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Abstract

Limited research has assessed the spatio-temporal distribution and chronic health effects of NO2 exposure, especially in de-

veloping countries, due to the lack of historical NO2 data. A gap-filling model was first adopted to impute the missing NO2

column densities from satellite, then an ensemble machine learning model incorporating three base learners was developed to

estimate the spatiotemporal pattern of monthly mean NO2 concentrations at 0.05° spatial resolution from 2005 to 2020 in

China. Further, we applied the exposure dataset with epidemiologically derived exposure response relations to estimate the

annual NO2 associated mortality burdens in China. The coverage of satellite NO2 column densities increased from 46.9% to

100% after gap-filling. The ensemble model predictions had good agreement with observations, and the overall, temporal and

spatial cross-validation (CV) R2 were 0.88, 0.82 and 0.73, respectively. In addition, our model can provide accurate historical

NO2 concentrations, with both by-year CV R2 and external separate year validation R2 achieving 0.80. The estimated national

NO2 levels showed a increasing trend during 2005-2011, then decreased gradually until 2020, especially in 2012-2015. The esti-

mated annual mortality burden attributable to long-term NO2 exposure ranged from 305 thousand to 416 thousand, and varied

considerably across provinces in China. This satellite-based ensemble model could provide reliable long-term NO2 predictions

at a high spatial resolution with complete coverage for environmental and epidemiological studies in China. Our results also

highlighted the heavy disease burden by NO2 and call for more targeted policies to reduce the emission of nitrogen oxides in

China.
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Key Points: 29 

 We developed an ensemble machine learning model on NO2 levels using column 30 
densities from OMI satellite as main predictors. 31 

 Our model obtained overall, temporal and spatial cross-validation R2 of 0.88, 0.82 32 
and 0.73, respectively. 33 

 The estimated annual mortality burden attributable to chronic NO2 exposure ranged 34 
from 305 thousand to 416 thousand in China.  35 

 36 
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ABSTRACT 59 

Limited research has assessed the spatio-temporal distribution and chronic health effects of 60 

NO2 exposure, especially in developing countries, due to the lack of historical NO2 data. A gap-61 

filling model was first adopted to impute the missing NO2 column densities from satellite, then 62 

an ensemble machine learning model incorporating three base learners was developed to 63 

estimate the spatiotemporal pattern of monthly mean NO2 concentrations at 0.05° spatial 64 

resolution from 2005 to 2020 in China. Further, we applied the exposure dataset with 65 

epidemiologically derived exposure response relations to estimate the annual NO2 associated 66 

mortality burdens in China. The coverage of satellite NO2 column densities increased from 67 

46.9% to 100% after gap-filling. The ensemble model predictions had good agreement with 68 

observations, and the overall, temporal and spatial cross-validation (CV) R2 were 0.88, 0.82 69 

and 0.73, respectively. In addition, our model can provide accurate historical NO2 70 

concentrations, with both by-year CV R2 and external separate year validation R2 achieving 71 

0.80. The estimated national NO2 levels showed a increasing trend during 2005-2011, then 72 

decreased gradually until 2020, especially in 2012-2015. The estimated annual mortality 73 

burden attributable to long-term NO2 exposure ranged from 305 thousand to 416 thousand, and 74 

varied considerably across provinces in China. This satellite-based ensemble model could 75 

provide reliable long-term NO2 predictions at a high spatial resolution with complete coverage 76 

for environmental and epidemiological studies in China. Our results also highlighted the heavy 77 

disease burden by NO2 and call for more targeted policies to reduce the emission of nitrogen 78 

oxides in China. 79 

 80 

Plain Language Summary 81 

This study developed a satellite-based ensemble machine learning model to predict 16-year 82 

NO2 levels and identified high mortality burden attributed to NO2 in China with great 83 

implications for environmental policy making. 84 

 85 

 86 
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1 Introduction 87 

Ambient nitrogen dioxide (NO2) is a major air pollutant, mainly originating from traffic 88 

and fuel combustion emissions. Several epidemiological studies have found that exposure to 89 

ambient NO2 was associated with decreased lung function, cardiopulmonary diseases, and 90 

premature deaths independent of other air pollutants (S Huang et al., 2021b; Meng et al., 2021; 91 

