References
Airo, A. (2010). Biotic and abiotic controls on the morphological and textural development of modern microbialites at Lago Sarmiento, Chile . Stanford University, Geological and Environmental Sciences Department, Ph. D ….
Anadón, P., Cabrera, L., & Kelts, K. (2009). Lacustrine facies analysis (Vol. 30). John Wiley & Sons.
Anderson, N. T., Kelson, J. R., Kele, S., Daëron, M., Bonifacie, M., Horita, J., Mackey, T. J., John, C. M., Kluge, T., Petschnig, P., Jost, A. B., Huntington, K. W., Bernasconi, S. M., & Bergmann, K. D. (2021). A Unified Clumped Isotope Thermometer Calibration (0.5–1,100°C) Using Carbonate-Based Standardization. Geophysical Research Letters ,48 (7), e2020GL092069. https://doi.org/10.1029/2020GL092069
Apolinarska, K., Pełechaty, M., & Noskowiak, D. (2015). Differences in stable isotope compositions of freshwater snails from surface sediments of two Polish shallow lakes. Limnologica , 53 , 95–105. https://doi.org/10.1016/j.limno.2015.06.003
Arenas-Abad, C., Vázquez-Urbez, M., Pardo-Tirapu, G., & Sancho-Marcén, C. (2010). Fluvial and associated carbonate deposits. Developments in Sedimentology , 61 , 133–175.
Beck, W. C., Grossman, E. L., & Morse, J. W. (2005). Experimental studies of oxygen isotope fractionation in the carbonic acid system at 15, 25, and 40 C. Geochimica et Cosmochimica Acta , 69 (14), 3493–3503.
Bernasconi, S. M., Daëron, M., Bergmann, K. D., Bonifacie, M., Meckler, A. N., Affek, H. P., Anderson, N., Bajnai, D., Barkan, E., Beverly, E., Blamart, D., Burgener, L., Calmels, D., Chaduteau, C., Clog, M., Davidheiser-Kroll, B., Davies, A., Dux, F., Eiler, J., … Ziegler, M. (2021). InterCarb: A Community Effort to Improve Interlaboratory Standardization of the Carbonate Clumped Isotope Thermometer Using Carbonate Standards. Geochemistry, Geophysics, Geosystems ,22 (5), e2020GC009588. https://doi.org/10.1029/2020GC009588
Bernasconi, S. M., Müller, I. A., Bergmann, K. D., Breitenbach, S. F. M., Fernandez, A., Hodell, D. A., Jaggi, M., Meckler, A. N., Millan, I., & Ziegler, M. (2018). Reducing Uncertainties in Carbonate Clumped Isotope Analysis Through Consistent Carbonate-Based Standardization.Geochemistry, Geophysics, Geosystems , 19 (9), 2895–2914. https://doi.org/10.1029/2017GC007385
Blisniuk, P. M., & Stern, L. A. (2005). Stable isotope paleoaltimetry: A critical review. American Journal of Science , 305 (10), 1033–1074. https://doi.org/10.2475/ajs.305.10.1033
Boch, R., Spötl, C., Reitner, J. M., & Kramers, J. (2005). A lateglacial travertine deposit in Eastern Tyrol (Austria).Austrian Journal of Earth Sciences , 98 , 78–91.
Boch, R., Wang, X., Kluge, T., Leis, A., Lin, K., Pluch, H., Mittermayr, F., Baldermann, A., Boettcher, M. E., & Dietzel, M. (2019). Aragonite–calcite veins of the ‘Erzberg’iron ore deposit (Austria): Environmental implications from young fractures. Sedimentology ,66 (2), 604–635.
Brady, A. L., Laval, B., Lim, D. S. S., & Slater, G. F. (2014). Autotrophic and heterotrophic associated biosignatures in modern freshwater microbialites over seasonal and spatial gradients.Organic Geochemistry , 67 , 8–18. https://doi.org/10.1016/j.orggeochem.2013.11.013
Brenner, M., Whitmore, T. J., Curtis, J. H., Hodell, D. A., & Schelske, C. L. (1999). Stable isotope (δ13C and δ15N) signatures of sedimented organic matter as indicators of historic lake trophic state.Journal of Paleolimnology , 22 (2), 205–221.
Broecker, W. (2010). Long-term water prospects in the western United States. Journal of Climate , 23 (24), 6669–6683.
