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Abstract

Estimating dissipation timeframes and contaminant mass discharge rates of dense non-aqueous phase liquids (DNAPLs) source

zones is of key interest for environmental-management support. Upscaled mathematical modeling of DNAPL dissolution pro-

vides a practical approach for assimilating site characterization and downgradient monitoring data to constrain future system

behavior. Yet significant uncertainties on predictions of source zone dissipation rates may arise from inadequate or inaccu-

rate conceptual assumptions in parameterization designs. These implications were investigated through upscaled modeling,

sensitivity, and uncertainty analyses of high-resolution flow-cell experiments. Sensitivity results emphasized the role of local

groundwater velocity and source dimensions in mass transfer scaling by strongly influencing error with respect to DNAPL

persistence and dissolution rates. Linear uncertainty analyses, facilitated by PEST ancillary software, demonstrated the worth

of monitoring profiles for constraining DNAPL saturations and dispersive mass transfer rates, responsible for source zone

longevity. Nonlinear analyses performed with the iterative ensemble smoother PESTPP-iES, facilitated the quantification of

unbiased source dissipation uncertainties from DNAPL delineation data. Conversely, monitoring data assimilation without

consideration of flow-field heterogeneity and saturation distribution along the flow path biased model predictions. Our analyses

provided practical recommendations on upscaled model design to assimilate available site data and support remedial-decision

making.
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Key Points 13 
 14 

 Upscaled modeling and uncertainty analyses of flow-cell experiments elucidated upon data 15 

assimilation strategies at DNAPL sites 16 

 Parameterization of source zone heterogeneities for history-matching was necessary to 17 

predict unbiased DNAPL dissolution timeframes 18 

 Coarse DNAPL delineation sufficed to quantify unbiased uncertainty limits of source zone 19 

lifespans a priori  20 

Abstract 21 

Estimating dissipation timeframes and contaminant mass discharge rates of dense non-aqueous 22 

phase liquids (DNAPLs) source zones is of key interest for environmental-management support. 23 

Upscaled mathematical modeling of DNAPL dissolution provides a practical approach for 24 

assimilating site characterization and downgradient monitoring data to constrain future system 25 

behavior. Yet significant uncertainties on predictions of source zone dissipation rates may arise 26 

from inadequate or inaccurate conceptual assumptions in parameterization designs. These 27 

implications were investigated through upscaled modeling, sensitivity, and uncertainty analyses of 28 

high-resolution flow-cell experiments. Sensitivity results emphasized the role of local groundwater 29 

velocity and source dimensions in mass transfer scaling by strongly influencing error with respect 30 

to DNAPL persistence and dissolution rates. Linear uncertainty analyses, facilitated by PEST 31 

ancillary software, demonstrated the worth of monitoring profiles for constraining DNAPL 32 

saturations and dispersive mass transfer rates, responsible for source zone longevity. Nonlinear 33 

analyses performed with the iterative ensemble smoother PESTPP-iES, facilitated the 34 

quantification of unbiased source dissipation uncertainties from DNAPL delineation data. 35 

Conversely, monitoring data assimilation without consideration of flow-field heterogeneity and 36 

saturation distribution along the flow path biased model predictions. Our analyses provided 37 

practical recommendations on upscaled model design to assimilate available site data and support 38 

remedial-decision making. 39 

 40 

Plain Language Summary 41 

Currently, remedial-decision makers rarely benefit from physically-based modeling methods and 42 

uncertainty analyses to manage sites impacted by DNAPL source zones. Difficulties in estimating 43 
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DNAPL dissolution rates stem from source zone heterogeneities, which are difficult to characterize 44 

in detail, compounded by a lack of scalable methodologies connecting source zone characterization 45 

with discharge monitoring. In addition, monitoring and site characterization efforts supporting 46 

performance-based remedial objectives are typically uninformed by uncertainty evaluations 47 

predicated on DNAPL mass transfer processes. To bridge that gap, we investigated the impact of 48 

data-driven conceptual assumptions on predictions of source zone behavior by coupling a practical 49 

DNAPL dissolution model with uncertainty quantification methods. Simulations of flow-cell 50 

experiments demonstrated the worth of DNAPL delineation for constraining source zone 51 

dissipation uncertainties, estimated a priori through parameterization of DNAPL distributions. In 52 

turn, parameterizing system heterogeneities in greater detail was necessary to estimate unbiased 53 

source zone characteristics and lifespans, derived from the assimilation of complex DNAPL 54 

dissolution trends observed in monitoring profiles. Our results demonstrated how available site 55 

data can be integrated into a decision-support modeling framework to inform data collection 56 

strategies and remedial designs. 57 

 58 

Index Terms and Keywords 59 
 60 

Source zone persistence, source zone heterogeneity, DNAPL dissolution rates, conceptual 61 

assumptions, data assimilation, model parameterization, remedial-decision making, practical 62 

recommendations 63 

 64 

1. Introduction 65 
 66 

Mathematical modeling can provide valuable insights for decision support at hazardous waste sites 67 

with groundwater impacted by dense non-aqueous phase liquids (DNAPLs). However, a gap 68 

between simplistic analytical screening models and overly complex numerical simulators has 69 

limited their applicability for estimating DNAPL longevity and dissolution rates. Researchers have 70 

focused on estimating distributions of DNAPL saturation, referred to as the source zone 71 

architecture, or DNAPL dissolution rates from synthetically-generated datasets using several 72 

mathematical approaches to simulating mass transfer. Several studies considered either a local 73 

equilibrium assumption (LEA) or Gilland-Sherwood models of interphase mass transfer (Kang et 74 

al. 2021a; Powers et al., 1992, 1994; Saenton & Illangasekare, 2004).  75 

 76 

Decision-support modeling incorporating LEA is questionable because heterogeneity of aquifer 77 

hydraulic properties and source architecture can induce flow bypassing and mass transfer rate 78 

limitations, resulting in nonequilibrium concentrations typically observed at field sites (Falta, 79 

2003; Kokkinaki et al., 2013). Similarly, Gilland-Sherwood models rely on correlations between 80 

empirical coefficients and soil particle sizes that were determined under specific bench-scale 81 

conditions, which may not be applicable to field-scale problems with different hydraulic properties 82 

(Powers et al., 1992; Saenton & Illangasekare, 2007). Moreover, the computational cost of pore-83 

scale numerical models incorporating LEA and Gilland-Sherwood correlations limits their 84 

practicality for data assimilation and uncertainty quantification (Falta, 2003; Kokkinaki et al., 85 

2013; Powers et al., 1994). An alternative method is predicated on a lumped-process, scale-86 

dependent mass transfer coefficient estimated from monitoring data (Guo et al., 2020; Mobile et 87 

al., 2012; Park & Parker, 2005). However, estimating mass transfer rates exclusively from 88 
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historical monitoring may bias predictions of source longevity because of architectural changes. 89 

For example, early in the life cycle of a DNAPL source zone, the contributions of slowly dissolving 90 

pools governing complete depletion may not be discernible in discharge data (Abriola et al., 2013). 91 

 92 

Multistage DNAPL dissolution, typically observed at contaminated sites and in dissolution 93 

experiments, arises from heterogeneity of source zone architecture (Figure 1) primarily comprised 94 

by residual ganglia and high-saturation DNAPL pools (Christ et al., 2010; Dekker & Abriola, 95 

2000; DiFilippo & Brusseau, 2008; Lemke & Abriola, 2006; Parker & Park, 2004). Consequently, 96 

a number of high-resolution site characterization (HRSC) technologies have been developed 97 

(Einarson et al., 2018; Horst et al., 2018; Kueper et al., 2014). Delineation of DNAPLs comprised 98 

by chlorinated ethenes is possible with dye-enhanced laser induced fluorescence (DyeLIF) and 99 

confirmatory sampling, and with indirect observation methods, such as multilevel monitoring and 100 

groundwater extraction systems, passive flux meters, push-pull tracer tests, etc. (Horst et al. 2018; 101 

Huang et al. 2010; ITRC, 2010; Kueper et al., 2014). Although HRSC may help constrain DNAPL 102 

distribution, quantifying residual mass and saturation directly is not possible (Einarson et al., 103 

2018). Thus, inverse modeling techniques have been applied to quantify lumped-process mass 104 

transfer coefficients from monitoring data Marble et al., 2008; Mobile et al., 2012; Saenton & 105 

Illangasekare, 2004), or to estimate source zone architectures from borehole and geophysical 106 

measurements using physically-based parameterization mechanisms (Kang et al. 2021a, 2021b). 107 

Kang et al. (2022) demonstrated a novel Bayesian inversion framework to reconstruct complex 108 

permeability and DNAPL saturation fields, subsequently parameterizing an upscaled model of 109 

DNAPL dissolution to reproduce experimental source depletion trends. 110 

 111 

Upscaled (domain-averaged) models lacking a physical mass transfer basis cannot assimilate 112 

HRSC data and have proved ineffective at explaining and predicting DNAPL dissolution behavior 113 

(Christ et al., 2006; Kokkinaki et al., 2014; Marble et al., 2008). However, upscaled models 114 

incorporating metrics describing the source zone architecture, such as the ganglia-to-pool (GTP) 115 

mass ratio, have shown improved success (Abriola et al. 2013; Christ et al., 2010; DiFilippo & 116 

Brusseau, 2011). Stewart et al. (2021) developed a volume-averaged (VA) model of DNAPL 117 

dissolution predicated on characteristic length scales of DNAPL accumulations and their relative 118 

location along groundwater flow paths, explicitly accounting for mass transfer processes at the 119 

source zone scale (Figure 1). The model accurately reproduced complex DNAPL dissolution 120 

observed in laboratory, numerical, and field experiments by parameterizing initial, and estimable 121 

system characteristics without undertaking history-matching. The VA model is therefore able to 122 

assimilate HRSC and/or monitoring data to estimate source dissipation timeframes with 123 

computational efficiency in a scalable and physically-based manner. Such capabilities make the 124 

VA model suitable for evaluating site conceptual assumptions and quantifying uncertainties, which 125 

is necessary for effective remedial-decision support (Abriola, 2005). 126 

 127 

The primary objectives in this work were to (i) identify the relative contribution of VA mass 128 

transfer parameters to source zone dissipation uncertainties, and (ii) investigate how model 129 

parameterization influences predictive bias through monitoring data assimilation. The VA DNAPL 130 

dissolution model developed by Stewart et al. (2021) was coupled with sensitivity and uncertainty 131 

analysis methods to evaluate the worth of direct and indirect source zone measurements for 132 

constraining system parameters and model uncertainty. High-resolution datasets of two DNAPL 133 

dissolution experiments were leveraged to evaluate data-driven conceptual assumptions on 134 
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modeling outcomes. Our findings elucidate on model design to quantify unbiased DNAPL 135 

persistence uncertainties, yielding recommendations on HRSC and monitoring data assimilation 136 

for constraining future source zone behavior. 137 

2. Upscaled and Volume-Averaged Model of DNAPL Dissolution 138 
 139 

Volume-averaging relaxes the need to specify precise locations of DNAPL accumulations within 140 

a finely discretized domain. The approach facilitates the incorporation of physically-based mass 141 

transfer relationships for complex field-scale dissolution behavior with computational efficiency. 142 

As presented by Stewart et al. (2021), dissolution of a single DNAPL accumulation, defined as a 143 

volume of relative uniformity in saturation, can be simulated by a generalized upscaled mass 144 

transfer function: 145 

 146 

 𝑘
𝑈
𝑉

𝐴 , 𝑘 𝑚 𝐴 ,
4𝛼
𝜋𝑋

𝑚
𝑚 ,

 (1) 

 147 

 148 
Figure 1. Conceptual and volume-averaged model representations (a and b, respectively) of a DNAPL source zone 149 
comprised by characteristic accumulations of (c) residual ganglia and (d) pools. Adapted from Stewart et al. (2021). 150 
 151 