Strassmann et al., 2021). In addition, ambient NO2 is a key precursor of a series of secondary 92 

pollutants, such as ozone and fine particulate matter (PM2.5). In 2021, the World Health 93 

Organization (WHO) tightened the air quality guideline, reducing the annul NO2 standard level 94 

from 40 µg/m3 to 10 µg/m3. However, mainly due to the lack of historical surface NO2 data 95 

before 2013, the long-term spatiotemporal trend of NO2 and its chronic health effects were 96 

rarely reported in China (Yin et al., 2020). 97 

With a high spatiotemporal coverage, satellite remote sensing technology has become a 98 

promising tool to estimate surface air pollutants, and shown potential to fill the gap left by 99 

ground fixed monitors, especially in regions with sparse monitoring (Cooper et al., 2022; Di et 100 

al., 2020; K Huang et al., 2018). Correspondingly, several statistical models have been 101 

developed to convert satellite data to surface air pollutants, such as land use regression, 102 

geographically weighted regression and machine learning algorithms (Geddes et al., 2016; C 103 

Huang et al., 2021a; Song et al., 2019; Zhan et al., 2018). For example, Geddes et al. estimated 104 

the global NO2 concentrations at 10-km resolution from 1996 to 2012 using NO2 tropospheric 105 

column densities from satellite intruments (Geddes et al., 2016). In China, Zhan et al. 106 

developed a hybrid random forest and spatiotemporal kriging model using NO2 column 107 

densities from satellite Ozone Monitoring Instrument (OMI), and predicted surface NO2 levels 108 

at 10-km resolution from 2013 to 2016 (Zhan et al., 2018). Despite the valuable NO2 109 

predictions from previous studies, there are still some aspects to be improved to promote 110 

epidemiological study and disease burden estimation in China. First, most of the national or 111 

regional NO2 estimations were conducted at a coarse spatial resolution in China (e.g., 10 km) 112 

(Qin et al., 2020; Y Wu et al., 2021b; Xu et al., 2021), while studies having a high spatial 113 

resolution were often constrained to a relatively short period (Wei et al., 2022). To the best of 114 
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our knowledge, no existing study has predicted ambient NO2 concentrations in China, 115 

simultaneously achieving high spatial resolution, and high spatiotemporal coverage to support 116 

large-scale assessments of chronic NO2 exposure related adverse health effects. Second, the 117 

cloud cover and bright surfaces usually lead to the non-random missing of satellite NO2 column 118 

densities (Li and Wu, 2021). Without considering the non-random missing values, it may lead 119 

to exposure misclassification and bias the health effects of NO2 exposure in epidemiological 120 

studies. However, most existing studies simply excluded or use the nearby observations to 121 

interpolate the missing values (He et al., 2022; Xu et al., 2021). 122 

In the current study, we aimed to develop an ensemble machine-learning model integrating 123 

random forest, extreme gradient boosting (XGBoost), and Gradient boosting machine (GBM) 124 

algorithms to assess the monthly NO2 levels at 0.05° × 0.05° spatial resolution from 2005 to 125 

2020, and to evaluate mortality burden attributable to NO2 exposure at the provincial level in 126 

China. We first developed a gap filling approach to impute the missing OMI NO2 column 127 

densities using meteorology, cloud cover, and Copernicus Atmosphere Monitoring Service 128 

(CAMS) nitrogen oxides assimilation results. Based on the gap-filled OMI data, we then 129 

trained three separate machine learning models and combined them by a generalized additive 130 

model (GAM). We finally estimated the mortality burden related to NO2 in each province of 131 

China based on the satellite-derived high resolution NO2 dataset and the epidemiologically 132 

derived exposure response relations. 133 

 134 

2 Material and methods 135 

2.1 Study area 136 

Our study domain covered mainland China, Hong Kong, Macao, and Taiwan (Fig. 1). To 137 

ensure prediction accuracy at the border area, a 50-km buffer region was created around the 138 

national boundary. We constructed a 0.05° resolution modeling grid over this study domain for 139 

data integration and model training, totaling 399,513 grid cells.  140 

 141 

 142 
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 143 

 144 
Fig. 1. Study domain plus 50-km buffer and distributions of air quality monitoring stations.  145 

 146 

2.2 Ground NO2 measurements 147 

Ground-level hourly NO2 measurements were collected from ~1500 air quality monitoring 148 

stations administered by the China National Environmental Monitoring Center 149 

(http://www.cnemc.cn/) (Fig. 1). We removed repeated identical NO2 values for at least eight 150 

continuous hours because these measurements were likely caused by instrument malfunction. 151 