Capezzuoli, E., Gandin, A., & Pedley, M. (2014). Decoding tufa and travertine (fresh water carbonates) in the sedimentary record: The state of the art. Sedimentology , 61 (1), 1–21. https://doi.org/10.1111/sed.12075
Chamberlain, C. P., & Poage, M. A. (2000). Reconstructing the paleotopography of mountain belts from the isotopic composition of authigenic minerals. Geology , 28 (2), 115–118. https://doi.org/10.1130/0091-7613(2000)28<115:RTPOMB>2.0.CO;2
Cheng, F., Garzione, C., Li, X., Salzmann, U., Schwarz, F., Haywood, A. M., Tindall, J., Nie, J., Li, L., & Wang, L. (2022). Alpine permafrost could account for a quarter of thawed carbon based on Plio-Pleistocene paleoclimate analogue. Nature Communications , 13 (1), 1–12.
Costa, K. C., Hallmark, J., Navarro, J. B., Hedlund, B. P., Moser, D. P., Labahn, S., & Soukup, D. (2008). Geomicrobiological Changes in Two Ephemeral Desert Playa Lakes in the Western United States.Geomicrobiology Journal , 25 (5), 250–259. https://doi.org/10.1080/01490450802153033
Crul, R. (1997). Limnology and hydrology of Lakes Tanganyika and Malawi.Studies and Reports in Hydrology , 54 .
Csank, A. Z., Tripati, A. K., Patterson, W. P., Eagle, R. A., Rybczynski, N., Ballantyne, A. P., & Eiler, J. M. (2011). Estimates of Arctic land surface temperatures during the early Pliocene from two novel proxies. Earth and Planetary Science Letters ,304 (3–4), 291–299.
Daëron, M. (2021). Full propagation of analytical uncertainties in Δ47 measurements. Geochemistry, Geophysics, Geosystems , 22 (5), e2020GC009592.
Daëron, M., Blamart, D., Peral, M., & Affek, H. P. (2016). Absolute isotopic abundance ratios and the accuracy of Δ47 measurements.Chemical Geology , 442 , 83–96. https://doi.org/10.1016/j.chemgeo.2016.08.014
Daëron, M., Drysdale, R. N., Peral, M., Huyghe, D., Blamart, D., Coplen, T. B., Lartaud, F., & Zanchetta, G. (2019). Most Earth-surface calcites precipitate out of isotopic equilibrium. Nature Communications ,10 (1), 1–7.
Davies, A. J., & John, C. M. (2019). The clumped (13C18O) isotope composition of echinoid calcite: Further evidence for “vital effects” in the clumped isotope proxy. Geochimica et Cosmochimica Acta ,245 , 172–189. https://doi.org/10.1016/j.gca.2018.07.038
Dettman, D. L., Palacios-Fest, M. R., Nkotagu, H. H., & Cohen, A. S. (2005). Paleolimnological investigations of anthropogenic environmental change in Lake Tanganyika: VII. Carbonate isotope geochemistry as a record of riverine runoff. Journal of Paleolimnology ,34 (1), 93–105. https://doi.org/10.1007/s10933-005-2400-x
Dickman, M. (1987). Lake sediment microlaminae and annual mortalities of photosynthetic bacteria in an oligomictic lake. Freshwater Biology , 18 (1), 151–164. https://doi.org/10.1111/j.1365-2427.1987.tb01303.x
Dong, J., Eiler, J., An, Z., Li, X., Liu, W., & Hu, J. (2021). Clumped isotopic compositions of cultured and natural land-snail shells and their implications. Palaeogeography, Palaeoclimatology, Palaeoecology , 577 , 110530. https://doi.org/10.1016/j.palaeo.2021.110530
Dunca, E., & Mutvei, H. (2001). Comparison of microgrowth pattern in Margaritifera margaritifera shells from south and north Sweden.American Malacological Bulletin , 16 (1–2), 239–250.
Eagle, R. A., Eiler, J. M., Tripati, A. K., Ries, J. B., Freitas, P. S., Hiebenthal, C., Wanamaker, A. D., Taviani, M., Elliot, M., Marenssi, S., Nakamura, K., Ramirez, P., & Roy, K. (2013). The influence of temperature and seawater carbonate saturation state on 13C–18O bond ordering in bivalve mollusks. Biogeosciences , 10 (7), 4591–4606. https://doi.org/10.5194/bg-10-4591-2013
Eagle, R. A., Risi, C., Mitchell, J. L., Eiler, J. M., Seibt, U., Neelin, J. D., Li, G., & Tripati, A. K. (2013). High regional climate sensitivity over continental China constrained by glacial-recent changes in temperature and the hydrological cycle. Proceedings of the National Academy of Sciences , 110 (22), 8813–8818. https://doi.org/10.1073/pnas.1213366110
Egger, A. E., Ibarra, D. E., Weldon, R., Langridge, R. M., Marion, B., Hall, J., Starratt, S. W., & Rosen, M. R. (2018). Influence of pluvial lake cycles on earthquake recurrence in the northwestern Basin and Range, USA. Geological Society of America Special Paper ,536 , 1–28.