Where interphase mass transfer (ka
N) from an individual DNAPL accumulation “a” is driven by 152 

the local Darcy groundwater velocity (U0) upscaled by a source zone reference volume (VS) 153 

encompassing the DNAPL masses. The term on the left inside the brackets represents dissolution 154 

attributable to through flow (Figure 1c), which is proportional to the projected area facing flow 155 

(Aa,yz = YaZa) of “a”. Flow through “a” is regulated by the soil relative permeability (kr) which 156 

gradually increases the DNAPL dissolution rate as the DNAPL volume is reduced. The term on 157 

the right represents dissolution attributable to dispersion into bypassing flow (Figure 1d), which is 158 

proportional to the hydrodynamic transverse dispersivity (αT) around “a” and the horizontal area 159 

of the accumulation (Aa,xy = XaYa). Mass dissolution from low DNAPL saturations, i.e., ganglia, 160 
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are dominated by flow through, while high saturation zones, i.e., pools, can be dominated by 161 

dispersion. The normalized mass (m/m0) term reflects a transient reduction of DNAPL interfacial 162 

area. Theoretically, the dimensionless exponent γ = 2/3 for ganglia-dominated accumulations, and 163 

γ = ½ for pool-dominated accumulations. The γ exponent may be adjusted during model history-164 

matching to allow for deviations from conceptual mass transfer assumptions but is expected to fall 165 

within this relatively narrow range (Stewart et al., 2021). 166 
 167 

2.1. Simulation of DNAPL Dissolution Experiments 168 
 169 

Flow-cell experiments presented by DiFilippo et al. (2010) and analyzed by Guo et al. (2020) with 170 

a simplified inverse modeling method were utilized in this study. Stewart et al. (2021) simulated 171 

these experiments with the VA approach by explicitly accounting for DNAPL saturation 172 

distributions, flow field characteristics, and soil properties. The dissolution experiments consisted 173 

of two source zone scenarios: a “mixed” DNAPL architecture comprised by a ganglia-dominated 174 

accumulation and a pool-dominated accumulation in homogeneous sand, and multiple DNAPL 175 

accumulations in a “heterogeneous” soil. Details of model conceptualization and simulation results 176 

were presented in Stewart et al. (2021). 177 

 178 

2.1.1. Mixed DNAPL Architecture 179 
 180 

The “mixed” source zone experiment conducted by DiFilippo et al. (2010) consisted of a uniform 181 

pack of sand (40/50 mesh) with a 2-cm thick capillary barrier located along the bottom of the test 182 

cell (Figure 2a). An injection of ~12 milliliters of trichloroethene (TCE) at the top of the test cell 183 

followed by 48-hour period prior to flow initiation generated a stable source zone architecture 184 

consisting of a vertical ganglia zone underlain by a pool. The DNAPL saturation distribution was 185 

characterized using a light reflection visualization (LRV) method and TCE effluent concentrations 186 

were monitored until source zone depletion.  187 

 188 

 189 
Figure 2. Model conceptualizations of the flow-cell experiments: (a) mixed source zone architecture and (b) 190 
heterogeneous source zone.  Sub-volumes (purple rectangles) correspond to DNAPL accumulations with distinct 191 
saturations encompassed by the source volume (purple dashed line). Adapted from Stewart et al. (2021). 192 
 193 

2.1.2. Multiple DNAPL accumulations in Heterogeneous Soil 194 

 195 

The test cell of the heterogeneous source experiment (Figure 2b) consisted of a matrix of 196 

homogeneous sand (40/50 mesh) with coarser (20/30 mesh) and finer (70/100 mesh) lenticular 197 
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zones (DeFilippo et al., 2010; Guo et al., 2020). An injection of ~15 milliliters of TCE at the top 198 

of the cell was distributed between two ports with 66% in the far left (upgradient) port and 33% in 199 

the center (downgradient) port (DeFilippo et al. 2010). The central release generated two distinct 200 

accumulations: one above a fine-grained lens and one within a coarse-grained lens. The coarse 201 

lens had an intrinsic permeability approximately 3.5 times higher than the surrounding bulk sands 202 

(DeFilippo et al., 2010), resulting in a higher velocity through this material than in the surrounding 203 

matrix. As shown in Figure 2b, Stewart et al. (2021) subdivided the upgradient accumulation into 204 

two accumulations on the basis of characteristic saturations to accurately capture the measured 205 

TCE effluent breakthrough. Sequential dissolution inhibition was also implemented by Stewart et 206 

al. (2021) for the two downgradient accumulations on the basis of their relative locations along the 207 

flow path. Nomenclature for variables in the model are presented in Table 1. 208 

 209 
Table 1. Nomenclature of input parameters used in the VA model of the flow-cell experiments. 210 

Parameter Mixed Source Heterogeneous Source Unit 
Mass Mass G. Mass P. Mass 1A Mass 1B Mass 2 Mass 3 g 

Length Xg Xp X1A X1B X2 X3 m 
Width Yg Yp Y1A Y1B Y2 Y3 m 
Height Zg Zp Z1A Z1B Z2 Z3 m 

NAPL Saturation Sg
N Sp

N S1A
N S1B

N S2
N S3

N % 
Area Facing Flow YZg YZp YZ1A YZ1B YZ2 YZ3 m2 
Dispersive Area XYg XYp XY1A XY1B XY2 XY3 m2 

Dispersivity αT,g αT,p αT,1A αT,1B αT,2 αT,3 m 
γ γg γp γ1A γ1B γ2 γ3 - 

 211 

2.2. Sensitivity Analysis 212 
 213 

Model output variability was evaluated with local sensitivity analysis by systematically perturbing 214 

input parameters around reference values conceptualized in Stewart et al. (2021). The goal was to 215 

compare relative sensitivities with respect to measured discharge concentrations and with respect 216 

to the time required to reach cleanup concentrations, defined here as time of remediation (TOR). 217 

Both metrics were evaluated using the same model input variability around base parameter sets. 218 

Because the plausible variability range of some parameters and their corresponding outputs differs 219 

by orders of magnitude compared to those of other parameters, sensitivity coefficients were scaled 220 

by maximum values to provide a relative comparison metric of simulation error. All sensitivity 221 

analyses were automated coupling SENSAN and PEST software (Watermark Numerical 222 

Computing, 2018) for calculation fidelity. 223 

 224 

2.2.1. Sensitivities with respect to TCE discharge concentrations 225 
 226 

Normalized sensitivity coefficients (XTCE) were calculated on the basis of root mean squared errors 227 

(RMSE) between simulated (simi) and measured (obsi) discharge concentrations as: 228 

 229 

 𝑋
|𝜕𝑅𝑀𝑆𝐸| / 𝑅𝑀𝑆𝐸 𝑎

|∆𝑎 / 𝑎|
/𝑋  (2) 

 230 

where: 231 
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 232 

 𝑅𝑀𝑆𝐸
1
𝑁

𝑠𝑖𝑚 𝑜𝑏𝑠
/

 (3) 

 233 

 𝜕𝑅𝑀𝑆𝐸 𝑅𝑀𝑆𝐸 ∆𝑎 𝑅𝑀𝑆𝐸 𝑎  (4) 
 234 

a = base parameter; Δa = perturbed parameter – a; N = number of TCE effluent measurements. All 235 

sensitivity coefficients were normalized by maximum values (𝑋 ) to provide a relative 236 

comparison metric of model sensitivities. 237 

 238 

2.2.2. Sensitivities with respect to TOR 239 
 240 

Provided with a cleanup concentration input, the VA model calculates the time required to reach 241 

the target value (e.g., contaminant MCL). Using the base parameter sets, which reflect detailed 242 

experimental conditions and initial source zone properties, TOR was calculated for both 243 

experiments setting target concentrations at C = 0.005 mg/L. Sensitivity coefficients normalized 244 

by maximum values (𝑋 ) were calculated as:  245 

 246 

  𝑋
𝑅𝑀𝑆𝐸 ∆𝑎

|∆𝑎 / 𝑎|
/𝑋  (5) 

3. Uncertainty Analysis 247 
 248 

Source zone metrics controlling field-scale dissolution include DNAPL mass and distribution 249 

(Abriola et al., 2013). Uncertainties associated to both metrics can therefore propagate to model 250 

predictive uncertainties (Abriola, 2005; Tang, 2019). Prior (pre-history matching) parameter and 251 

predictive uncertainties can be informed by expert knowledge and/or by site characterization (e.g., 252 

DNAPL delineation, projected flow through area), whereas posterior (post-history matching) 253 

uncertainties may be reduced and quantified through history-matching of monitoring data.  254 

Because volume-averaging eliminates spatial parameter correlations, the prior uncertainty of mass 255 

transfer parameters was expressed through statistically uncorrelated uncertainty bounds (archived 256 

data file). All initial (mean) parameter values were inherited from Stewart et al. (2021). 257 

 258 

Uncertainty bounds of characteristic dimensions (Va) and mass (ma) of DNAPL accumulations 259 

were designed so that 1% < Sa
N < 60% and ∑Va < VS in both experiments; where DNAPL saturation 260 

(Sa
N) of the pore space (ϕ) is also a function of DNAPL density (ρn) as indicated by Equation 6. 261 

Per sensitivity results, upscaling parameters (VS, U0, and ϕ) were assumed well constrained by the 262 

monitoring scale and removed from predictive uncertainty evaluations. Uncertainty analyses were 263 

focused on ma, Va, αT, and γ pertaining to each DNAPL accumulation. Linear and nonlinear 264 

uncertainty quantification methods were implemented to understand drivers of model uncertainties 265 

and bias emerging from data-driven conceptual assumptions. 266 

 267 

 𝑆
𝑚𝑎

𝑉𝑎𝜙𝜌𝑛

 (6) 

 268 
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3.1. Linear Analysis Methods 269 
 270 

Model linearization expressed in Equation 7 is the primary assumption in first-order second-271 

moment (FOSM) analysis (Doherty, 2015). Equation 7 indicates that a vector of measurements of 272 

system state h equals the action of the model Z on a vector of parameters k plus a vector of 273 

measurement noise ε. Prior model uncertainty was expressed by Equation 8 assuming a multi-274 

gaussian probability density function (PDF), defined by mean parameter values k and a diagonal 275 

covariance matrix C(k). Likewise, FOSM analysis assumes a multi-gaussian PDF of ε (Equation 276 

9), defined by mean values of zero and a diagonal covariance matrix C(ε). Jacobian matrices Z 277 

were weighted by the inverse of the standard deviation (σ) of ε. The misfit between simulated 278 

(Stewart et al., 2021) and measured TCE concentrations was used to define ε, where σε
-1 values 279 

were calculated with the PEST-based utility PWTADJ2 (Watermark Numerical Computing, 2018) 280 

as observations weights for FOSM analyses. 281 

 282 

 h  Zk  ε (7) 
 283 

 k ~ N k, C k (8) 
 284 

 ε ~ N 0, C ε (9) 
 285 

 s  ytk (10) 
 286 

 σs2  ytC k y (11) 
 287 

 C’ k   C k  – C k Zt ZC k Zt  C ε -1ZC k (12) 
 288 

 σ's2  ytC’ k y (13) 
 289 

Linearization of a model prediction s (Equation 10) depends on a vector of sensitivities of s (TOR) 290 

with respect to k, where the prior variance of s (Equation 11) is obtained through covariance 291 

propagation (Doherty, 2015). The posterior parameter covariance matrix (Equation 12), obtained 292 

by history-matching conditioning, was used to estimate posterior TOR uncertainty variance 293 

(Equation 13). All parameters were log-transformed to reduce their nonlinearity with respect to 294 

model outputs. Linear analyses were performed with the utility programs GENLINPRED and 295 

PREDUNC (Watermark Numerical Computing, 2018) to understand how TCE monitoring profiles 296 

constrain source zone properties, and thereby, TOR uncertainties.  297 

 298 

3.1.1. Relative parameter uncertainty variance (RUVR) reduction 299 
 300 

This statistical metric was used to evaluate the ability of dissolved TCE concentrations to reduce 301 

the prior uncertainty variance (σi
2) of each parameter (i) encapsulated in C(k). Equation 14 defines 302 

this metric upon extracting posterior parameter uncertainty variances (σ’i
2) from C’(k) as: 303 