Days with less than 18 (75%) hourly measurements were excluded. In addition, those months 152 

with less than 20 days of valid NO2 measurements were also removed. We multiplied the NO2 153 

values before September, 2018 by 0.92, since the monitoring condition was amended from 154 

standard atmospheric state (273 K, 101.325 kPa) to reference state (298.15 K, 101.325 kPa) 155 

for gaseous pollutants (Y Wu et al., 2021b). Finally, daily mean NO2 concentrations from each 156 

station were aggregated to the monthly level. We used the data during 2014-2019 for model 157 

training and data during 2020 for external validation.  158 

 159 
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2.3 Satellite retrieved NO2 data 160 

We obtained the satellite retrieved tropospheric vertical column density (VCD) of NO2 161 

during 2005-2020 from OMI NO2 level-3 data product (OMNO2d, 0.25°×0.25° resolution) 162 

(Krotkov et al., 2017). The OMI instrument onboard the Aura satellite is mainly used to observe 163 

the ozone profile, air quality and climate change, with a nearly global coverage on a daily basis 164 

since July, 2004. To ensure the data quality, we removed those pixels with a cloud 165 

fraction >30%. In the current study, we firstly imputed the missing NO2 VCD, then interpolated 166 

it to the 0.05° resolution grid by inverse distance weighting (IDW). 167 

 168 

2.4 Meteorological and land use data 169 

Meteorological parameters in 2005-2020 were obtained from the fifth generation European 170 

Center for Medium-Range Weather Forecasts (ECMWF) atmospheric re-analysis (ERA5) 171 

(Hersbach et al., 2020). It has been shown that meteorological conditions play crucial roles in 172 

formatting ambient NO2 levels. We included air temperature, relative humidity, wind speed, 173 

planetary boundary layer height, total precipitation, surface solar radiation and thermal 174 

radiation, etc. as predictors in this study. It has a spatial resolution of 0.25°×0.25°, and were 175 

downscaled to 0.05° grid by IDW method.  176 

We downloaded annual land cover maps at 300 m resolution from the European Space 177 

Agency Climate Change Initiative (CCI) for 2005-2015 178 

(https://vest.agrisemantics.org/content/land-cover-cci-product-user-guide) and the Copernicus 179 

Climate Change Service Climate Data Store (CDS) for 2016-2020 180 

(https://cds.climate.copernicus.eu/cdsapp#!/dataset/satellite-land-cover?tab=overview). From 181 

these two products, we extracted the area of urban cover, forest cover, shrub, grass, wetland, 182 

cropland, water body and bare land in each grid cell. In addition, we calculated the highway 183 

versus non-highway lengths in each grid based on the Global Roads Open Access Data Set 184 

(https://sedac.ciesin.columbia.edu/data/set/groads-global-roads-open-access-v1). 185 

 186 

2.5 Other predictors 187 
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Additional predictors were used in this study to improve the NO2 model prediction 188 

accuracy, including the lightning flash density, simulations from the Modern-Era Retrospective 189 

analysis for Research and Applications Version 2 (MERRA-2), monthly total emissions of 190 

nitrogen oxides, elevation and population density.  191 

Lightning flash is an important contributor to the formation of NOx, and we obtained 192 

monthly lightning flash density data from the Harvard-NASA Emissions Component at 193 

0.5°×0.625° resolution (Murray et al., 2012). MERRA-2 is the latest NASA atmospheric 194 

reanalysis at 0.5°×0.625° resolution, and monthly sulfate ion, organic carbon, black carbon, 195 

dust and seasalt simulations were extracted (Gelaro et al., 2017). Monthly inventories of total 196 

emissions of nitrogen oxides at 0.1°×0.1° resolution were obtained from CAMS 197 

(https://ads.atmosphere.copernicus.eu/cdsapp#!/home). Annual population density data from 198 