Epstein, S., Buchsbaum, R., Lowenstam, H. A., & Urey, H. C. (1953). Revised carbonate-water isotopic temperature scale. Geological Society of America Bulletin , 64 (11), 1315–1326.
Esper, J., George, S. St., Anchukaitis, K., D’Arrigo, R., Ljungqvist, F. C., Luterbacher, J., Schneider, L., Stoffel, M., Wilson, R., & Büntgen, U. (2018). Large-scale, millennial-length temperature reconstructions from tree-rings. Dendrochronologia , 50 , 81–90. https://doi.org/10.1016/j.dendro.2018.06.001
Feakins, S. J., Kirby, M. E., Cheetham, M. I., Ibarra, Y., & Zimmerman, S. R. H. (2014). Fluctuation in leaf wax D/H ratio from a southern California lake records significant variability in isotopes in precipitation during the late Holocene. Organic Geochemistry ,66 , 48–59. https://doi.org/10.1016/j.orggeochem.2013.10.015
Fein, J. B. (2017). Advanced biotic ligand models: Using surface complexation modeling to quantify metal bioavailability to bacteria in geologic systems. Chemical Geology , 464 , 127–136. https://doi.org/10.1016/j.chemgeo.2016.10.001
Ferrero, M., Farías, M. E., & Siñeriz, F. (2004). Preliminary characterization of microbial communities in high altitude wetlands of northwestern Argentina by determining terminal restriction fragment length polymorphisms. Revista Latinoamericana de Microbiologia ,46 (3–4), 72–80.
Flügel, E. (2004). Microfacies of carbonate rocks: Analysis, interpretation and application . Springer Science & Business Media.
Gallagher, T. M., & Sheldon, N. D. (2013). A new paleothermometer for forest paleosols and its implications for Cenozoic climate.Geology , 41 (6), 647–650. https://doi.org/10.1130/G34074.1
Ghosh, P., Adkins, J., Affek, H., Balta, B., Guo, W., Schauble, E. A., Schrag, D., & Eiler, J. M. (2006). 13C–18O bonds in carbonate minerals: A new kind of paleothermometer. Geochimica et Cosmochimica Acta , 70 (6), 1439–1456.
Ghosh, P., Garzione, C. N., & Eiler, J. M. (2006). Rapid Uplift of the Altiplano Revealed Through 13C-18O Bonds in Paleosol Carbonates.Science , 311 (5760), 511–515. https://doi.org/10.1126/science.1119365
Gierlowski-Kordesch, E. H. (2010). Lacustrine carbonates.Developments in Sedimentology , 61 , 1–101.
Grauel, A.-L., Hodell, D. A., & Bernasconi, S. M. (2016). Quantitative estimates of tropical temperature change in lowland Central America during the last 42 ka. Earth and Planetary Science Letters ,438 , 37–46. https://doi.org/10.1016/j.epsl.2016.01.001
Gregory-Wodzicki, K. M. (2000). Uplift history of the Central and Northern Andes: A review. GSA Bulletin , 112 (7), 1091–1105. https://doi.org/10.1130/0016-7606(2000)112<1091:UHOTCA>2.0.CO;2
Gwynn, J. W. (2007). Great Salt Lake Brine Chemistry Databases and Reports, 1966-2006 . Utah Geological Survey Salt Lake City, UT.
Hansen, J., Satoa, M., Kharechaa, P., Beerlingc, D., Bernerd, R., Masson-delmottee, V., Paganid, M., Raymof, M., Royerg, D. L., & Zachosh, J. C. (2008). Target Atmospheric CO2: Where Should Humanity Aim?” The Open Atmospheric Science Journal .
Henkes, G. A., Passey, B. H., Wanamaker Jr, A. D., Grossman, E. L., Ambrose Jr, W. G., & Carroll, M. L. (2013). Carbonate clumped isotope compositions of modern marine mollusk and brachiopod shells.Geochimica et Cosmochimica Acta , 106 , 307–325.
Hill, P. S., Tripati, A. K., & Schauble, E. A. (2014). Theoretical constraints on the effects of pH, salinity, and temperature on clumped isotope signatures of dissolved inorganic carbon species and precipitating carbonate minerals. Geochimica et Cosmochimica Acta , 125 , 610–652. https://doi.org/10.1016/j.gca.2013.06.018
Horton, T. W., Defliese, W. F., Tripati, A. K., & Oze, C. (2016). Evaporation induced 18O and 13C enrichment in lake systems: A global perspective on hydrologic balance effects. Quaternary Science Reviews , 131 , 365–379. https://doi.org/10.1016/j.quascirev.2015.06.030
Hren, M. T., & Sheldon, N. D. (2012). Temporal variations in lake water temperature: Paleoenvironmental implications of lake carbonate δ18O and temperature records. Earth and Planetary Science Letters ,337 , 77–84.
