentration and 150 

consequently both reflectivity and rainfall rate showed good agreement with the observation. 151 

This highlights the deficiency of evaluating the fits based on only one IRV. For example, Tokay 152 

and Short (1996) showed that calculated rainfall rates from fitted distributions are in excellent 153 

agreement with rainfall rates obtained from observed RSDs in their Fig. 1. However, the 154 

excellent agreement for rainfall rates alone does not guarantee that fitted distributions represent 155 

the observed RSDs well. As seen in Fig. 1, lower order moments produce good agreement with 156 

the observations for IRVs such as total number concentration, and higher order moments produce 157 

good agreement with the observations for IRVs such as reflectivity and rainfall rate. Middle 158 

moments, such as m234, show a good balance that generates overall good agreement for the 159 

calculated IRVs. Therefore, our approach is to composite the moment fits from all five groups so 160 

that best fits of each group can be utilized. The composite is compiled according to the following 161 

approach. First, the fits from M456 are selected if their correlation coefficient is >0.9 and the 162 

error of total number concentration is <10 𝑚 . The same selection criteria are applied to the 163 

remaining samples (total samples minus selected samples from M456), but the fits are selected 164 
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from M345. Next, for the updated remaining samples (total samples minus the selected samples 165 

from M456 and minus the selected samples from M345), the fits from M234 are selected if their 166 

correlation coefficient is >0.9. For the new remaining samples (total samples - selected samples 167 

from M456 - selected samples from M345 - selected samples from M234), the fits from M123 168 

are selected if their correlation coefficient is >0.9 and the error of Dm is <10%.  The same 169 

screening process is performed for the remaining samples, but the fits are selected from M012. 170 

The rest of the fits come from M234. The overall pattern of this composite MM fitting will 171 

resemble M234 but the correlation coefficient is expected to improve. As shown in the last 172 

column of Fig. 1 (panel 26-30), the calculated IRVs agree well with the observation in general, 173 

as in M234. Yet the ratio of fits that have correlation coefficients >0.9 increases from 44% from 174 

M234 to 63% in the composite MM. The distributions of the three parameters for the fits with 175 

correlation coefficient >0.9 from the composite MM are shown in Fig. 2. 176 

4.2 𝑵𝟎 –  𝝀 relationship from fitted gamma distributions 177 

Many studies (e.g. Ulbrich 1983; Zhang et al. 2001, 2003; Brandes et al. 2003, 2004; 178 

Vivekanandan et al. 2004; Ulbrich and Atlas 2007) have explored the relationships among the 179 

three parameters in the fitted gamma distributions of RSDs. Ulbrich (1983) showed the 180 

relationship between 𝑁  and 𝜇 that is deduced from empirical relations between IRVs, such as Z-181 

R relationship, from early studies. Other studies (Zhang et al. 2001, 2003; Brandes et al. 2003, 182 

2004; Vivekanandan et al. 2004; Ulbrich and Atlas 2007, Chang et al. 2009) deduced 𝜇 −  𝜆 183 

relationships based on fitted RSDs from different data sources. They show that this relationship 184 

provides useful information to describe RSDs and improves the accuracy of the retrieved RSDs 185 

from polarimetric radar measurements. The relationship between any pair of parameters can also 186 

be used in microphysics parameterization schemes. For a one-moment scheme that uses the 187 

gamma distribution for RSDs, when one parameter is prescribed, the second parameter can be 188 

calculated from the relationship between this pair, and the third parameter can be diagnosed from 189 

the prognostic variable LWC and the two known parameters. For a two-moment scheme, two 190 

prognostic variables (e.g. LWC and the number concentration) and the relationship can fully 191 

determine the RSDs. 192 
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underestimated mass-weighted-diameter. In contrast, radar reflectivity and rainfall rate 231 

calculated from high order MM fits are in excellent agreement with the observations. This 232 

excellent agreement is the result of overestimated mass-weighted-diameter and underestimated 233 

total number concentration, especially for large drops. The correlation coefficient is much lower 234 

for high order MM fits. The central moments, M234, shows overall good performance, yet only 235 

44% of fits represent the observed RSD well, evaluated by the correlation coefficient between 236 

the fitted and the observed RSDs. By compiling composite MM fits to extract best fits in each 237 

group, the ratio of fits with correlation coefficient larger than 0.9 increased from 44% to 63% 238 

without compromising the calculated IRVs. 239 

The distribution of the intercept  𝑁  and slope  𝜆 showed a strong correlation. A linear empirical 240 

relationship that is obtained by fitting the entire dataset captures 92% of the variance of the data. 241 

The remaining 8% of variance is shown to be closely related to LWC. A RF regression model is 242 

able to capture 98% of the variance of the data if inputs include both 𝑁  and LWC. The 243 

distributions of  𝜇 −  𝑁  and 𝜇 −  𝜆 also show correlation in each pair (Fig. 2b and Fig. 2c) but 244 

the scatter is significantly larger than that in 𝑁  –  𝜆, making a fitted empirical relationship less 245 

representative. 246 

The identified 𝑁  –  𝜆 relationship obtained from the RF regression model can not only improve 247 

the accuracy of the retrieved RSDs from polarimetric radar measurements by providing useful 248 

information to describe RSDs but also reduce the uncertainties and increase the accuracy of bulk 249 

microphysics parameterization schemes in numerical models. For a one-moment scheme that 250 

uses gamma distribution for RSDs, if 𝑁  is provided, then 𝜆 can be calculated from this 𝑁  –  𝜆 251 

relationship with high confidence and the shape parameter 𝜇 can be diagnosed from 𝑁  , 𝜆, and 252 

the prognostic variable LWC. For a two-moment scheme, the 𝑁  –  𝜆 relationship along with two 253 

prognostic variables, LWC and total number concentration, can fully determine the RSD. The 254 

accuracy of the microphysics processes in the bulk scheme can therefore be better formulated 255 

and so potentially improves the overall performance of the microphysical parameterization 256 

schemes.   257 
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