2005 to 2020 were obtained from the Oak Ridge National Laboratory at 1-km resolution 199 

(https://landscan.ornl.gov/). We extracted the elevation data at 30-m resolution from the 200 

Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Digital 201 

Elevation Model (GDEM), version 3. 202 

 203 

2.6 Satellite VCD of NO2 gap-filling model 204 

In this study, we employed a random forest model, including CAMS total column nitrogen 205 

dioxide, total column nitrogen monoxide, cloud fraction, air temperature, dew point 206 

temperature, elevation and spatiotemporal trends, to impute the missing OMI VCD values. To 207 

consider the temporal trends of OMI VCD, a rolling 3-day sampling window was used to 208 

impute the missing OMI VCD values on the middle day. There are two main hyperparameters 209 

in the random forest model, i.e., the number of predictors selected for each split (mtry) and the 210 

number of trees grown in the forest (ntree). After comparing the performance of different 211 

settings, we set mtry and ntree as 5 and 500, respectively. 212 

 213 

2.7 Ground level NO2 prediction model  214 

We used an ensemble model to estimate monthly mean ambient NO2 concentrations in 215 
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China. We first trained three independent machine learning algorithms, including random forest, 216 

XGBoost, and GBM. According to Wu et al., we used the scaling factors (i.e., ratios of the 217 

surface NO2 concentrations to the OMI VCD) as the dependent variable rather than the surface 218 

NO2 concentrations (Y Wu et al., 2021b). Then, we multiplied the scaling factors and OMI 219 

VCD to obtain the ground level NO2 values. The scaling factors measure the vertical proportion 220 

of NO2, and have been reported to improve the prediction accuracy of historical NO2 levels (Y 221 

Wu et al., 2021b). Finally, we combined the NO2 predictions from three individual machine 222 

learning models by GAM into an ensemble model. Comprehensively considering the training 223 

efficiency and model performance, we set the key parameters as the following: the number of 224 

trees was 500 for random forest, XGBoost, and GBM. The number of variables per split was 225 

15 for random forest. The maximum tree depth was 10 for XGBoost and GBM.  226 

We conducted overall 10-fold cross validation (CV) to evaluate the model performance. 227 

Correspondingly, the entire dataset was randomly split into 10 groups, with each group 228 

containing 10% of the data. In each round of CV, nine groups of data were selected to fit the 229 

model, which was then used to predict on the remaining group. This process was repeated 10 230 

times until every group was predicted. In addition, we also performed the 10-fold spatial and 231 

temporal CV to evaluate the model prediction accuracy at unmonitored site and time. For 232 

spatial CV, we randomly selected 90% of the locations to fit the model and made predictions 233 

on the remaining locations. Similarly, for temporal CV, we selected 90% of the months to fit 234 

the model and made predictions on the remaining months. Additionally, we conducted by-year 235 

CV to evaluate the model’s hindcast performance, in which one year was used for testing and 236 

remaining years for training. Furthermore, a separate time period, January 2020 to December 237 

2020, was used to characterize the hindcast prediction error. Statistical indicators, such as 238 

coefficient of determination (R2) and root mean squared prediction error (RMSE), were 239 

calculated to evaluate the model performance. 240 

 241 

2.8 Mortality burden attributable to NO2 exposure  242 

We calculated the mortality burden caused by NO2 exposure at provincial level from 2005 243 
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to 2020 in China. The annual provincial population and mortality data from 2005 to 2019 were 244 

downloaded from the China Statistical Year Book (http://www.stats.gov.cn/). Since the data 245 

were still not available for 2020, we used the population and mortality data in 2019 instead. 246 