 304 

 𝑅𝑈𝑉𝑅 1
𝜎′
𝜎

 (14) 

 305 
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3.1.2. Prior and posterior parameter contributions to predictive uncertainty 306 
 307 

The contribution of an individual parameter to the uncertainty of a prediction is defined as the fall 308 

of predictive uncertainty resulting from acquiring perfect knowledge of the parameter (Doherty, 309 

2015). Hence, individual parameters were systematically removed from FOSM calculations to 310 

investigate their relative contributions to TOR uncertainty. Because history-matching information 311 

may be shared between several model parameters, the posterior contribution of a parameter could 312 

increase in relation to its prior contribution, indicating a correlation with another parameter 313 

(Doherty, 2015). While sensitivity analyses were useful to examine relative model error incurred 314 

by perturbing individual parameters, considering parameter correlations for TOR uncertainty 315 

estimation allowed assessing the worth of HRSC over history-matching for constraining the 316 

models. 317 

 318 

3.1.3. Data-Worth Analysis 319 
 320 

The ability of spatial or temporal data to reduce the uncertainty of model predictions defines its 321 

worth (Doherty & Moore, 2020; Finsterle, 2005). The worth of individual measurements of TCE 322 

concentrations was quantified to understand how monitoring profiles reduce TOR uncertainty. 323 

Data-worth analyses were also tied to parameter RUVR, further elucidating upon the additional 324 

benefit of HRSC for constraining remaining model uncertainties.  325 

 326 

3.2. Nonlinear Analysis Methods 327 
 328 

Posterior TOR uncertainties were quantified using the iterative ensemble smoother PESTPP-iES 329 

(White et al., 2020). Multi-gaussian prior parameter PDFs were defined by uncertainty bounds 330 

spanning ± 2σ from initial (mean = μ) values, representing 95% confidence intervals. PESTPP-331 

iES undertakes Monte-Carlo sampling of parameter uncertainty bounds generating model 332 

realizations (ensembles) which are upgraded with the Gauss-Levenberg-Marquardt (GLM) 333 

optimization algorithm. Rather than simply fitting simulation results to data, PESTPP-iES can 334 

generate observation ensembles considering multi-gaussian PDFs of ε (White, 2018). Here, all 335 

experimental TCE concentrations were assigned an observation weight value of 1 with σε = 10 336 

mg/L, to simultaneously estimate model parameters and quantify the nonlinear uncertainty of TOR 337 

in a stochastic manner. This approach was implemented to evaluate TOR uncertainties and bias 338 

arising from source zone conceptual assumptions driven by data availability.  339 

 340 

In practice, HRSC data may help constrain source zone architecture, and thereby model 341 

conceptualizations. However, high predictive uncertainties may remain because of the inability to 342 

directly measure DNAPL mass and Sa
N. The benefit of data assimilation for constraining model 343 

uncertainties was investigated by estimating ma, Va, αT,a, and γa parameters in both experiments 344 

from partial and complete monitoring profiles. The resulting source dissipation timeframes were 345 

referred to as Posterior A (~13 days of monitoring), Posterior B (20 days) and Posterior All (26 346 

days). Additionally, the heterogeneous experiment was conceptualized with 2 (2M), 3 (3M) and 4 347 

(4M) DNAPL accumulations to examine TOR uncertainty and bias induced by history-matching 348 

of the entire TCE monitoring profile. The 2M model included “mass 1” and lumped “mass 2” and 349 

“mass 3” into a single accumulation (2M-3) based on the two release points, while the 3M model 350 

included those 3 distinct DNAPL accumulations. The 4M model subdivided “mass 1” into 1A and 351 
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1B (Figure 2b). Except for the 2M Model, the 3M and 4M models included an enhanced dissolution 352 

parameter to represent flow channelization through the coarse lens in which “mass 3” was 353 

embedded. Following a variability range reported in the literature (Klenk & Grathwohl, 2002), the 354 

prior uncertainty bounds of αT parameters were defined as 5e-4 < αT (m) < 2e-3 in both experiments, 355 

except for 0 (1e-15) < αT,3 (m) < 0.002 in the coarse sand lens of the heterogeneous experiment, 356 

where αT,3 = 0 m provided the best match to measured TCE concentrations (Stewart et al., 2021). 357 

4. Results and Discussion 358 
 359 

4.1. Sensitivity Analysis 360 
 361 

As shown in Figures 3 and 4, the greatest model sensitivities with respect to matching TCE 362 

concentrations (XTCE) corresponded to the source zone area (ZS and YS) orthogonal to the flow 363 

direction and groundwater velocity (U0). The former accounts for any dilution in the monitoring 364 

scale, while the latter had a prominent impact on TOR in both experiments. The role of VS and U0 365 

on scaling mass transfer processes emphasized the need to constrain them by the monitoring scale 366 

to avoid model errors induced by data assimilation. Figure 3 also indicated that the projected area 367 

facing flow (YZg) of the ganglia-dominated accumulation, rather than γg or ganglia mass, was 368 

responsible for peak aqueous-phase concentrations. Similarly, Figure 4 shows the projected area 369 

YZ1A of the most upgradient, low-saturation accumulation 1A in a high-ranked position. These 370 

XTCE results suggested that Sa
N parameters (Va and Mass) of ganglia-dominated accumulations 371 

responsible for peak concentrations do not impact TOR when a pool-dominated accumulation is 372 

also present; yet their estimation via history-matching may be valuable for remedial designs. 373 

Conversely, sensitivity with respect to TOR (XTOR) was dominated by DNAPL pool saturation 374 

(Sp
N) parameters, transverse dispersivity (αT,p), and depletion exponent (γp). The negligible XTCE 375 

values of pool parameters suggested difficulty in estimating them from monitoring data alone and 376 

value in HRSC for refining characteristic parameters of the pool. 377 

 378 

In contrast to negligible XTCE values by pool parameters in the mixed experiment (Figure 3), XTCE 379 

rankings of S3
N parameters in the heterogeneous experiment (Figure 4) suggested that high-380 

saturation DNAPL accumulations may not exclusively reflect pool fractions of source zones. 381 

Typically, the small cross-sectional areas available for dissolution by groundwater flow through 382 

DNAPL pools reduces their relative contribution to mass flux, compared to ganglia-dominated 383 

accumulations. However, as indicated in Figure 4, the morphology of DNAPL accumulation 3, 384 

controlled by flow-field heterogeneity, influenced both XTCE and XTOR rankings in the 385 

heterogeneous experiment. The predictive advantage of generalizing mass transfer processes 386 

irrespective of Sa
N (Equation 1) over upscaled models predicated on the GTP mass ratio, was 387 

further evidenced by a similar effect on XTCE and XTOR incurred by perturbing αT,3 (Figure 4). 388 

Conversely, the variability of other αT parameters in both experiments only influenced XTOR.  389 

 390 
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 391 
Figure 3. Sensitivity coefficients with respect to source discharge concentrations measured in the “mixed 392 

architecture” experiment and with respect to the simulated TOR. 393 
 394 

 395 
Figure 4. Sensitivity coefficients with respect to source discharge concentrations measured in the “heterogeneous 396 

architecture” experiment and with respect to the simulated TOR. 397 
 398 

4.2. Linear Analysis 399 
 400 

Prior (σTOR) and posterior (σ’TOR) standard deviations of TOR uncertainty estimated with FOSM 401 

analysis and mean (μTOR) values for both experiments are presented in Table 2. Results shown 402 

were calculated using the complete TCE monitoring profiles. As indicated, history-matching 403 

significantly constrained prior TOR uncertainties despite low XTCE values of TOR-sensitive 404 

parameters pertaining to high-Sa
N accumulations. 405 

 406 
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Table 2. Predictive uncertainty of mixed and heterogeneous experiments. 407 

Experiment μTOR (days) σTOR (days) σ'TOR (days) 
Mixed 27.9 19.8 8.6 
Heterogeneous 28.6 20.5 1.7 

 408 

4.2.1. Relative Parameter Uncertainty Variance Reduction 409 
 410 

Figures 5 and 6 show the benefit of history-matching for reducing prior parameter uncertainties. 411 

Despite negligible XTCE values corresponding to the pool mass and αT,p of the mixed experiment 412 

(Figure 3), history-matching reduced the prior uncertainty of these parameters by ~70% and ~60%, 413 

respectively (Figure 5). The low uncertainty reduction of γp (Figure 5), to which TOR was sensitive 414 

(Figure 3), demonstrated the benefit of coupling upscaled modeling with stochastic analysis tools 415 

for predicting DNAPL longevity timeframes when mass transfer parameters remain unconstrained. 416 

In turn, sensitivity and FOSM analyses of the mixed experiment coincided in a low-ranked αT,g, 417 

suggesting that its prior (default) value of 0.001 m is reasonable for simulating dissolution of 418 

ganglia-dominated accumulations.  419 

 420 

 421 
Figure 5. Relative uncertainty variance reduction of VA model parameters of mixed experiment. 422 

 423 

Difficulties in reducing prior uncertainty of the γ parameters in the heterogeneous experiment are 424 

reflected in Figure 6. Yet the prior uncertainty of Sa
N parameters of DNAPL accumulations 1A 425 

(S1A
N), 1B (S1B

N), and 3 (S3
N) was reduced by approximately more than 50%. The higher RUVR of 426 

S3
N with respect to other Sa

N parameters was attributed to the sequential dissolution of upgradient 427 

DNAPL masses, allowing the tailing segment of the TCE monitoring profile to constrain the 428 

remaining source architecture (S3
N). These results implied that modeling efforts supporting the 429 

characterization of sites with aged, pool-dominated source zones, may benefit from history-430 

matching of monitoring profiles. However, situations with scarce monitoring data and significant 431 

uncertainties on Sa
N distributions along groundwater flow paths may warrant HRSC efforts. In 432 

turn, source characterization data such as DyeLIF and Hydraulic Profiling Tool (HPT) (Horst et 433 

al., 2018) can be leveraged for VA model parameterization, while FOSM analyses can help guide 434 

additional data collection efforts to constrain DNAPL dissolution trends. 435 

 436 
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 437 
Figure 6. Relative uncertainty variance reduction of VA model parameters of heterogeneous experiment. 438 

 439 

4.2.2. Prior and posterior parameter contributions to predictive uncertainty 440 
 441 

As shown in Figure 7, FOSM analyses validated negligible XTOR values caused by the ganglia 442 

parameters in the mixed experiment. Although the pool dispersive area (YXp) and γp influenced 443 

XTOR results (Figure 3), prior and posterior TOR uncertainties of the mixed experiment were clearly 444 

driven by the pool mass and αT,p (Figure 7). Likewise, Figure 8 indicated that the primary drivers 445 

of prior TOR uncertainty in the heterogenous experiment were S3
N, αT,3, and γ3. Repeating FOSM 446 

calculations with uncertainty bounds defined as 0 < αT (m) < 0.01 for all DNAPL accumulations 447 

in the heterogeneous experiment did not alter the uncertainty rankings shown in Figure 8. Results 448 

of both experiments agreed on the significance of dispersive mass transfer (αT) from high-449 

saturation DNAPL accumulations in regulating TOR. However, the accurate replication of the 450 

heterogenous source dissolution trend with αT,3 = 0 m was attributed to the contrast in grain sizes, 451 

limiting dispersion from the coarse-grained lenticular zone into the finer surrounding sands despite 452 

high S3,0
N values. 453 

 454 

Unlike the empirical mass depletion exponent γ3, αT may be directly measured at contaminated 455 

sites to directly constrain mass transfer uncertainties. Examples of field methods include push-pull 456 

tracer tests, borehole and HPT logging, and discrete groundwater sampling with direct push 457 

technology (DPT). These data may be interpreted with 2D analytical modeling (Huang et al., 458 