Hren, M. T., Sheldon, N. D., Grimes, S. T., Collinson, M. E., Hooker, J. J., Bugler, M., & Lohmann, K. C. (2013). Terrestrial cooling in Northern Europe during the Eocene–Oligocene transition.Proceedings of the National Academy of Sciences , 110 (19), 7562–7567.
Hudson, A. M., Quade, J., Ali, G., Boyle, D., Bassett, S., Huntington, K. W., De los Santos, M. G., Cohen, A. S., Lin, K., & Wang, X. (2017). Stable C, O and clumped isotope systematics and 14C geochronology of carbonates from the Quaternary Chewaucan closed-basin lake system, Great Basin, USA: Implications for paleoenvironmental reconstructions using carbonates. Geochimica et Cosmochimica Acta , 212 , 274–302. https://doi.org/10.1016/j.gca.2017.06.024
Huntington, K. W., & Lechler, A. R. (2015). Carbonate clumped isotope thermometry in continental tectonics. Tectonophysics ,647–648 , 1–20. https://doi.org/10.1016/j.tecto.2015.02.019
Huntington, K. W., Saylor, J., Quade, J., & Hudson, A. M. (2015). High late Miocene–Pliocene elevation of the Zhada Basin, southwestern Tibetan Plateau, from carbonate clumped isotope thermometry.Geological Society of America Bulletin , 127 (1–2), 181–199. https://doi.org/10.1130/B31000.1
Huntington, K. W., Wernicke, B. P., & Eiler, J. M. (2010). Influence of climate change and uplift on Colorado Plateau paleotemperatures from carbonate clumped isotope thermometry: COLORADO PLATEAU CARBONATES.Tectonics , 29 (3). https://doi.org/10.1029/2009TC002449
Ibarra, D. E., Egger, A. E., Weaver, K. L., Harris, C. R., & Maher, K. (2014). Rise and fall of late Pleistocene pluvial lakes in response to reduced evaporation and precipitation: Evidence from Lake Surprise, California. GSA Bulletin , 126 (11–12), 1387–1415. https://doi.org/10.1130/B31014.1
Ibarra, D. E., Oster, J. L., Winnick, M. J., Caves Rugenstein, J. K., Byrne, M. P., & Chamberlain, C. P. (2018). Warm and cold wet states in the western United States during the Pliocene–Pleistocene.Geology , 46 (4), 355–358.
Ingalls, M., Rowley, D., Olack, G., Currie, B., Li, S., Schmidt, J., Tremblay, M., Polissar, P., Shuster, D. L., Lin, D., & Colman, A. (2017). Paleocene to Pliocene low-latitude, high-elevation basins of southern Tibet: Implications for tectonic models of India-Asia collision, Cenozoic climate, and geochemical weathering. GSA Bulletin , 130 (1–2), 307–330. https://doi.org/10.1130/B31723.1
John, C. M., & Bowen, D. (2016). Community software for challenging isotope analysis: First applications of ‘Easotope’ to clumped isotopes: Community software for challenging isotope analysis. Rapid Communications in Mass Spectrometry , 30 (21), 2285–2300. https://doi.org/10.1002/rcm.7720
Jones, M. D., Roberts, C. N., & Leng, M. J. (2007). Quantifying climatic change through the last glacial–interglacial transition based on lake isotope palaeohydrology from central Turkey. Quaternary Research , 67 (3), 463–473.
Kato, H., Amekawa, S., Kano, A., Mori, T., Kuwahara, Y., & Quade, J. (2019). Seasonal temperature changes obtained from carbonate clumped isotopes of annually laminated tufas from Japan: Discrepancy between natural and synthetic calcites. Geochimica et Cosmochimica Acta ,244 , 548–564. https://doi.org/10.1016/j.gca.2018.10.016
Kaufman, D., McKay, N., Routson, C., Erb, M., Davis, B., Heiri, O., Jaccard, S., Tierney, J., Dätwyler, C., & Axford, Y. (2020). A global database of Holocene paleotemperature records. Scientific Data ,7 (1), 1–34.