The attributable deaths were calculated using the following equation. 247 𝑅𝑅஼ = 𝑅𝑅(ேைమିோ௘௙)ଵ଴  248 AD௜௝ =  (𝑅𝑅஼ − 1)/𝑅𝑅஼ × 𝑃𝑜𝑝௜௝ × 𝐼௜௝ 249 

where RRC is the relative risk for all cause mortality related to NO2 exposure above the 250 

reference value. Recommended by the recent World Health Organization (WHO) air quality 251 

guidelines, we used the RR value of 1.02 (95% CI: 1.01-1.04) for all cause mortality related to 252 

per 10 μg/m3 increase in NO2. Since no obvious threshold NO2 value was reported in previous 253 

epidemiological studies, we used the counterfactual zero level as the reference (Meng et al., 254 

2021). ADij is the attributed deaths in province i at year j. Popij and Iij is the total population 255 

and baseline mortality rate in province i at year j. In addition, to eliminate the motality burden 256 

attributable to population growth, the annual NO2 related deaths were recalculated using the 257 

population and mortality data in 2005 as the reference. 258 

 259 

3 Results 260 

3.1 Descriptive Statistics 261 

The average ground NO2 concentrations during 2014-2019 was 30.4 μg/m3, with standard 262 

deviation of 14.6 μg/m3. The annual mean NO2 levels decreased by 7 μg/m3 from 2014 to 2015, 263 

and then keep relatively constant from 2015 to 2019 (Supplementary Table S1). The NO2 levels 264 

in China were much higher than the annual NO2 limit (10 μg/m3) of WHO air quality guidelines.  265 

3.2 OMI VCD gap-filling by random forest 266 

The mean coverage of OMI VCD of NO2 in China from 2005 to 2019 was 46.9%. The 267 

north of China (~65%) has a higher coverage than the south (<35%), especially in the southwest 268 

(Supplementary Table S2 and Fig S1). After imputation, the coverage of OMI VCD increased 269 

to 100%. The daily gap filling model achieved an average out-of-bag R2 of 0.91, with 270 

interquartile ranges from 0.88 to 0.94. The spatial distribution of OMI VCD after imputation 271 
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was almost consistent with that before imputation (Supplementary Fig S2), with much higher 272 

values observed in north and east of China. The average OMI VCD increased after gap filling 273 

(Supplementary Table S2), possibly because areas where NO2 is more often missing are more 274 

polluted (Supplementary Fig S1 and Fig S2).  275 

3.3 Ground NO2 prediction model performance 276 

The validation results of the three separate machine learning models and ensemble model 277 

were shown in Table 1. Among the individual machine learning models, the XGboost had the 278 

highest CV R2 and the lowest CV RMSE, followed by GBM. The ensemble model 279 

outperformed three individual machine learners (R2, random forest: 0.85, XGboost: 0.87, GBM: 280 

0.87). The overall CV R2 and RMSE of the ensemble model for monthly NO2 were 0.88 and 281 

5.14 μg/m3, respectively, implying a relatively good agreement between model predictions and 282 

ground measurements. The temporal CV had a slightly lower R2 of 0.82 and a higher RMSE 283 

of 6.14 μg/m3. The spatial CV had a less satisfying model performance with a R2 of 0.73 and a 284 

RMSE of 7.57 μg/m3.  285 

To further evaluate the model’s hindcast capability, we conducted by-year CV and external 286 

validation using data from January to December, 2020 (Fig. 2). In the by-year CV, the ensemble 287 

model predictions matched well with ground observations, with a R2 of 0.80 and a RMSE of 288 

6.48 μg/m3. In the external validation, the results shown that our ensemble model fitted by data 289 

of 2014-2019 can predict NO2 levels in 2020 with high accuracy (R2=0.80, RMSE=5.60 μg/m3). 290 

 291 

Table 1. Model performance for individual machine learning model and ensemble model. 292 

R2 (RMSE, μg/m3) Individual model Ensemble model 

 Random forest XGboost GBM  

Overall CV 0.85 (5.74) 0.87(5.20) 0.87 (5.36) 0.88 (5.14) 

Temporal CV 0.78 (6.85) 0.82 (6.27) 0.81 (6.32) 0.82 (6.14) 

Spatial CV 0.75 (7.36) 0.72 (7.70) 0.72 (7.69) 0.73 (7.57) 

RMSE, root mean squared prediction error; XGBoost, extreme gradient boosting; GBM, 293 

Gradient boosting machine; CV, cross validation. 294 
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 295 