2010), grain-size correlations with soil hydraulic conductivity and αT (Carey et al., 2018), and 459 

spatial moment analysis (Rockhold et al., 2016), respectively. Nonetheless, the αT component of 460 

DNAPL dissolution expressed in Equation 1 should not be confused with plume-scale 461 

macrodispersion. While dispersivity at the source-zone and plume scales is driven by mechanical 462 

or hydrodynamic mixing along tortuous flow paths (Molz, 2015), coupling a VA model of DNAPL 463 

dissolution with a downgradient contaminant plume model may require two different αT values 464 

based upon site-specific conditions. Several studies have demonstrated the relationship between 465 

soil grain size and αT (Carey et al., 2018), concurring with its role on DNAPL mass transfer 466 

(Figures 7 and 8). This is in contrast to Gilland-Sherwood mass transfer correlations which rely 467 

upon aqueous-phase transport models for the contribution of αT to DNAPL dissolution (Yang et 468 

al., 2019). 469 
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 470 

As indicated in Figure 8, the primary driver of posterior TOR uncertainty, γ3, reflected its role in 471 

regulating source discharge concentrations over several orders of magnitude. While a lack of 472 

extensive groundwater monitoring at contaminated sites could limit γ constraining via history-473 

matching, Sa
N and flow-field heterogeneities may also pose additional uncertainties on mass 474 

transfer assumptions. In this case, TCE dissolution tailing, primarily regulated by S3
N, was also 475 

modulated by flow channelization in the coarse sand lens (Figure 2b). Transient reductions in 476 

DNAPL interfacial areas, which limit mass transfer rates through the γ parameter, were obfuscated 477 

by a local increase in U0 and kr in the heterogeneous experiment (Stewart et al., 2021). Although 478 

the level of characterization detail available for the flow-cell experiment would not be available at 479 

field sites, VA modeling provides an efficient means to evaluate conceptual assumptions of system 480 

heterogeneities and quantify mass transfer uncertainties. The prior uncertainty rankings of S1B
N 481 

and S3
N parameters (Figure 8) emphasized the level of effort for DNAPL delineation required for 482 

adequate model parameterization. 483 

 484 

 485 
Figure 7. Prior and posterior parameter contributions to TOR uncertainty in the mixed experiment. 486 

 487 
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 488 
Figure 8. Prior and posterior parameter contributions to TOR uncertainty of heterogeneous experiment. 489 

 490 

4.2.3. Data-Worth Analysis 491 
 492 

The worth of TCE monitoring profiles of the mixed and heterogeneous experiments is shown in 493 

Figures 9 and 10, respectively. Both figures express data worth on the Y-axis as a percent reduction 494 

and increase of σTOR and σ’TOR (see Table 2), respectively, by individual monitoring 495 

measurements. Figures 9a and 10a indicate the worth of individual measurements for constraining 496 

prior TOR uncertainty (σTOR), whereas Figures 9b and 10b depict increases in posterior 497 

(constrained) TOR uncertainty (σ’TOR) caused by data removal. As shown in Figure 10, a tendency 498 

of increasing data worth in the mixed experiment started at point C, when the pool mass transfer 499 

area (Ap,xy) was sufficiently reduced to onset dissolution tailing. Similar prior and posterior data-500 

worth trends in the mixed experiment suggested that peak concentrations emanating from ganglia-501 

dominated accumulations do not constrain TOR. In turn, the RUVR of pool mass (~70%) and αT,p 502 

(~60%) controlling TOR uncertainty was attributed to TCE monitoring after point C (Figure 9), 503 

highlighting the benefit of history-matching for characterizing sites with aged source zones and 504 

simple architectures. In these experiments, point C represents a rough mid-point for the DNAPL 505 

TOR despite an 80% reduction in the total DNAPL mass. 506 

 507 

 508 
Figure 9. Worth of monitoring data for constraining TOR uncertainty of the mixed experiment shown in Figure 2a: 509 
a) Decrease in prior uncertainty with addition of individual TCE concentrations. The filled data points highlight the 510 
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greatest information content for reducing prior TOR uncertainty. b) Increases in posterior uncertainty with data 511 
removal. Points A, B, C show DNAPL depletion images measured by DiFilippo et al. (2010). 512 

 513 

Figure 10a shows the worth of breakthrough inflection points along the TCE monitoring curve of 514 

the heterogeneous experiment for constraining σTOR. The first peak in the σTOR decrease curve 515 

coincided with point A, indicating the onset of rapid dissolution of DNAPL mass accumulation 1b 516 

after mass 1a was completely dissolved. The second peak of σTOR reduction occurred during a 517 

slight increase in TCE concentrations, reflecting an increased kr through mass 2 after mass 1B was 518 

dissolved. The final peaks of σTOR reduction (Figure 10a) and σ’TOR increase (Figure 10b) 519 

coincided with the final stage of DNAPL dissolution associated to mass 3. These results 520 

highlighted disadvantages of predicting future system behavior from limited monitoring profiles, 521 

corresponding to situations where remaining source architectures and heterogeneities have not yet 522 

been reflected in historical dissolution trends. 523 
 524 

 525 
Figure 10. Worth of TCE dissolution measurements for reducing TOR uncertainty of the heterogeneous experiment 526 
shown in Figure 2b: a) Decrease in prior uncertainty with addition of individual history-matching constraints. The 527 
filled data points highlight the greatest information content for reducing prior TOR uncertainty. b) Increases in 528 
posterior uncertainty with data loss. Points A, B, C show the DNAPL depletion measured by DiFilippo et al. (2010). 529 

 530 

4.3. Nonlinear Uncertainty Analysis 531 
 532 

Figure 11 indicates that all prior and posterior source dissipation timeframes of the mixed 533 

experiment included the “true TOR” (μTOR = 27.9 days). All posterior analyses underestimated the 534 

initial DNAPL mass in the mixed experiment by ~11%, yet the known value of 17.2 g was included 535 

within 95% confidence limits (results not shown). The average estimated Sg
N and Sp

N values were 536 

4% and 40%, respectively, consistent with initial experimental conditions (Figure 2a). Prior and 537 

posterior TOR uncertainties in Figure 11 demonstrated the utility of VA modeling for estimating 538 

unbiased depletion timeframes a priori, by leveraging DNAPL-delineation or limited monitoring 539 

data pertaining to source zones with relatively simple architectures and flow conditions. 540 

 541 
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 542 
Figure 11. Prior and posterior TOR PDFs of mixed experiment. Posterior A and B were estimated by history-543 

matching TCE concentrations through day 11.7 and 20 (Figure 10), respectively. 544 
 545 

The stochastic optimization of the heterogeneous experiment models underestimated initial 546 

DNAPL mass by ~7%, with 95% confidence limits encompassing the injected amount of 20.4 g 547 

(results not shown). As illustrated in Figure 12, posterior Sa
N uncertainties reflected the averaging 548 

by model resolutions required to history-match the complete TCE dissolution profile and quantify 549 

TOR uncertainty (Figure 13). Figure 13 shows all posterior TOR PDFs encompassing the “true” 550 

TOR of 28.6 days, emphasizing the worth of final DNAPL dissolution stages for constraining TOR 551 

with various model resolutions. However, the 2M and 3M models required removing peak TCE 552 

concentrations from day 0 through day 9 (Figure 14). Not doing so did not impact the accuracy of 553 

estimated DNAPL mass, but resulted in an artificially low initial S1
N of lumped mass 1 from 554 

inadequate parameterization complexity (results not shown). Sufficient source architecture 555 

parameters are thereby necessary to assimilate complex dissolution profiles to avoid misleading 556 

injection-based remedial designs.  557 

 558 

 559 
Figure 12. Posterior DNAPL saturation distributions of each DNAPL accumulation in the 4M, 3M, and 2M VA 560 

models of the heterogeneous experiment.   561 
 562 
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 563 
Figure 13. Prior and posterior TOR PDFs of the heterogeneous experiment conceptualized by 2, 3, and 4 DNAPL 564 

accumulations. 565 
 566 

 567 

 568 
Figure 14. Posterior model ensembles of the heterogeneous experiment corresponding to (A) 4, (B) 3, and (C) 2 569 

DNAPL accumulations. 570 
 571 

Figure 15 shows prior predictive PDFs approximated with Sa
N constraints assuming availability of 572 

HRSC data to inform model parameters. The prior Sa
N constraints for this analysis correspond 573 

Figure 12. Despite low probability densities, all prior PDFs encompassed the μTOR = 28.6 days, 574 

suggesting that even a low-resolution model (2M) accounting for Sa
N distributions along the flow 575 
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path can predict unbiased source dissipation timeframes. However, Figure 15 depicts biased 576 

posterior 2M PDFs tending to exclude μTOR resulting from monitoring data assimilation with 577 

inadequate parameterization complexity. Unlike 2M, 3M included an adjustable “dissolution 578 

enhancement factor” representing increased velocity through the coarse lens. Omitting that 579 

parameter from the 3M model (fixing it at a value of 1) did not impact σ’TOR estimated from the 580 

entire TCE profile (Figures 14 and 15). However, σTOR and σ’TOR estimated from partial TCE 581 

profiles were also overestimated (excluding μTOR) and the nonmonotonic increase in TCE 582 

concentrations from day 15 through day 20 could not be reproduced (results not shown). Hence, 583 

the unbiased Posterior A and B results of the 3M model, shown in Figure 15, suggested that in 584 

addition to adequate representation of DNAPL distribution along the local flow path, 585 

parameterization of flow field heterogeneity is also necessary to avoid biasing model estimates 586 

through history-matching of multistage and nonmonotonic dissolution profiles.  587 

 588 

 589 
Figure 15. Probability density functions of TOR approximated with 2M and 3M models of heterogeneous experiment. 590 
Posterior A and B PDFs were estimated from partial TCE monitoring profiles through day 14 and 20, respectively. 591 

 592 

5. Conclusions 593 

 594 

This work demonstrated a practical approach for estimating DNAPL dissolution timeframes 595 

coupling upscaled modeling with uncertainty analysis methods. Assimilation of monitoring data 596 

may induce model predictive bias without sufficient parameterization complexity representing the 597 

DNAPL source, including sequential dissolution of DNAPL accumulations distributed along the 598 

flow path. In both experiments, saturation parameters and transverse dispersion of pool-dominated 599 

DNAPL accumulations controlled the source zone longevity, and were constrained by tailing of 600 

final dissolution stages despite their negligible sensitivity with respect to measured effluent 601 

concentrations. Because the VA model provides TOR as a direct output, FOSM analyses can be 602 

used to guide site characterization efforts to constrain prior, or remaining posterior parameter 603 

uncertainties responsible for predictive TOR and mass discharge/flux uncertainties. As 604 

demonstrated with the heterogeneous source zone experiment, field mapping of aquifer hydraulics, 605 

and/or estimation of source zone architecture using physically-based inversion methods can be 606 

leveraged to refine site conceptual assumptions encapsulated in VA model parameters. This 607 

includes direct constraining of transverse vertical dispersivity at the source zone scale, regardless 608 

of DNAPL saturation, differentiating its contribution to DNAPL dissolution from macrodispersion 609 

at the contaminant plume scale. 610 

 611 
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Local groundwater velocity and source zone dimensions had a prominent impact on mass 612 

discharge and DNAPL persistence because of their scaling role on mass transfer processes. Hence, 613 

these parameters require constraining by monitoring and site characterization scales, promoting 614 

adequate dilution and flow bypassing effects on DNAPL dissolution. Conversely, saturation 615 

parameters of ganglia-dominated DNAPL accumulations, which may not be directly measured at 616 

field sites, did not impact source longevity timeframes when pools were present. Yet their 617 

influence on peak discharge concentrations justifies their parameterization to avoid erroneous 618 

estimates of DNAPL saturation distributions and mass discharge rates. Although accurately 619 

simulating mass discharge was possible with increased resolution of source zone architecture, 620 

exclusive designations of ganglia and pool fractions of DNAPL may be inadequate for mass 621 

transfer modeling. The high-saturation DNAPL accumulation embedded in the coarse sand lens of 622 

the heterogeneous experiment, controlled the source zone longevity without dispersive mass 623 

transfer. Moreover, lumping the downgradient saturations and ignoring flow field heterogeneity, 624 

biased lifespan estimates of the heterogenous source zone and degraded the replication of 625 

nonmonotonic DNAPL dissolution tailing. While this level of characterization detail may not be 626 

available for contaminated sites, upscaled modeling and stochastic uncertainty analyses of site 627 

conceptual assumptions can support risk-based decision making through data assimilation and 628 

predictive hypothesis testing with a physical mass transfer basis. 629 
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Key Points 13 
 14 

