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Abstract

PlantCV is a Python-based image analysis tool that lowers the barrier to entry for complex image analysis workflows in plant

phenotyping. To provide support for subsequent analysis steps of measured trait data we have developed pcvr, an R package

to assist in common plant phenotyping analyses. The goal of pcvr is to make common statistical analyses both easier and

more consistent and to lower the barrier to entry for useful Bayesian methods. Here we demonstrate three pieces of a possible

analysis covering single value trait analysis, longitudinal modeling, and multi-value trait analysis.
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ABSTRACT

PlantCV is a Python-based image analysis tool that lowers the barrier to entry for complex image analysis
workflows in plant phenotyping. To provide support for subsequent analysis steps of measured trait data we
have developed pcvr, an R package to assist in common plant phenotyping analyses. The goal of pcvr is to
make common statistical analyses both easier and more consistent and to lower the barrier to entry for useful
Bayesian methods. Here we demonstrate three pieces of a possible analysis covering single value trait analysis,
longitudinal modeling, and multi-value trait analysis.
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1. INTRODUCTION

High-throughput, image-based phenotyping allows scientists to collect large amounts of data quickly, non-
destructively, and accurately. PlantCV1 is a Python-based image analysis tool that lowers the barrier to entry
for complex image analysis workflows. PlantCV returns phenotype data as numeric values which users generally
analyze using R.2 To provide support for the statistical analysis following a PlantCV workflow we developed pcvr,
an R package to use PlantCV output data. pcvr aims to make answering common analysis questions easier and
to lower the barrier to entry for select Bayesian methods. The pcvr package is available on GitHub where several
tutorials highlighting specific topics or features are also available. pcvr includes functions to support reading in
large PlantCV datasets, variance partitioning in single value traits, outlier removal, single value trait statistical
comparisons, longitudinal analysis, multi-value trait analysis, a variety of data visualizations, pseudo water use
efficiency calculations, and comparisons of relative stress tolerances. The package also includes vignettes that
demonstrate potential analysis workflows for a small dataset collected using the Bellwether Phenotyping Facility
at the Donald Danforth Plant Science Center (RRID:SCR 019049). A subset of the Bellwether vignette’s content
is shown in this paper, covering single value trait analysis at one time point, longitudinal analysis of single value
traits, and multi-value trait analysis.

2. SINGLE VALUE TRAIT ANALYSIS

The most commonly used PlantCV output data are single value traits. These are phenotypes that can be
described by a single number for each image such as plant area, height, width, or number of leaves. These
phenotypes are generally used either to compare groups at a single time point or to compare groups over time
in longitudinal analysis. pcvr includes support for both analyses using both frequentist and Bayesian methods.

Image-based phenotyping allows for non-destructive, repeat sampling of many plants, which is beneficial
for measuring temporal responses. However, longitudinal data requires additional considerations when doing
statistical analysis. When longitudinal data is collected the first question that a researcher poses tends to
concern whether a difference is seen at the end of the experiment. In either case, a single time point comparison
will be used to test differences between groups.

Further author information: (Send correspondence to Josh Sumner)
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Figure 1: Single value, single timepoint traits
can be compared using standard frequentist
measures.

The most common single timepoint hypothesis is that means
between groups are different. The way that we might express such
a hypothesis verbally is often ”How likely is it that group A has
a mean lower than group B’s mean?” Typically Welch’s T-tests
or Wilcoxon rank sum tests are used to answer these questions.
These frequentist difference of means tests are supported through
ggpubr in pcvr::pcvBox as shown in Figure 1. The P value in
Figure 1 is below any reasonable cutoff so our results are declared
statistically significant, but our hypothesis as originally stated has
not been addressed. The P value is the probability that at least
the observed difference would be seen if these two samples are
actually drawn from the same population. We cannot remove the
condition of there not being a true effect from the P value, so we
have not actually answered the question as we originally asked it.

To answer our question as asked we turn to Bayesian statistics.
In pcvr the conjugate function performs Bayesian tests using the
method of moments and conjugate prior distributions.3 Several
distributions and hypotheses are supported by conjugate. In
Figure 2 the ”t” method is used to compare the distribution of
means from Gaussian data with N(50, 15) priors. The priors we
specify are treated as adding one replicate representing an N(50, 15) distribution and the updated distributions
are then compared, with the posterior probability of 0.9936 corresponding to the probability that group A has a
lower mean than group B. In this example we also include a region of practical equivalence (ROPE) test4 and see
that the probability of the 89% Highest Density Inverval (HDI) of the true difference of means being in [−5, 5] is
0. Not only does the interpretation of the Bayesian posterior probability address our scientific question as stated
but this framework also provides robust ways to test equivalency and hypotheses about the effect size between
groups.