 296 

Fig. 2. By-year cross validation and external validation using data from year 2020. 297 

  298 

3.4 Spatial and temporal distribution of NO2 299 

Based on the ensemble model, we obtained monthly ground NO2 levels in China from 300 

2005 to 2020. We estimated that almost entire population (99.4%) of China lived in areas where 301 

NO2 levels exceeded the 2021 WHO air quality guideline, set at 10 µg/m3, with 18.3% (255.6 302 

million people) exceeding the WHO interim targets 1 (40 µg/m3). For the main economic and 303 

population concentrated areas, the proportions exceeding 40 µg/m3 in Beijing-Tianjin-Hebei 304 

(BTH) area, Yangtze River Delta (YRD), Pearl River Delta (PRD) and Fenwei Plain (FWP) 305 

were 71.6%, 21.7%, 45.8% and 29.9%, respectively.  306 

Fig. 3 displayed the time series of annual population weighted NO2 for China and four 307 

subregions. The national population weighted NO2 levels began to increase from 2005 to 2007, 308 

and experienced the first decrease in 2008. Then it continued to increase until its highest level 309 

in 2011, reaching 32.5 μg/m3. After 2011, it decreased gradually until 2020, especially in 2012-310 

2015. When stratified by region, NO2 levels in BTH, YRD, PRD and FWP were all higher than 311 

the national average, with the highest observed in BTH. Similar to the national trend, the NO2 312 

in BTH, YRD and FWP reached the peak around 2011-2012, then decrease until 2020. 313 

However, the NO2 in PRD generally shown a continuous downward trend in our study period. 314 

During the lock down period due to Covid-19, we observed a significant decrease of NO2 315 
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concentrations. Compared with the data of the same period in 2016-2019, the NO2 levels in 316 

China and Wuhan city decreased by 16.1% and 28.8% from January to April 2020 in lock down 317 

(Supplementary Fig S3). 318 

 319 

 320 

Fig. 3. National and sub-regional annual population weighted NO2 concentrations from 2005 321 

to 2020. BTH, Beijing-Tianjin-Hebei area; YRD, Yangtze River Delta; PRD, Pearl River Delta; 322 

FWP, Fenwei Plain. 323 

 324 

The spatial distribution of NO2 levels in China by season were shown in Fig. 4. The NO2 325 

levels peaked in winter and were the lowest in summer. The population weighted NO2 326 

concentrations in China were predicted to be 27.4, 19.6, 29.6 and 36.3 μg/m3 in spring, summer, 327 

autumn and winter, respectively. Spatial trends of NO2 levels over China were comparable in 328 

four seasons, with relatively higher pollution in Beijing, Tianjin, southern Hebei, and northern 329 

Henan. Other NO2 hot spots included the Yangtze River delta, and the Pearl River delta. 330 

 331 

 332 
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 333 

 334 

Fig. 4. Spatial distributions of seasonal ambient NO2 concentrations in China from 2005 to 335 

2020. 336 

 337 

3.5 Mortality burden attributable to ambient NO2 338 

As shown in Fig. 5, the annual mortality burden attributable to NO2 exposure in China 339 

ranged from 305 thousand (2005) to 416 thousand (2012). Overall, it shows a trend of rising 340 

first and then declining before 2015, then keeping relatively stable during 2016-2019, followed 341 

by a reduction in 2020. If we further subtract the disease burden attributable to population 342 

growth by using the population data in 2005, we can still observe a similar trend across the 343 

years (Supplementary Fig S4). The estimated number of deaths per 100,000 persons related to 344 

NO2 at the provincial level was shown in Supplementary Fig S5. The per-capita deaths were 345 

higher in eastern China, especially in Tianjin, Shandong, Jiangsu, Hebei and Shanghai (39.1 to 346 

48.1 per 100,000 persons), and lower in Hainan, Tibet, and Xinjiang (10.8 to 14.5 per 100,000 347 

persons). We also calculated the provincial absolute number of deaths caused by ambient NO2 348 

pollution from 2005 to 2020, and found that the provinces with higher 16-year total NO2 related 349 

mortality burden included Shandong, Henan, and Jiangsu province (538 thousand to 668 350 
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thousand), and lower in Macao, Tibet and Qinghai (2 thousand to 14 thousand).  351 