Kele, S., Breitenbach, S. F. M., Capezzuoli, E., Meckler, A. N., Ziegler, M., Millan, I. M., Kluge, T., Deák, J., Hanselmann, K., John, C. M., Yan, H., Liu, Z., & Bernasconi, S. M. (2015). Temperature dependence of oxygen- and clumped isotope fractionation in carbonates: A study of travertines and tufas in the 6–95°C temperature range.Geochimica et Cosmochimica Acta , 168 , 172–192. https://doi.org/10.1016/j.gca.2015.06.032
Kelts, K., & Hsü, K. J. (1978). Freshwater Carbonate Sedimentation. In A. Lerman (Ed.), Lakes: Chemistry, Geology, Physics (pp. 295–323). Springer New York. https://doi.org/10.1007/978-1-4757-1152-3_9
Kim, S.-T., & O’Neil, J. R. (1997). Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates. Geochimica et Cosmochimica Acta , 61 (16), 3461–3475. https://doi.org/10.1016/S0016-7037(97)00169-5
Kim, S.-T., O’Neil, J. R., Hillaire-Marcel, C., & Mucci, A. (2007). Oxygen isotope fractionation between synthetic aragonite and water: Influence of temperature and Mg2+ concentration. Geochimica et Cosmochimica Acta , 71 (19), 4704–4715. https://doi.org/10.1016/j.gca.2007.04.019
Kimball, J., Eagle, R., & Dunbar, R. (2016). Carbonate “clumped” isotope signatures in aragonitic scleractinian and calcitic gorgonian deep-sea corals. Biogeosciences , 13 (23), 6487–6505. https://doi.org/10.5194/bg-13-6487-2016
Kluge, T., Affek, H. P., Zhang, Y. G., Dublyansky, Y., Spötl, C., Immenhauser, A., & Richter, D. K. (2014). Clumped isotope thermometry of cryogenic cave carbonates. Geochimica et Cosmochimica Acta ,126 , 541–554.
Li, H., Liu, X., Arnold, A., Elliott, B., Flores, R., Kelley, A. M., & Tripati, A. (2021). Mass 47 clumped isotope signatures in modern lacustrine authigenic carbonates in Western China and other regions and implications for paleotemperature and paleoelevation reconstructions.Earth and Planetary Science Letters , 562 , 116840. https://doi.org/10.1016/j.epsl.2021.116840
Li, H., Liu, X., Tripati, A., Feng, S., Elliott, B., Whicker, C., Arnold, A., & Kelley, A. M. (2020). Factors controlling the oxygen isotopic composition of lacustrine authigenic carbonates in Western China: Implications for paleoclimate reconstructions. Scientific Reports , 10 (1), 16370. https://doi.org/10.1038/s41598-020-73422-4
Li, L., Fan, M., Davila, N., Jesmok, G., Mitsunaga, B., Tripati, A., & Orme, D. (2019). Carbonate stable and clumped isotopic evidence for late Eocene moderate to high elevation of the east-central Tibetan Plateau and its geodynamic implications. GSA Bulletin , 131 (5–6), 831–844. https://doi.org/10.1130/B32060.1
Linacre, E. T. (1993). Data-sparse estimation of lake evaporation, using a simplified Penman equation. Agricultural and Forest Meteorology , 64 (3–4), 237–256.
MacDonald, R. (1996). Baseline physical, biological and chemical parameters of 21 lakes, Togiak National Wildlife Refuge, 1984-1990 . Togiak National Wildlife Refuge, US Fish and Wildlife Service.
Marić, I., Šiljeg, A., Cukrov, N., Roland, V., & Domazetović, F. (2020). How fast does tufa grow? Very high-resolution measurement of the tufa growth rate on artificial substrates by the development of a contactless image-based modelling device. Earth Surface Processes and Landforms , 45 (10), 2331–2349. https://doi.org/10.1002/esp.4883
McElwain, J. C. (2004). Climate-independent paleoaltimetry using stomatal density in fossil leaves as a proxy for CO2 partial pressure.Geology , 32 (12), 1017–1020. https://doi.org/10.1130/G20915.1
McGee, D., Moreno-Chamarro, E., Marshall, J., & Galbraith, E. D. (2018). Western US lake expansions during Heinrich stadials linked to Pacific Hadley circulation. Science Advances , 4 (11), eaav0118.
Meckler, A. N., Vonhof, H., & Martínez-García, A. (2021). Temperature Reconstructions Using Speleothems. Elements , 17 (2), 101–106. https://doi.org/10.2138/gselements.17.2.101
Mering, J. A. (2015). New constraints on water temperature at Lake Bonneville from carbonate clumped isotopes . University of California, Los Angeles.