 Upscaled modeling and uncertainty analyses of flow-cell experiments elucidated upon data 15 

assimilation strategies at DNAPL sites 16 

 Parameterization of source zone heterogeneities for history-matching was necessary to 17 

predict unbiased DNAPL dissolution timeframes 18 

 Coarse DNAPL delineation sufficed to quantify unbiased uncertainty limits of source zone 19 

lifespans a priori  20 

Abstract 21 

Estimating dissipation timeframes and contaminant mass discharge rates of dense non-aqueous 22 

phase liquids (DNAPLs) source zones is of key interest for environmental-management support. 23 

Upscaled mathematical modeling of DNAPL dissolution provides a practical approach for 24 

assimilating site characterization and downgradient monitoring data to constrain future system 25 

behavior. Yet significant uncertainties on predictions of source zone dissipation rates may arise 26 

from inadequate or inaccurate conceptual assumptions in parameterization designs. These 27 

implications were investigated through upscaled modeling, sensitivity, and uncertainty analyses of 28 

high-resolution flow-cell experiments. Sensitivity results emphasized the role of local groundwater 29 

velocity and source dimensions in mass transfer scaling by strongly influencing error with respect 30 

to DNAPL persistence and dissolution rates. Linear uncertainty analyses, facilitated by PEST 31 

ancillary software, demonstrated the worth of monitoring profiles for constraining DNAPL 32 

saturations and dispersive mass transfer rates, responsible for source zone longevity. Nonlinear 33 

analyses performed with the iterative ensemble smoother PESTPP-iES, facilitated the 34 

quantification of unbiased source dissipation uncertainties from DNAPL delineation data. 35 

Conversely, monitoring data assimilation without consideration of flow-field heterogeneity and 36 

saturation distribution along the flow path biased model predictions. Our analyses provided 37 

practical recommendations on upscaled model design to assimilate available site data and support 38 

remedial-decision making. 39 

 40 

Plain Language Summary 41 

Currently, remedial-decision makers rarely benefit from physically-based modeling methods and 42 

uncertainty analyses to manage sites impacted by DNAPL source zones. Difficulties in estimating 43 
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DNAPL dissolution rates stem from source zone heterogeneities, which are difficult to characterize 44 

in detail, compounded by a lack of scalable methodologies connecting source zone characterization 45 

with discharge monitoring. In addition, monitoring and site characterization efforts supporting 46 

performance-based remedial objectives are typically uninformed by uncertainty evaluations 47 

predicated on DNAPL mass transfer processes. To bridge that gap, we investigated the impact of 48 

data-driven conceptual assumptions on predictions of source zone behavior by coupling a practical 49 

DNAPL dissolution model with uncertainty quantification methods. Simulations of flow-cell 50 

experiments demonstrated the worth of DNAPL delineation for constraining source zone 51 

dissipation uncertainties, estimated a priori through parameterization of DNAPL distributions. In 52 

turn, parameterizing system heterogeneities in greater detail was necessary to estimate unbiased 53 

source zone characteristics and lifespans, derived from the assimilation of complex DNAPL 54 

dissolution trends observed in monitoring profiles. Our results demonstrated how available site 55 

data can be integrated into a decision-support modeling framework to inform data collection 56 

strategies and remedial designs. 57 

 58 

Index Terms and Keywords 59 
 60 

Source zone persistence, source zone heterogeneity, DNAPL dissolution rates, conceptual 61 

assumptions, data assimilation, model parameterization, remedial-decision making, practical 62 

recommendations 63 

 64 

1. Introduction 65 
 66 

Mathematical modeling can provide valuable insights for decision support at hazardous waste sites 67 

with groundwater impacted by dense non-aqueous phase liquids (DNAPLs). However, a gap 68 

between simplistic analytical screening models and overly complex numerical simulators has 69 

limited their applicability for estimating DNAPL longevity and dissolution rates. Researchers have 70 

focused on estimating distributions of DNAPL saturation, referred to as the source zone 71 

architecture, or DNAPL dissolution rates from synthetically-generated datasets using several 72 

mathematical approaches to simulating mass transfer. Several studies considered either a local 73 

equilibrium assumption (LEA) or Gilland-Sherwood models of interphase mass transfer (Kang et 74 

al. 2021a; Powers et al., 1992, 1994; Saenton & Illangasekare, 2004).  75 

 76 

Decision-support modeling incorporating LEA is questionable because heterogeneity of aquifer 77 

hydraulic properties and source architecture can induce flow bypassing and mass transfer rate 78 

limitations, resulting in nonequilibrium concentrations typically observed at field sites (Falta, 79 

2003; Kokkinaki et al., 2013). Similarly, Gilland-Sherwood models rely on correlations between 80 

empirical coefficients and soil particle sizes that were determined under specific bench-scale 81 

conditions, which may not be applicable to field-scale problems with different hydraulic properties 82 

(Powers et al., 1992; Saenton & Illangasekare, 2007). Moreover, the computational cost of pore-83 

scale numerical models incorporating LEA and Gilland-Sherwood correlations limits their 84 

practicality for data assimilation and uncertainty quantification (Falta, 2003; Kokkinaki et al., 85 

2013; Powers et al., 1994). An alternative method is predicated on a lumped-process, scale-86 

dependent mass transfer coefficient estimated from monitoring data (Guo et al., 2020; Mobile et 87 

al., 2012; Park & Parker, 2005). However, estimating mass transfer rates exclusively from 88 
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historical monitoring may bias predictions of source longevity because of architectural changes. 89 

For example, early in the life cycle of a DNAPL source zone, the contributions of slowly dissolving 90 

pools governing complete depletion may not be discernible in discharge data (Abriola et al., 2013). 91 

 92 

Multistage DNAPL dissolution, typically observed at contaminated sites and in dissolution 93 

experiments, arises from heterogeneity of source zone architecture (Figure 1) primarily comprised 94 

by residual ganglia and high-saturation DNAPL pools (Christ et al., 2010; Dekker & Abriola, 95 

2000; DiFilippo & Brusseau, 2008; Lemke & Abriola, 2006; Parker & Park, 2004). Consequently, 96 

a number of high-resolution site characterization (HRSC) technologies have been developed 97 

(Einarson et al., 2018; Horst et al., 2018; Kueper et al., 2014). Delineation of DNAPLs comprised 98 

by chlorinated ethenes is possible with dye-enhanced laser induced fluorescence (DyeLIF) and 99 

confirmatory sampling, and with indirect observation methods, such as multilevel monitoring and 100 

groundwater extraction systems, passive flux meters, push-pull tracer tests, etc. (Horst et al. 2018; 101 

Huang et al. 2010; ITRC, 2010; Kueper et al., 2014). Although HRSC may help constrain DNAPL 102 

distribution, quantifying residual mass and saturation directly is not possible (Einarson et al., 103 

2018). Thus, inverse modeling techniques have been applied to quantify lumped-process mass 104 

transfer coefficients from monitoring data Marble et al., 2008; Mobile et al., 2012; Saenton & 105 

Illangasekare, 2004), or to estimate source zone architectures from borehole and geophysical 106 

measurements using physically-based parameterization mechanisms (Kang et al. 2021a, 2021b). 107 

Kang et al. (2022) demonstrated a novel Bayesian inversion framework to reconstruct complex 108 

permeability and DNAPL saturation fields, subsequently parameterizing an upscaled model of 109 

DNAPL dissolution to reproduce experimental source depletion trends. 110 

 111 

Upscaled (domain-averaged) models lacking a physical mass transfer basis cannot assimilate 112 

HRSC data and have proved ineffective at explaining and predicting DNAPL dissolution behavior 113 

(Christ et al., 2006; Kokkinaki et al., 2014; Marble et al., 2008). However, upscaled models 114 

incorporating metrics describing the source zone architecture, such as the ganglia-to-pool (GTP) 115 

mass ratio, have shown improved success (Abriola et al. 2013; Christ et al., 2010; DiFilippo & 116 

Brusseau, 2011). Stewart et al. (2021) developed a volume-averaged (VA) model of DNAPL 117 

dissolution predicated on characteristic length scales of DNAPL accumulations and their relative 118 

location along groundwater flow paths, explicitly accounting for mass transfer processes at the 119 

source zone scale (Figure 1). The model accurately reproduced complex DNAPL dissolution 120 

observed in laboratory, numerical, and field experiments by parameterizing initial, and estimable 121 

system characteristics without undertaking history-matching. The VA model is therefore able to 122 

assimilate HRSC and/or monitoring data to estimate source dissipation timeframes with 123 

computational efficiency in a scalable and physically-based manner. Such capabilities make the 124 

VA model suitable for evaluating site conceptual assumptions and quantifying uncertainties, which 125 

is necessary for effective remedial-decision support (Abriola, 2005). 126 

 127 

The primary objectives in this work were to (i) identify the relative contribution of VA mass 128 

transfer parameters to source zone dissipation uncertainties, and (ii) investigate how model 129 

parameterization influences predictive bias through monitoring data assimilation. The VA DNAPL 130 

dissolution model developed by Stewart et al. (2021) was coupled with sensitivity and uncertainty 131 

analysis methods to evaluate the worth of direct and indirect source zone measurements for 132 

constraining system parameters and model uncertainty. High-resolution datasets of two DNAPL 133 

dissolution experiments were leveraged to evaluate data-driven conceptual assumptions on 134 
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modeling outcomes. Our findings elucidate on model design to quantify unbiased DNAPL 135 

persistence uncertainties, yielding recommendations on HRSC and monitoring data assimilation 136 

for constraining future source zone behavior. 137 

2. Upscaled and Volume-Averaged Model of DNAPL Dissolution 138 
 139 

Volume-averaging relaxes the need to specify precise locations of DNAPL accumulations within 140 

a finely discretized domain. The approach facilitates the incorporation of physically-based mass 141 

transfer relationships for complex field-scale dissolution behavior with computational efficiency. 142 

As presented by Stewart et al. (2021), dissolution of a single DNAPL accumulation, defined as a 143 

volume of relative uniformity in saturation, can be simulated by a generalized upscaled mass 144 

transfer function: 145 

 146 

 𝑘
𝑈
𝑉

𝐴 , 𝑘 𝑚 𝐴 ,
4𝛼
𝜋𝑋

𝑚
𝑚 ,

 (1) 

 147 

 148 
Figure 1. Conceptual and volume-averaged model representations (a and b, respectively) of a DNAPL source zone 149 
comprised by characteristic accumulations of (c) residual ganglia and (d) pools. Adapted from Stewart et al. (2021). 150 
 151 

Where interphase mass transfer (ka
N) from an individual DNAPL accumulation “a” is driven by 152 

the local Darcy groundwater velocity (U0) upscaled by a source zone reference volume (VS) 153 

encompassing the DNAPL masses. The term on the left inside the brackets represents dissolution 154 

attributable to through flow (Figure 1c), which is proportional to the projected area facing flow 155 