 352 

Fig. 5. Annual mortality burden attributable to long-term NO2 exposure in China from 2005 to 353 

2020.  354 

 355 

4 Discussion 356 

In the current study, we filled the research gap by estimating the 16-year spatiotemporal 357 

trends in NO2 and associated mortality burden across provinces in China. We firstly produced 358 

a high spatial resolution (0.05° × 0.05°) and long-term (2005-2020) datasets of surface NO2 359 

concentrations, which enable us to resolve NO2 variations at small scale. In addition, we found 360 

almost entire population of China lived in regions exceeding 2021 WHO guideline annual 361 

average NO2 levels (10 µg/m3), resulting in 305 thousand to 416 thousand deaths annually from 362 

2005 to 2020.  363 

Accurately estimating the NO2 concentrations is a crucial step toward epidemiological 364 

studies and disease burden estimation. In this study, we developed a high performance 365 

ensemble model to predict surface NO2 levels, and obtained a relatively high prediction 366 

accuracy (overall, temporal, and spatial CV R2: 0.877, 0.824, and 0.732), which was better than 367 

most existing models (Chi et al., 2021; Z Huang et al., 2022; Qin et al., 2017; Zhan et al., 368 

2018). Our model has several advantages over previous studies. First, in contrast to most 369 
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previous studies which trained a single algorithm (Z Huang et al., 2022; Zhan et al., 2018), we 370 

ensembled multiple machine learners by GAM algorithm and obtained better model 371 

performance compared to the individual learner. Second, our model exhibited a good capability 372 

of predicting historical NO2 estimates at high spatial resolution. Due to lack of routine NO2 373 

monitoring data before 2013 in China, it’s essential to develop NO2 prediction models which 374 

can provide accurate historical exposure estimates. However, most existing studies focused on 375 

a limited time period and ignored the model’s capability of predicting historical NO2 376 

concentrations. Only a few studies have evaluated their model’s hindcast performance, showing 377 

unsatisfying accuracy. For example, Huang et al. estimated daily NO2 exposure during 2013-378 

2019 in China using an ensemble model, and obtained a CV R2 of 0.72 and a RMSE of 10.61 379 

μg/m3. However, the model’s accuracy decreased when predicting historical NO2 380 

concentrations (by-year CV R2: 0.68, RMSE:11.43 μg/m3) (C Huang et al., 2021a). In addition, 381 

atmospheric NO2 mainly comes from traffic and industrial emissions and has a short lifetime, 382 

likely forming local pollution hotspots. Thus, previous models with coarse spatial resolution 383 

may not be able to resolve the NO2 variations at small scale, leading to bias in exposure 384 

assessment. In the current study, our ensemble model displayed a high accuracy of predicting 385 

historical NO2 levels at 0.05° × 0.05° resolution, obtaining by-year CV R2 of 0.80 (RMSE: 6.5 386 

μg/m3) and a separate time (year 2020) validation R2 of 0.80 (RMSE: 5.6 μg/m3). Third, we 387 

proposed a gap filling method to impute the missing OMI VCD values and achieved a 100% 388 

spatiotemporal coverage in NO2 estimation. Most existing studies simply excluded or use the 389 

nearby observations to interpolate the missing values (He et al., 2022; S Wu et al., 2021a; Xu 390 

et al., 2021). This may lead to significant exposure bias in epimiological studies when there is 391 

a high missing rate. Some studies have tried the linear regression, mixed model, or temporal 392 

convolution methods to impute the missing OMI VCD values, but obtained limited prediction 393 

accuracy and the generalizability is uncertain (de Hoogh et al., 2019; Li and Wu, 2021; Y Wu 394 

et al., 2021b). For instance, de Hoogh et al used a liner mixed effect model to impute the 395 

missing OMI data and obtained CV R2 of 0.68 (de Hoogh et al., 2019). In our study, we built 396 

a random forest gap filling model to impute OMI NO2 data incorporating several publicly 397 
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available covariates, and obtained a high prediction accuracy with R2 of 0.91, which will 398 

greatly reduce the bias in NO2 exposure and related health impact assessment. 399 