Müller, I. A., Rodriguez-Blanco, J. D., Storck, J.-C., do Nascimento, G. S., Bontognali, T. R. R., Vasconcelos, C., Benning, L. G., & Bernasconi, S. M. (2019). Calibration of the oxygen and clumped isotope thermometers for (proto-)dolomite based on synthetic and natural carbonates. Chemical Geology , 525 , 1–17. https://doi.org/10.1016/j.chemgeo.2019.07.014
Oviatt, C. G., Habiger, G. D., & Hay, J. E. (1994). Variation in the composition of Lake Bonneville marl: A potential key to lake-level fluctuations and paleoclimate. Journal of Paleolimnology ,11 (1), 19–30. https://doi.org/10.1007/BF00683268
Pace, A., Bourillot, R., Bouton, A., Vennin, E., Galaup, S., Bundeleva, I., Patrier, P., Dupraz, C., Thomazo, C., Sansjofre, P., Yokoyama, Y., Franceschi, M., Anguy, Y., Pigot, L., Virgone, A., & Visscher, P. T. (2016). Microbial and diagenetic steps leading to the mineralisation of Great Salt Lake microbialites. Scientific Reports , 6 (1), 31495. https://doi.org/10.1038/srep31495
Pacton, M., Hunger, G., Martinuzzi, V., Cusminsky, G., Burdin, B., Barmettler, K., Vasconcelos, C., & Ariztegui, D. (2015). Organomineralization processes in freshwater stromatolites: A living example from eastern Patagonia. The Depositional Record ,1 (2), 130–146. https://doi.org/10.1002/dep2.7
Passey, B. H., Levin, N. E., Cerling, T. E., Brown, F. H., & Eiler, J. M. (2010). High-temperature environments of human evolution in East Africa based on bond ordering in paleosol carbonates. Proceedings of the National Academy of Sciences , 107 (25), 11245–11249. https://doi.org/10.1073/pnas.1001824107
Pedley, H. M. (1990). Classification and environmental models of cool freshwater tufas. Sedimentary Geology , 68 (1–2), 143–154.
Pedone, V. A. (2002). Oxygen-isotope composition of Great Salt Lake, 1979 to 1996. Great Salt Lake: An Overview of Change , 121–126.
Pérez, L., Bugja, R., Lorenschat, J., Brenner, M., Curtis, J., Hoelzmann, P., Islebe, G., Scharf, B., & Schwalb, A. (2011). Aquatic ecosystems of the Yucatan peninsula (Mexico), Belize, and Guatemala.Hydrobiologia , 661 (1), 407–433.
Petersen, S. V., Defliese, W. F., Saenger, C., Daëron, M., Huntington, K. W., John, C. M., Kelson, J. R., Bernasconi, S. M., Colman, A. S., Kluge, T., Olack, G. A., Schauer, A. J., Bajnai, D., Bonifacie, M., Breitenbach, S. F. M., Fiebig, J., Fernandez, A. B., Henkes, G. A., Hodell, D., … Winkelstern, I. Z. (2019). Effects of Improved 17O Correction on Interlaboratory Agreement in Clumped Isotope Calibrations, Estimates of Mineral-Specific Offsets, and Temperature Dependence of Acid Digestion Fractionation. Geochemistry, Geophysics, Geosystems , 20 (7), 3495–3519. https://doi.org/10.1029/2018GC008127
Petryshyn, V. A., Juarez Rivera, M., Agić, H., Frantz, C. M., Corsetti, F. A., & Tripati, A. E. (2016). Stromatolites in Walker Lake (Nevada, Great Basin, USA) record climate and lake level changes ~35,000years ago. Palaeogeography, Palaeoclimatology, Palaeoecology , 451 , 140–151. https://doi.org/10.1016/j.palaeo.2016.02.054
Petryshyn, V. A., Lim, D., Laval, B. L., Brady, A., Slater, G., & Tripati, A. K. (2015). Reconstruction of limnology and microbialite formation conditions from carbonate clumped isotope thermometry.Geobiology , 13 (1), 53–67. https://doi.org/10.1111/gbi.12121
Phillips, K. N., & Van Denburgh, A. S. (1971). Hydrology and geochemistry of Abert, Summer, and Goose Lakes and other closed-basin lakes in south-central Oregon . US Government Printing Office.
Piovano, E. L., Ariztegui, D., Bernasconi, S. M., & McKenzie, J. A. (2004). Stable isotopic record of hydrological changes in subtropical Laguna Mar Chiquita (Argentina) over the last 230 years. The Holocene , 14 (4), 525–535.