(Aa,yz = YaZa) of “a”. Flow through “a” is regulated by the soil relative permeability (kr) which 156 

gradually increases the DNAPL dissolution rate as the DNAPL volume is reduced. The term on 157 

the right represents dissolution attributable to dispersion into bypassing flow (Figure 1d), which is 158 

proportional to the hydrodynamic transverse dispersivity (αT) around “a” and the horizontal area 159 

of the accumulation (Aa,xy = XaYa). Mass dissolution from low DNAPL saturations, i.e., ganglia, 160 
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are dominated by flow through, while high saturation zones, i.e., pools, can be dominated by 161 

dispersion. The normalized mass (m/m0) term reflects a transient reduction of DNAPL interfacial 162 

area. Theoretically, the dimensionless exponent γ = 2/3 for ganglia-dominated accumulations, and 163 

γ = ½ for pool-dominated accumulations. The γ exponent may be adjusted during model history-164 

matching to allow for deviations from conceptual mass transfer assumptions but is expected to fall 165 

within this relatively narrow range (Stewart et al., 2021). 166 
 167 

2.1. Simulation of DNAPL Dissolution Experiments 168 
 169 

Flow-cell experiments presented by DiFilippo et al. (2010) and analyzed by Guo et al. (2020) with 170 

a simplified inverse modeling method were utilized in this study. Stewart et al. (2021) simulated 171 

these experiments with the VA approach by explicitly accounting for DNAPL saturation 172 

distributions, flow field characteristics, and soil properties. The dissolution experiments consisted 173 

of two source zone scenarios: a “mixed” DNAPL architecture comprised by a ganglia-dominated 174 

accumulation and a pool-dominated accumulation in homogeneous sand, and multiple DNAPL 175 

accumulations in a “heterogeneous” soil. Details of model conceptualization and simulation results 176 

were presented in Stewart et al. (2021). 177 

 178 

2.1.1. Mixed DNAPL Architecture 179 
 180 

The “mixed” source zone experiment conducted by DiFilippo et al. (2010) consisted of a uniform 181 

pack of sand (40/50 mesh) with a 2-cm thick capillary barrier located along the bottom of the test 182 

cell (Figure 2a). An injection of ~12 milliliters of trichloroethene (TCE) at the top of the test cell 183 

followed by 48-hour period prior to flow initiation generated a stable source zone architecture 184 

consisting of a vertical ganglia zone underlain by a pool. The DNAPL saturation distribution was 185 

characterized using a light reflection visualization (LRV) method and TCE effluent concentrations 186 

were monitored until source zone depletion.  187 

 188 

 189 
Figure 2. Model conceptualizations of the flow-cell experiments: (a) mixed source zone architecture and (b) 190 
heterogeneous source zone.  Sub-volumes (purple rectangles) correspond to DNAPL accumulations with distinct 191 
saturations encompassed by the source volume (purple dashed line). Adapted from Stewart et al. (2021). 192 
 193 

2.1.2. Multiple DNAPL accumulations in Heterogeneous Soil 194 

 195 

The test cell of the heterogeneous source experiment (Figure 2b) consisted of a matrix of 196 

homogeneous sand (40/50 mesh) with coarser (20/30 mesh) and finer (70/100 mesh) lenticular 197 
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zones (DeFilippo et al., 2010; Guo et al., 2020). An injection of ~15 milliliters of TCE at the top 198 

of the cell was distributed between two ports with 66% in the far left (upgradient) port and 33% in 199 

the center (downgradient) port (DeFilippo et al. 2010). The central release generated two distinct 200 

accumulations: one above a fine-grained lens and one within a coarse-grained lens. The coarse 201 

lens had an intrinsic permeability approximately 3.5 times higher than the surrounding bulk sands 202 

(DeFilippo et al., 2010), resulting in a higher velocity through this material than in the surrounding 203 

matrix. As shown in Figure 2b, Stewart et al. (2021) subdivided the upgradient accumulation into 204 

two accumulations on the basis of characteristic saturations to accurately capture the measured 205 

TCE effluent breakthrough. Sequential dissolution inhibition was also implemented by Stewart et 206 

al. (2021) for the two downgradient accumulations on the basis of their relative locations along the 207 

flow path. Nomenclature for variables in the model are presented in Table 1. 208 

 209 
Table 1. Nomenclature of input parameters used in the VA model of the flow-cell experiments. 210 

Parameter Mixed Source Heterogeneous Source Unit 
Mass Mass G. Mass P. Mass 1A Mass 1B Mass 2 Mass 3 g 

Length Xg Xp X1A X1B X2 X3 m 
Width Yg Yp Y1A Y1B Y2 Y3 m 
Height Zg Zp Z1A Z1B Z2 Z3 m 

NAPL Saturation Sg
N Sp

N S1A
N S1B

N S2
N S3

N % 
Area Facing Flow YZg YZp YZ1A YZ1B YZ2 YZ3 m2 
Dispersive Area XYg XYp XY1A XY1B XY2 XY3 m2 

Dispersivity αT,g αT,p αT,1A αT,1B αT,2 αT,3 m 
γ γg γp γ1A γ1B γ2 γ3 - 

 211 

2.2. Sensitivity Analysis 212 
 213 

Model output variability was evaluated with local sensitivity analysis by systematically perturbing 214 

input parameters around reference values conceptualized in Stewart et al. (2021). The goal was to 215 

compare relative sensitivities with respect to measured discharge concentrations and with respect 216 

to the time required to reach cleanup concentrations, defined here as time of remediation (TOR). 217 

Both metrics were evaluated using the same model input variability around base parameter sets. 218 

Because the plausible variability range of some parameters and their corresponding outputs differs 219 

by orders of magnitude compared to those of other parameters, sensitivity coefficients were scaled 220 

by maximum values to provide a relative comparison metric of simulation error. All sensitivity 221 

analyses were automated coupling SENSAN and PEST software (Watermark Numerical 222 

Computing, 2018) for calculation fidelity. 223 

 224 

2.2.1. Sensitivities with respect to TCE discharge concentrations 225 
 226 

Normalized sensitivity coefficients (XTCE) were calculated on the basis of root mean squared errors 227 

(RMSE) between simulated (simi) and measured (obsi) discharge concentrations as: 228 

 229 

 𝑋
|𝜕𝑅𝑀𝑆𝐸| / 𝑅𝑀𝑆𝐸 𝑎

|∆𝑎 / 𝑎|
/𝑋  (2) 

 230 

where: 231 
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 232 

 𝑅𝑀𝑆𝐸
1
𝑁

𝑠𝑖𝑚 𝑜𝑏𝑠
/

 (3) 

 233 

 𝜕𝑅𝑀𝑆𝐸 𝑅𝑀𝑆𝐸 ∆𝑎 𝑅𝑀𝑆𝐸 𝑎  (4) 
 234 

a = base parameter; Δa = perturbed parameter – a; N = number of TCE effluent measurements. All 235 

sensitivity coefficients were normalized by maximum values (𝑋 ) to provide a relative 236 

comparison metric of model sensitivities. 237 

 238 

2.2.2. Sensitivities with respect to TOR 239 
 240 

Provided with a cleanup concentration input, the VA model calculates the time required to reach 241 

the target value (e.g., contaminant MCL). Using the base parameter sets, which reflect detailed 242 

experimental conditions and initial source zone properties, TOR was calculated for both 243 

experiments setting target concentrations at C = 0.005 mg/L. Sensitivity coefficients normalized 244 

by maximum values (𝑋 ) were calculated as:  245 

 246 

  𝑋
𝑅𝑀𝑆𝐸 ∆𝑎

|∆𝑎 / 𝑎|
/𝑋  (5) 

3. Uncertainty Analysis 247 
 248 

Source zone metrics controlling field-scale dissolution include DNAPL mass and distribution 249 

(Abriola et al., 2013). Uncertainties associated to both metrics can therefore propagate to model 250 

predictive uncertainties (Abriola, 2005; Tang, 2019). Prior (pre-history matching) parameter and 251 

predictive uncertainties can be informed by expert knowledge and/or by site characterization (e.g., 252 

DNAPL delineation, projected flow through area), whereas posterior (post-history matching) 253 

uncertainties may be reduced and quantified through history-matching of monitoring data.  254 

Because volume-averaging eliminates spatial parameter correlations, the prior uncertainty of mass 255 

transfer parameters was expressed through statistically uncorrelated uncertainty bounds (archived 256 

data file). All initial (mean) parameter values were inherited from Stewart et al. (2021). 257 

 258 

Uncertainty bounds of characteristic dimensions (Va) and mass (ma) of DNAPL accumulations 259 

were designed so that 1% < Sa
N < 60% and ∑Va < VS in both experiments; where DNAPL saturation 260 

(Sa
N) of the pore space (ϕ) is also a function of DNAPL density (ρn) as indicated by Equation 6. 261 

Per sensitivity results, upscaling parameters (VS, U0, and ϕ) were assumed well constrained by the 262 

monitoring scale and removed from predictive uncertainty evaluations. Uncertainty analyses were 263 

focused on ma, Va, αT, and γ pertaining to each DNAPL accumulation. Linear and nonlinear 264 

uncertainty quantification methods were implemented to understand drivers of model uncertainties 265 

and bias emerging from data-driven conceptual assumptions. 266 

 267 

 𝑆
𝑚𝑎

𝑉𝑎𝜙𝜌𝑛

 (6) 

 268 
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3.1. Linear Analysis Methods 269 
 270 

Model linearization expressed in Equation 7 is the primary assumption in first-order second-271 

moment (FOSM) analysis (Doherty, 2015). Equation 7 indicates that a vector of measurements of 272 

system state h equals the action of the model Z on a vector of parameters k plus a vector of 273 

measurement noise ε. Prior model uncertainty was expressed by Equation 8 assuming a multi-274 

gaussian probability density function (PDF), defined by mean parameter values k and a diagonal 275 

covariance matrix C(k). Likewise, FOSM analysis assumes a multi-gaussian PDF of ε (Equation 276 

9), defined by mean values of zero and a diagonal covariance matrix C(ε). Jacobian matrices Z 277 

were weighted by the inverse of the standard deviation (σ) of ε. The misfit between simulated 278 

(Stewart et al., 2021) and measured TCE concentrations was used to define ε, where σε
-1 values 279 

were calculated with the PEST-based utility PWTADJ2 (Watermark Numerical Computing, 2018) 280 

as observations weights for FOSM analyses. 281 

 282 

 h  Zk  ε (7) 
 283 

 k ~ N k, C k (8) 
 284 

 ε ~ N 0, C ε (9) 
 285 

 s  ytk (10) 
 286 

 σs2  ytC k y (11) 
 287 

 C’ k   C k  – C k Zt ZC k Zt  C ε -1ZC k (12) 
 288 

 σ's2  ytC’ k y (13) 
 289 

Linearization of a model prediction s (Equation 10) depends on a vector of sensitivities of s (TOR) 290 

with respect to k, where the prior variance of s (Equation 11) is obtained through covariance 291 

propagation (Doherty, 2015). The posterior parameter covariance matrix (Equation 12), obtained 292 

by history-matching conditioning, was used to estimate posterior TOR uncertainty variance 293 

(Equation 13). All parameters were log-transformed to reduce their nonlinearity with respect to 294 

model outputs. Linear analyses were performed with the utility programs GENLINPRED and 295 

PREDUNC (Watermark Numerical Computing, 2018) to understand how TCE monitoring profiles 296 

constrain source zone properties, and thereby, TOR uncertainties.  297 

 298 

3.1.1. Relative parameter uncertainty variance (RUVR) reduction 299 
 300 

This statistical metric was used to evaluate the ability of dissolved TCE concentrations to reduce 301 

the prior uncertainty variance (σi
2) of each parameter (i) encapsulated in C(k). Equation 14 defines 302 

this metric upon extracting posterior parameter uncertainty variances (σ’i
2) from C’(k) as: 303 

 304 

 𝑅𝑈𝑉𝑅 1
𝜎′
𝜎

 (14) 

 305 
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3.1.2. Prior and posterior parameter contributions to predictive uncertainty 306 
 307 

The contribution of an individual parameter to the uncertainty of a prediction is defined as the fall 308 

of predictive uncertainty resulting from acquiring perfect knowledge of the parameter (Doherty, 309 