We observed a first increase then decrease trend of NO2 concentrations from 2005 to 2020 400 

in China, which was consistent with trend of NOx emissions in China (Jiang et al., 2020). The 401 

rapid growth of industrial and vehicle NOx emissions lead to the increasing trend of NO2 levels 402 

during 2005-2011. After 2011, the NO2 levels showed a decreasing trend, especially in 2012-403 

2015. The declined trend during this period was probably due to environmental protection 404 

policies in China. In 2011-2015, the Chinese government initiated the 12th Five-Year-Plan (FYP) 405 

and set a stringent target to reduce the NOx emissions (Jiang et al., 2020). Through increasing 406 

the use of clean energy and installing denitrification facilities, China has successfully reduced 407 

the NOx emissions by 18.6% in 2011-2015. After 2015, the downward trend of NO2 408 

concentrations in China tend to be flat, which may be contributed by the vehicle NOx emissions 409 

from sharp increase of private cars (Jiang et al., 2020). Similar with recent findings (Cooper et 410 

al., 2022), our ensemble model also observed a significant reduction of NO2 levels during 411 

Covid-19 lock down period in Wuhan. It demonstrated the impact of emission reduction policy 412 

on NO2 pollution.  413 

A series of studies have reported the health burden attributable to air pollution in China, 414 

but most of them focused on PM2.5 and ozone (Cohen et al., 2017; Liang et al., 2020; Yin et 415 

al., 2020). As one of the major NOx emission countries world, China has experienced serious 416 

air pollution in recent years. However, very few studies have assessed the NO2 related disease 417 

burden in China. Based on sparse monitoring data in single year of 2016, Zhao et al. estimated 418 

388.5 thousand deaths caused by NO2 exposure above 5 μg/m3 in China (Zhao et al., 2020). 419 

However, the fixed monitors tend to have higher NO2 levels, since they are mainly located in 420 

eastern urban areas. In addition, the Chinese government has implemented several policies to 421 

mitigate the air pollution in the last decades (Lu et al., 2020). No studies have assessed the 422 

long-term spatiotemporal distribution of NO2 attributable disease burden in this process, 423 

despite the great implications for future policy making. In the current study, we found NO2 424 

pollution is also an important risk factor for mortality burden in China, resulting in 305 425 
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thousand to 416 thousand annual deaths from 2005 to 2020. In addition, the mortality burden 426 

caused by NO2 has dramatically declined since the 12th FYP implementation (2011-2015), 427 

demonstrating the controlling efficacy. However, this trend was not evident since 2016, 428 

possibly due to fasting growing vehicles (Jiang et al., 2020). Considering the non-negligible 429 

mortality burden by NO2, targeted policies focusing on vehicle emission control should be 430 

strengthened in China. 431 

Our study has some limitations. First, the spatial resolution of our model can be further 432 

increased by using Tropospheric Monitoring Instrument (TROPOMI) satellite retrievals at 433 

3.5 × 7.0 km resolution (Veefkind et al., 2012). However, TROPOMI was lauched in October 434 

2017, thus could not meet the needs of long-term health effects epidemiological studies and 435 

health impact assessment. In addition, although the exposure response relations between NO2 436 

and mortality we used was from a recent large-scale meta-analysis adopted by the 2021 WHO 437 

air quality guideline (Huangfu and Atkinson, 2020), it mainly relied on studies from the USA 438 

and Europe, which may bias the disease burden estimates. More studies on the chronc health 439 

effects of NO2 from China and other low and middle income countires are still needed. 440 

 441 

5 Conclusions  442 

In the current study, we presented an ensemble machine learning model to estimate long-443 

term NO2 concentrations at high spatial resolution in China. Based on this model, we produced 444 

reliable historical monthly mean NO2 estimations at 0.05° resolution, which will greatly 445 

enhance epidemiological studies and health impact assessment of chronic NO2 exposure in 446 

China. Furthermore, our results also indicated that exposure to NO2 contributed to heavy 447 

mortality burden in China. Targeted policies reducing the emission of nitrogen oxides and 448 

increasing public awareness of the adverse health effects by NO2 pollution should be 449 

strengthened in China. 450 
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