Platt, N. H., & Wright, V. P. (2009). Lacustrine Carbonates: Facies Models, Facies Distributions and Hydrocarbon Aspects. InLacustrine Facies Analysis (pp. 57–74). John Wiley & Sons, Ltd. https://doi.org/10.1002/9781444303919.ch3
Poage, M. A., & Chamberlain, C. P. (2001). Empirical Relationships Between Elevation and the Stable Isotope Composition of Precipitation and Surface Waters: Considerations for Studies of Paleoelevation Change.American Journal of Science , 301 (1), 1–15. https://doi.org/10.2475/ajs.301.1.1
Powers, L., Werne, J. P., Vanderwoude, A. J., Sinninghe Damsté, J. S., Hopmans, E. C., & Schouten, S. (2010). Applicability and calibration of the TEX86 paleothermometer in lakes. Organic Geochemistry ,41 (4), 404–413. https://doi.org/10.1016/j.orggeochem.2009.11.009
Quade, J., Eiler, J., Daëron, M., & Achyuthan, H. (2013). The clumped isotope geothermometer in soil and paleosol carbonate. Geochimica et Cosmochimica Acta , 105 , 92–107. https://doi.org/10.1016/j.gca.2012.11.031
R Core Team. (2022). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/
Reati, G. J., Florín, M., Fernández, G. J., & Montes, C. (1996). The Laguna de Mar Chiquita (Córdoba, Argentina): A little known, secularly fluctuating, saline lake. International Journal of Salt Lake Research , 5 (3), 187–219. https://doi.org/10.1007/BF01997137
Román Palacios, C., Carroll, H., Arnold, A., Flores, R., Petersen, S., McKinnon, K., & Tripati, A. (2021). BayClump: Bayesian Calibration and Temperature Reconstructions for Clumped Isotope Thermometry . https://www.essoar.org/doi/10.1002/essoar.10507995.1
Rowley, D. B., & Garzione, C. N. (2007). Stable Isotope-Based Paleoaltimetry. Annual Review of Earth and Planetary Sciences ,35 (1), 463–508. https://doi.org/10.1146/annurev.earth.35.031306.140155
Roy, P. D., Charles-Polo, M. P., Lopez-Balbiaux, N., Pi-Puig, T., Sankar, G. M., Lozano-Santacruz, R., Lozano-García, S., & Romero, F. M. (2014). Last glacial hydrological variations at the southern margin of sub-tropical North America and a regional comparison. Journal of Quaternary Science , 29 (5), 495–505. https://doi.org/10.1002/jqs.2718
Roy, P. D., Rivero-Navarette, A., Lopez-Balbiaux, N., Pérez-Cruz, L. L., Metcalfe, S. E., Sankar, G. M., & Sánchez-Zavala, J. L. (2013). A record of Holocene summer-season palaeohydrological changes from the southern margin of Chihuahua Desert (Mexico) and possible forcings.The Holocene , 23 (8), 1105–1114. https://doi.org/10.1177/0959683613483619
Roy, P. D., Rivero-Navarrete, A., Sánchez-Zavala, J. L., Beramendi-Orosco, L. E., Muthu-Sankar, G., & Lozano-Santacruz, R. (2016). Atlantic Ocean modulated hydroclimate of the subtropical northeastern Mexico since the last glacial maximum and comparison with the southern US. Earth and Planetary Science Letters , 434 , 141–150. https://doi.org/10.1016/j.epsl.2015.11.048
Roy, R., Wang, Y., & Jiang, S. (2019). Growth pattern and oxygen isotopic systematics of modern freshwater mollusks along an elevation transect: Implications for paleoclimate reconstruction.Palaeogeography, Palaeoclimatology, Palaeoecology , 532 , 109243. https://doi.org/10.1016/j.palaeo.2019.109243
Saenger, C., Affek, H. P., Felis, T., Thiagarajan, N., Lough, J. M., & Holcomb, M. (2012). Carbonate clumped isotope variability in shallow water corals: Temperature dependence and growth-related vital effects.Geochimica et Cosmochimica Acta , 99 , 224–242. https://doi.org/10.1016/j.gca.2012.09.035
Santi, L., Ibarra, D. E., Mering, J., Arnold, A., Tripati, A., Whicker, C., & Oviatt, C. G. (2019). Lake level fluctuations in the Northern Great Basin for the last 25,000 years .
Santi, L. M., Arnold, A. J., Ibarra, D. E., Whicker, C. A., Mering, J. A., Lomarda, R. B., Lora, J. M., & Tripati, A. (2020). Clumped isotope constraints on changes in latest Pleistocene hydroclimate in the northwestern Great Basin: Lake Surprise, California. GSA Bulletin , 132 (11–12), 2669–2683.
Schauble, E. A., Ghosh, P., & Eiler, J. M. (2006). Preferential formation of 13C–18O bonds in carbonate minerals, estimated using first-principles lattice dynamics. Geochimica et Cosmochimica Acta , 70 (10), 2510–2529. https://doi.org/10.1016/j.gca.2006.02.011
Solari, M. A., Hervé, F., Le Roux, J. P., Airo, A., & Sial, A. N. (2010). Paleoclimatic significance of lacustrine microbialites: A stable isotope case study of two lakes at Torres del Paine, southern Chile.Palaeogeography, Palaeoclimatology, Palaeoecology , 297 (1), 70–82. https://doi.org/10.1016/j.palaeo.2010.07.016
Spencer, C., & Kim, S.-T. (2015). Carbonate clumped isotope paleothermometry: A review of recent advances in CO2 gas evolution, purification, measurement and standardization techniques.Geosciences Journal , 19 (2), 357–374. https://doi.org/10.1007/s12303-015-0018-1
Spooner, P. T., Guo, W., Robinson, L. F., Thiagarajan, N., Hendry, K. R., Rosenheim, B. E., & Leng, M. J. (2016). Clumped isotope composition of cold-water corals: A role for vital effects? Geochimica et Cosmochimica Acta , 179 , 123–141.