Figure 2: Bayesian Comparisons and Region of Practical Equiva-
lence (ROPE) intervals provide much more information than stan-
dard frequentist tests for single or multi value traits.

Longitudinal plant phenotype data
presents several challenges due to auto-
correlation within the data, often non-
linear, and heteroskedastic (meaning its
variance changes over time). Fitting non-
linear models is typically more difficult
than fitting linear models due to differ-
ences in how formulae are written and the
need for starting values. In pcvr there
are 8 parameterized growth curves5 that
can be fit using frequentist or Bayesian
methods. For model fitting there are 4
supported back ends in R: stats::nls,2

quantreg::nlrq,6

nlme::nlme,7 brms::brm.8 Any of those
4 model fitting functions or mgcv::gam9

can also fit generalized additive models.
Specifying, visualizing, and testing com-
plex growth models is greatly simplified

through four pcvr functions. The first step in making growth models in this framework is to use growthSS,
which specifies a self-starting non-linear growth model and returns a list of model components that are used by
fitGrowth to fit the model. The fit model can be visualized using growthPlot, as shown in Figure 3. Finally,
frequentist models can be tested against various nested versions of themselves using testGrowth, while more
complex hypothesis tests are possible for Bayesian models using brms::hypothesis.10 Using the brms backend,
these models can also be combined into non-linear changepoint models, where changepoints are modeled per



group. For instance, linear growth may persist for some time then give way to sigmoidal growth by passing
”linear + logistic” to the model argument of growthSS. In this way very complex models of growth or stress
recovery experiments can be specified easily in pcvr.

Figure 3: 6 parameterized self-starting growth models are shown as fit by 5 model fitting functions through
fitGrowth and visualized by growthPlot.

Table 1: Each backend function has unique benefits, with brms::brm being the most versatile.

Backend Function Non-Linearity Autocorrelation Heteroskedasticity Changepoints

stats::nls Yes No No No

mgcv::gam Yes No No No

quantreg::nlrq Yes No Yes ∗ No

nlme::nlme Yes Yes Yes No

brms::brm Yes Yes Yes Yes†

3. MULTI VALUE TRAIT ANALYSIS

Color and vegetative index data are returned from PlantCV as multi-value traits, meaning that the trait measured
for each plant is described by a vector of numeric data. For example, the hue of pixels that comprise a plant
may be represented as a histogram of each pixel’s hue value. Multi-value traits present their own statistical

∗Changes in variance are expressed by different quantile fits.
†Double sigmoid models are available using each backend, but are not self-starting.



challenges since each observation contains a histogram. There are two main methods to analyze multi-value
traits in pcvr: parametric Bayesian tests through conjugate and non-parametric analysis using Earth Mover’s
Distance (EMD)11 through pcv.emd. The conjugate function can take matrix input for samples, in which case
the samples are assumed to be multi-value traits in wide format. Using conjugate region of practical equivalence
(ROPE) tests and standard hypotheses can be conducted in the same manner as in single value trait analysis as
shown in Figure 1.

Figure 4: Non Parametric Multi Value Trait Analysis
using EMD and network analysis easily shows distribu-
tion’s differences.

Color histograms can also be analyzed without
considering them as probability densities by using
EMD. EMD is a measure of work required to change
one histogram into another. As a distance metric
EMD is non-parametric, and is larger the more dif-
ferent two histograms are. The flexibility of EMD
is demonstrated in Figure 4, where simulated image
histograms from 5 distributions are compared with 10
replicates from each distribution. Data simulated from
each distribution are shown in panel A and a heatmap
of EMD values from pairwise comparisons between
distributions as returned by pcv.emd in panel B. The
heatmap shows that there are clear differences between
the simulated distributions. Finally, EMD values are
inverted to represent similarities and networks of those
similarities are shown. Network 1 (panel C) is a net-
work using only edges with a similarity score greater
than 0.5 (scaled 0 to 1). This shows our distributions
clustering together but has removed the uniform dis-
tribution since it does not contain edges stronger than
our 0.5 cutoff. Network 2 (panel D) is a network us-
ing only edges stronger than the median edge strength
and now we can see the relationships between these
distributions, with bimodal and lognormal appearing
closely related, trimodal being central, and uniform
being more sparsely connected. Network analysis is
used here for visual simplicity, but many distance-
matrix methods are broadly reasonable here. Further

details and options for considering temporal trends in multi-value trait data are provided in both the multi-value
trait tutorial and the Bellwether Phenotyping Facility vignette.

4. CONCLUSION

The pcvr package provides several useful tools to plant scientists, particularly those conducting high-throughput
phenotyping experiments. The package is in active development and is presented with tutorials for several
common sets of analyses. For a more complete example workflow please see the tutorials and vignettes.

5. SOFTWARE AND DATA AVAILABILITY

All materials, data, and code used in this paper and in the tutorials/vignettes for pcvr are available on GitHub.
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