2015). Hence, individual parameters were systematically removed from FOSM calculations to 310 

investigate their relative contributions to TOR uncertainty. Because history-matching information 311 

may be shared between several model parameters, the posterior contribution of a parameter could 312 

increase in relation to its prior contribution, indicating a correlation with another parameter 313 

(Doherty, 2015). While sensitivity analyses were useful to examine relative model error incurred 314 

by perturbing individual parameters, considering parameter correlations for TOR uncertainty 315 

estimation allowed assessing the worth of HRSC over history-matching for constraining the 316 

models. 317 

 318 

3.1.3. Data-Worth Analysis 319 
 320 

The ability of spatial or temporal data to reduce the uncertainty of model predictions defines its 321 

worth (Doherty & Moore, 2020; Finsterle, 2005). The worth of individual measurements of TCE 322 

concentrations was quantified to understand how monitoring profiles reduce TOR uncertainty. 323 

Data-worth analyses were also tied to parameter RUVR, further elucidating upon the additional 324 

benefit of HRSC for constraining remaining model uncertainties.  325 

 326 

3.2. Nonlinear Analysis Methods 327 
 328 

Posterior TOR uncertainties were quantified using the iterative ensemble smoother PESTPP-iES 329 

(White et al., 2020). Multi-gaussian prior parameter PDFs were defined by uncertainty bounds 330 

spanning ± 2σ from initial (mean = μ) values, representing 95% confidence intervals. PESTPP-331 

iES undertakes Monte-Carlo sampling of parameter uncertainty bounds generating model 332 

realizations (ensembles) which are upgraded with the Gauss-Levenberg-Marquardt (GLM) 333 

optimization algorithm. Rather than simply fitting simulation results to data, PESTPP-iES can 334 

generate observation ensembles considering multi-gaussian PDFs of ε (White, 2018). Here, all 335 

experimental TCE concentrations were assigned an observation weight value of 1 with σε = 10 336 

mg/L, to simultaneously estimate model parameters and quantify the nonlinear uncertainty of TOR 337 

in a stochastic manner. This approach was implemented to evaluate TOR uncertainties and bias 338 

arising from source zone conceptual assumptions driven by data availability.  339 

 340 

In practice, HRSC data may help constrain source zone architecture, and thereby model 341 

conceptualizations. However, high predictive uncertainties may remain because of the inability to 342 

directly measure DNAPL mass and Sa
N. The benefit of data assimilation for constraining model 343 

uncertainties was investigated by estimating ma, Va, αT,a, and γa parameters in both experiments 344 

from partial and complete monitoring profiles. The resulting source dissipation timeframes were 345 

referred to as Posterior A (~13 days of monitoring), Posterior B (20 days) and Posterior All (26 346 

days). Additionally, the heterogeneous experiment was conceptualized with 2 (2M), 3 (3M) and 4 347 

(4M) DNAPL accumulations to examine TOR uncertainty and bias induced by history-matching 348 

of the entire TCE monitoring profile. The 2M model included “mass 1” and lumped “mass 2” and 349 

“mass 3” into a single accumulation (2M-3) based on the two release points, while the 3M model 350 

included those 3 distinct DNAPL accumulations. The 4M model subdivided “mass 1” into 1A and 351 
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1B (Figure 2b). Except for the 2M Model, the 3M and 4M models included an enhanced dissolution 352 

parameter to represent flow channelization through the coarse lens in which “mass 3” was 353 

embedded. Following a variability range reported in the literature (Klenk & Grathwohl, 2002), the 354 

prior uncertainty bounds of αT parameters were defined as 5e-4 < αT (m) < 2e-3 in both experiments, 355 

except for 0 (1e-15) < αT,3 (m) < 0.002 in the coarse sand lens of the heterogeneous experiment, 356 

where αT,3 = 0 m provided the best match to measured TCE concentrations (Stewart et al., 2021). 357 

4. Results and Discussion 358 
 359 

4.1. Sensitivity Analysis 360 
 361 

As shown in Figures 3 and 4, the greatest model sensitivities with respect to matching TCE 362 

concentrations (XTCE) corresponded to the source zone area (ZS and YS) orthogonal to the flow 363 

direction and groundwater velocity (U0). The former accounts for any dilution in the monitoring 364 

scale, while the latter had a prominent impact on TOR in both experiments. The role of VS and U0 365 

on scaling mass transfer processes emphasized the need to constrain them by the monitoring scale 366 

to avoid model errors induced by data assimilation. Figure 3 also indicated that the projected area 367 

facing flow (YZg) of the ganglia-dominated accumulation, rather than γg or ganglia mass, was 368 

responsible for peak aqueous-phase concentrations. Similarly, Figure 4 shows the projected area 369 

YZ1A of the most upgradient, low-saturation accumulation 1A in a high-ranked position. These 370 

XTCE results suggested that Sa
N parameters (Va and Mass) of ganglia-dominated accumulations 371 

responsible for peak concentrations do not impact TOR when a pool-dominated accumulation is 372 

also present; yet their estimation via history-matching may be valuable for remedial designs. 373 

Conversely, sensitivity with respect to TOR (XTOR) was dominated by DNAPL pool saturation 374 

(Sp
N) parameters, transverse dispersivity (αT,p), and depletion exponent (γp). The negligible XTCE 375 

values of pool parameters suggested difficulty in estimating them from monitoring data alone and 376 

value in HRSC for refining characteristic parameters of the pool. 377 

 378 

In contrast to negligible XTCE values by pool parameters in the mixed experiment (Figure 3), XTCE 379 

rankings of S3
N parameters in the heterogeneous experiment (Figure 4) suggested that high-380 

saturation DNAPL accumulations may not exclusively reflect pool fractions of source zones. 381 

Typically, the small cross-sectional areas available for dissolution by groundwater flow through 382 

DNAPL pools reduces their relative contribution to mass flux, compared to ganglia-dominated 383 

accumulations. However, as indicated in Figure 4, the morphology of DNAPL accumulation 3, 384 

controlled by flow-field heterogeneity, influenced both XTCE and XTOR rankings in the 385 

heterogeneous experiment. The predictive advantage of generalizing mass transfer processes 386 

irrespective of Sa
N (Equation 1) over upscaled models predicated on the GTP mass ratio, was 387 

further evidenced by a similar effect on XTCE and XTOR incurred by perturbing αT,3 (Figure 4). 388 

Conversely, the variability of other αT parameters in both experiments only influenced XTOR.  389 

 390 
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 391 
Figure 3. Sensitivity coefficients with respect to source discharge concentrations measured in the “mixed 392 

architecture” experiment and with respect to the simulated TOR. 393 
 394 

 395 
Figure 4. Sensitivity coefficients with respect to source discharge concentrations measured in the “heterogeneous 396 

architecture” experiment and with respect to the simulated TOR. 397 
 398 

4.2. Linear Analysis 399 
 400 

Prior (σTOR) and posterior (σ’TOR) standard deviations of TOR uncertainty estimated with FOSM 401 

analysis and mean (μTOR) values for both experiments are presented in Table 2. Results shown 402 

were calculated using the complete TCE monitoring profiles. As indicated, history-matching 403 

significantly constrained prior TOR uncertainties despite low XTCE values of TOR-sensitive 404 

parameters pertaining to high-Sa
N accumulations. 405 

 406 
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Table 2. Predictive uncertainty of mixed and heterogeneous experiments. 407 

Experiment μTOR (days) σTOR (days) σ'TOR (days) 
Mixed 27.9 19.8 8.6 
Heterogeneous 28.6 20.5 1.7 

 408 

4.2.1. Relative Parameter Uncertainty Variance Reduction 409 
 410 

Figures 5 and 6 show the benefit of history-matching for reducing prior parameter uncertainties. 411 

Despite negligible XTCE values corresponding to the pool mass and αT,p of the mixed experiment 412 

(Figure 3), history-matching reduced the prior uncertainty of these parameters by ~70% and ~60%, 413 

respectively (Figure 5). The low uncertainty reduction of γp (Figure 5), to which TOR was sensitive 414 

(Figure 3), demonstrated the benefit of coupling upscaled modeling with stochastic analysis tools 415 

for predicting DNAPL longevity timeframes when mass transfer parameters remain unconstrained. 416 

In turn, sensitivity and FOSM analyses of the mixed experiment coincided in a low-ranked αT,g, 417 

suggesting that its prior (default) value of 0.001 m is reasonable for simulating dissolution of 418 

ganglia-dominated accumulations.  419 

 420 

 421 
Figure 5. Relative uncertainty variance reduction of VA model parameters of mixed experiment. 422 

 423 

Difficulties in reducing prior uncertainty of the γ parameters in the heterogeneous experiment are 424 

reflected in Figure 6. Yet the prior uncertainty of Sa
N parameters of DNAPL accumulations 1A 425 

(S1A
N), 1B (S1B

N), and 3 (S3
N) was reduced by approximately more than 50%. The higher RUVR of 426 

S3
N with respect to other Sa

N parameters was attributed to the sequential dissolution of upgradient 427 

DNAPL masses, allowing the tailing segment of the TCE monitoring profile to constrain the 428 

remaining source architecture (S3
N). These results implied that modeling efforts supporting the 429 

characterization of sites with aged, pool-dominated source zones, may benefit from history-430 

matching of monitoring profiles. However, situations with scarce monitoring data and significant 431 

uncertainties on Sa
N distributions along groundwater flow paths may warrant HRSC efforts. In 432 

turn, source characterization data such as DyeLIF and Hydraulic Profiling Tool (HPT) (Horst et 433 

al., 2018) can be leveraged for VA model parameterization, while FOSM analyses can help guide 434 

additional data collection efforts to constrain DNAPL dissolution trends. 435 

 436 
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 437 
Figure 6. Relative uncertainty variance reduction of VA model parameters of heterogeneous experiment. 438 

 439 

4.2.2. Prior and posterior parameter contributions to predictive uncertainty 440 
 441 

As shown in Figure 7, FOSM analyses validated negligible XTOR values caused by the ganglia 442 

parameters in the mixed experiment. Although the pool dispersive area (YXp) and γp influenced 443 

XTOR results (Figure 3), prior and posterior TOR uncertainties of the mixed experiment were clearly 444 

driven by the pool mass and αT,p (Figure 7). Likewise, Figure 8 indicated that the primary drivers 445 

of prior TOR uncertainty in the heterogenous experiment were S3
N, αT,3, and γ3. Repeating FOSM 446 

calculations with uncertainty bounds defined as 0 < αT (m) < 0.01 for all DNAPL accumulations 447 

in the heterogeneous experiment did not alter the uncertainty rankings shown in Figure 8. Results 448 

of both experiments agreed on the significance of dispersive mass transfer (αT) from high-449 

saturation DNAPL accumulations in regulating TOR. However, the accurate replication of the 450 

heterogenous source dissolution trend with αT,3 = 0 m was attributed to the contrast in grain sizes, 451 

limiting dispersion from the coarse-grained lenticular zone into the finer surrounding sands despite 452 

high S3,0
N values. 453 

 454 

Unlike the empirical mass depletion exponent γ3, αT may be directly measured at contaminated 455 

sites to directly constrain mass transfer uncertainties. Examples of field methods include push-pull 456 

tracer tests, borehole and HPT logging, and discrete groundwater sampling with direct push 457 

technology (DPT). These data may be interpreted with 2D analytical modeling (Huang et al., 458 

2010), grain-size correlations with soil hydraulic conductivity and αT (Carey et al., 2018), and 459 

spatial moment analysis (Rockhold et al., 2016), respectively. Nonetheless, the αT component of 460 

DNAPL dissolution expressed in Equation 1 should not be confused with plume-scale 461 

macrodispersion. While dispersivity at the source-zone and plume scales is driven by mechanical 462 

or hydrodynamic mixing along tortuous flow paths (Molz, 2015), coupling a VA model of DNAPL 463 

dissolution with a downgradient contaminant plume model may require two different αT values 464 

based upon site-specific conditions. Several studies have demonstrated the relationship between 465 

soil grain size and αT (Carey et al., 2018), concurring with its role on DNAPL mass transfer 466 

(Figures 7 and 8). This is in contrast to Gilland-Sherwood mass transfer correlations which rely 467 

upon aqueous-phase transport models for the contribution of αT to DNAPL dissolution (Yang et 468 

al., 2019). 469 
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 470 

As indicated in Figure 8, the primary driver of posterior TOR uncertainty, γ3, reflected its role in 471 

regulating source discharge concentrations over several orders of magnitude. While a lack of 472 

extensive groundwater monitoring at contaminated sites could limit γ constraining via history-473 

matching, Sa
N and flow-field heterogeneities may also pose additional uncertainties on mass 474 

transfer assumptions. In this case, TCE dissolution tailing, primarily regulated by S3
N, was also 475 

modulated by flow channelization in the coarse sand lens (Figure 2b). Transient reductions in 476 

DNAPL interfacial areas, which limit mass transfer rates through the γ parameter, were obfuscated 477 

by a local increase in U0 and kr in the heterogeneous experiment (Stewart et al., 2021). Although 478 

the level of characterization detail available for the flow-cell experiment would not be available at 479 

field sites, VA modeling provides an efficient means to evaluate conceptual assumptions of system 480 

heterogeneities and quantify mass transfer uncertainties. The prior uncertainty rankings of S1B
N 481 

and S3
N parameters (Figure 8) emphasized the level of effort for DNAPL delineation required for 482 

adequate model parameterization. 483 

 484 

 485 
Figure 7. Prior and posterior parameter contributions to TOR uncertainty in the mixed experiment. 486 

 487 
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 488 
Figure 8. Prior and posterior parameter contributions to TOR uncertainty of heterogeneous experiment. 489 

 490 

4.2.3. Data-Worth Analysis 491 
 492 

The worth of TCE monitoring profiles of the mixed and heterogeneous experiments is shown in 493 

Figures 9 and 10, respectively. Both figures express data worth on the Y-axis as a percent reduction 494 

and increase of σTOR and σ’TOR (see Table 2), respectively, by individual monitoring 495 

measurements. Figures 9a and 10a indicate the worth of individual measurements for constraining 496 

prior TOR uncertainty (σTOR), whereas Figures 9b and 10b depict increases in posterior 497 

(constrained) TOR uncertainty (σ’TOR) caused by data removal. As shown in Figure 10, a tendency 498 

of increasing data worth in the mixed experiment started at point C, when the pool mass transfer 499 

area (Ap,xy) was sufficiently reduced to onset dissolution tailing. Similar prior and posterior data-500 

worth trends in the mixed experiment suggested that peak concentrations emanating from ganglia-501 

dominated accumulations do not constrain TOR. In turn, the RUVR of pool mass (~70%) and αT,p 502 

(~60%) controlling TOR uncertainty was attributed to TCE monitoring after point C (Figure 9), 503 

highlighting the benefit of history-matching for characterizing sites with aged source zones and 504 

simple architectures. In these experiments, point C represents a rough mid-point for the DNAPL 505 

TOR despite an 80% reduction in the total DNAPL mass. 506 

 507 

 508 
Figure 9. Worth of monitoring data for constraining TOR uncertainty of the mixed experiment shown in Figure 2a: 509 
a) Decrease in prior uncertainty with addition of individual TCE concentrations. The filled data points highlight the 510 
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greatest information content for reducing prior TOR uncertainty. b) Increases in posterior uncertainty with data 511 
removal. Points A, B, C show DNAPL depletion images measured by DiFilippo et al. (2010). 512 

 513 

Figure 10a shows the worth of breakthrough inflection points along the TCE monitoring curve of 514 

the heterogeneous experiment for constraining σTOR. The first peak in the σTOR decrease curve 515 

coincided with point A, indicating the onset of rapid dissolution of DNAPL mass accumulation 1b 516 

after mass 1a was completely dissolved. The second peak of σTOR reduction occurred during a 517 

slight increase in TCE concentrations, reflecting an increased kr through mass 2 after mass 1B was 518 

dissolved. The final peaks of σTOR reduction (Figure 10a) and σ’TOR increase (Figure 10b) 519 

coincided with the final stage of DNAPL dissolution associated to mass 3. These results 520 

highlighted disadvantages of predicting future system behavior from limited monitoring profiles, 521 

corresponding to situations where remaining source architectures and heterogeneities have not yet 522 

been reflected in historical dissolution trends. 523 
 524 

 525 
Figure 10. Worth of TCE dissolution measurements for reducing TOR uncertainty of the heterogeneous experiment 526 
shown in Figure 2b: a) Decrease in prior uncertainty with addition of individual history-matching constraints. The 527 
filled data points highlight the greatest information content for reducing prior TOR uncertainty. b) Increases in 528 
posterior uncertainty with data loss. Points A, B, C show the DNAPL depletion measured by DiFilippo et al. (2010). 529 

 530 

4.3. Nonlinear Uncertainty Analysis 531 
 532 

Figure 11 indicates that all prior and posterior source dissipation timeframes of the mixed 533 

experiment included the “true TOR” (μTOR = 27.9 days). All posterior analyses underestimated the 534 

initial DNAPL mass in the mixed experiment by ~11%, yet the known value of 17.2 g was included 535 

within 95% confidence limits (results not shown). The average estimated Sg
N and Sp

N values were 536 

4% and 40%, respectively, consistent with initial experimental conditions (Figure 2a). Prior and 537 

posterior TOR uncertainties in Figure 11 demonstrated the utility of VA modeling for estimating 538 

unbiased depletion timeframes a priori, by leveraging DNAPL-delineation or limited monitoring 539 

data pertaining to source zones with relatively simple architectures and flow conditions. 540 

 541 
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 542 
Figure 11. Prior and posterior TOR PDFs of mixed experiment. Posterior A and B were estimated by history-543 

matching TCE concentrations through day 11.7 and 20 (Figure 10), respectively. 544 
 545 

The stochastic optimization of the heterogeneous experiment models underestimated initial 546 

DNAPL mass by ~7%, with 95% confidence limits encompassing the injected amount of 20.4 g 547 

(results not shown). As illustrated in Figure 12, posterior Sa
N uncertainties reflected the averaging 548 

by model resolutions required to history-match the complete TCE dissolution profile and quantify 549 

TOR uncertainty (Figure 13). Figure 13 shows all posterior TOR PDFs encompassing the “true” 550 

TOR of 28.6 days, emphasizing the worth of final DNAPL dissolution stages for constraining TOR 551 

with various model resolutions. However, the 2M and 3M models required removing peak TCE 552 

concentrations from day 0 through day 9 (Figure 14). Not doing so did not impact the accuracy of 553 

estimated DNAPL mass, but resulted in an artificially low initial S1
N of lumped mass 1 from 554 

inadequate parameterization complexity (results not shown). Sufficient source architecture 555 

parameters are thereby necessary to assimilate complex dissolution profiles to avoid misleading 556 

injection-based remedial designs.  557 

 558 

 559 
Figure 12. Posterior DNAPL saturation distributions of each DNAPL accumulation in the 4M, 3M, and 2M VA 560 

models of the heterogeneous experiment.   561 
 562 
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 563 
Figure 13. Prior and posterior TOR PDFs of the heterogeneous experiment conceptualized by 2, 3, and 4 DNAPL 564 

accumulations. 565 
 566 

 567 

 568 
Figure 14. Posterior model ensembles of the heterogeneous experiment corresponding to (A) 4, (B) 3, and (C) 2 569 

DNAPL accumulations. 570 
 571 

Figure 15 shows prior predictive PDFs approximated with Sa
N constraints assuming availability of 572 

HRSC data to inform model parameters. The prior Sa
N constraints for this analysis correspond 573 

Figure 12. Despite low probability densities, all prior PDFs encompassed the μTOR = 28.6 days, 574 

suggesting that even a low-resolution model (2M) accounting for Sa
N distributions along the flow 575 
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path can predict unbiased source dissipation timeframes. However, Figure 15 depicts biased 576 

posterior 2M PDFs tending to exclude μTOR resulting from monitoring data assimilation with 577 

inadequate parameterization complexity. Unlike 2M, 3M included an adjustable “dissolution 578 

enhancement factor” representing increased velocity through the coarse lens. Omitting that 579 

parameter from the 3M model (fixing it at a value of 1) did not impact σ’TOR estimated from the 580 

entire TCE profile (Figures 14 and 15). However, σTOR and σ’TOR estimated from partial TCE 581 

profiles were also overestimated (excluding μTOR) and the nonmonotonic increase in TCE 582 

concentrations from day 15 through day 20 could not be reproduced (results not shown). Hence, 583 

the unbiased Posterior A and B results of the 3M model, shown in Figure 15, suggested that in 584 

addition to adequate representation of DNAPL distribution along the local flow path, 585 

parameterization of flow field heterogeneity is also necessary to avoid biasing model estimates 586 

through history-matching of multistage and nonmonotonic dissolution profiles.  587 

 588 

 589 
Figure 15. Probability density functions of TOR approximated with 2M and 3M models of heterogeneous experiment. 590 
Posterior A and B PDFs were estimated from partial TCE monitoring profiles through day 14 and 20, respectively. 591 

 592 

5. Conclusions 593 

 594 

This work demonstrated a practical approach for estimating DNAPL dissolution timeframes 595 

coupling upscaled modeling with uncertainty analysis methods. Assimilation of monitoring data 596 

may induce model predictive bias without sufficient parameterization complexity representing the 597 

DNAPL source, including sequential dissolution of DNAPL accumulations distributed along the 598 

flow path. In both experiments, saturation parameters and transverse dispersion of pool-dominated 599 

DNAPL accumulations controlled the source zone longevity, and were constrained by tailing of 600 

final dissolution stages despite their negligible sensitivity with respect to measured effluent 601 

concentrations. Because the VA model provides TOR as a direct output, FOSM analyses can be 602 

used to guide site characterization efforts to constrain prior, or remaining posterior parameter 603 

uncertainties responsible for predictive TOR and mass discharge/flux uncertainties. As 604 

demonstrated with the heterogeneous source zone experiment, field mapping of aquifer hydraulics, 605 

and/or estimation of source zone architecture using physically-based inversion methods can be 606 

leveraged to refine site conceptual assumptions encapsulated in VA model parameters. This 607 

includes direct constraining of transverse vertical dispersivity at the source zone scale, regardless 608 

of DNAPL saturation, differentiating its contribution to DNAPL dissolution from macrodispersion 609 

at the contaminant plume scale. 610 

 611 
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Local groundwater velocity and source zone dimensions had a prominent impact on mass 612 

discharge and DNAPL persistence because of their scaling role on mass transfer processes. Hence, 613 

these parameters require constraining by monitoring and site characterization scales, promoting 614 

adequate dilution and flow bypassing effects on DNAPL dissolution. Conversely, saturation 615 

parameters of ganglia-dominated DNAPL accumulations, which may not be directly measured at 616 

field sites, did not impact source longevity timeframes when pools were present. Yet their 617 

influence on peak discharge concentrations justifies their parameterization to avoid erroneous 618 

estimates of DNAPL saturation distributions and mass discharge rates. Although accurately 619 

simulating mass discharge was possible with increased resolution of source zone architecture, 620 

exclusive designations of ganglia and pool fractions of DNAPL may be inadequate for mass 621 

transfer modeling. The high-saturation DNAPL accumulation embedded in the coarse sand lens of 622 

the heterogeneous experiment, controlled the source zone longevity without dispersive mass 623 

transfer. Moreover, lumping the downgradient saturations and ignoring flow field heterogeneity, 624 

biased lifespan estimates of the heterogenous source zone and degraded the replication of 625 

nonmonotonic DNAPL dissolution tailing. While this level of characterization detail may not be 626 

available for contaminated sites, upscaled modeling and stochastic uncertainty analyses of site 627 

conceptual assumptions can support risk-based decision making through data assimilation and 628 

predictive hypothesis testing with a physical mass transfer basis. 629 
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