Stephens, J. C. (1977). Hydrologic Reconnaissance of the Tule Valley Drainage Basin, Juab and Millard Counties, Utah. State of Utah, Department of Natural Resources , Technical Publication No. 56 .
Street‐Perrott, F. A., & Harrison, S. P. (2013). Temporal Variations in Lake Levels Since 30,000 YR BP—An Index of the Global Hydrological Cycle. In Climate Processes and Climate Sensitivity (pp. 118–129). American Geophysical Union (AGU). https://doi.org/10.1029/GM029p0118
Stuiver, M., & Grootes, P. M. (2000). GISP2 oxygen isotope ratios.Quaternary Research , 53 (3), 277–284.
Stute, M., & Schlosser, P. (2000). Atmospheric Noble Gases. In P. G. Cook & A. L. Herczeg (Eds.), Environmental Tracers in Subsurface Hydrology (pp. 349–377). Springer US. https://doi.org/10.1007/978-1-4615-4557-6_11
Swart, P. K., Burns, S. J., & Leder, J. J. (1991). Fractionation of the stable isotopes of oxygen and carbon in carbon dioxide during the reaction of calcite with phosphoric acid as a function of temperature and technique. Chemical Geology: Isotope Geoscience Section ,86 (2), 89–96.
Tang, J., Dietzel, M., Fernandez, A., Tripati, A. K., & Rosenheim, B. E. (2014). Evaluation of kinetic effects on clumped isotope fractionation (Δ47) during inorganic calcite precipitation.Geochimica et Cosmochimica Acta , 134 , 120–136. https://doi.org/10.1016/j.gca.2014.03.005
Tierney, J. E., & Russell, J. M. (2009). Distributions of branched GDGTs in a tropical lake system: Implications for lacustrine application of the MBT/CBT paleoproxy. Organic Geochemistry , 40 (9), 1032–1036.
Tripati, A. K., Eagle, R. A., Thiagarajan, N., Gagnon, A. C., Bauch, H., Halloran, P. R., & Eiler, J. M. (2010). 13C–18O isotope signatures and ‘clumped isotope’ thermometry in foraminifera and coccoliths.Geochimica et Cosmochimica Acta , 74 (20), 5697–5717. https://doi.org/10.1016/j.gca.2010.07.006
Tripati, A. K., Hill, P. S., Eagle, R. A., Mosenfelder, J. L., Tang, J., Schauble, E. A., Eiler, J. M., Zeebe, R. E., Uchikawa, J., Coplen, T. B., Ries, J. B., & Henry, D. (2015). Beyond temperature: Clumped isotope signatures in dissolved inorganic carbon species and the influence of solution chemistry on carbonate mineral composition.Geochimica et Cosmochimica Acta , 166 , 344–371. https://doi.org/10.1016/j.gca.2015.06.021
Tripati, A. K., Sahany, S., Pittman, D., Eagle, R. A., Neelin, J. D., Mitchell, J. L., & Beaufort, L. (2014). Modern and glacial tropical snowlines controlled by sea surface temperature and atmospheric mixing.Nature Geoscience , 7 (3), 205–209. https://doi.org/10.1038/ngeo2082
Upadhyay, D., Lucarelli, J., Arnold, A., Flores, R., Bricker, H., Ulrich, R. N., Jesmok, G., Santi, L., Defliese, W., Eagle, R. A., Carroll, H. M., Bateman, J. B., Petryshyn, V., Loyd, S. J., Tang, J., Priyadarshi, A., Elliott, B., & Tripati, A. (2021). Carbonate clumped isotope analysis (Δ47) of 21 carbonate standards determined via gas-source isotope-ratio mass spectrometry on four instrumental configurations using carbonate-based standardization and multiyear data sets. Rapid Communications in Mass Spectrometry , 35 (17), e9143. https://doi.org/10.1002/rcm.9143
Urey, H. C. (1947). The thermodynamic properties of isotopic substances.Journal of the Chemical Society (Resumed) , 0 , 562–581. https://doi.org/10.1039/JR9470000562
U.S. Geological Survey. (2022a). National Water Information System data available on the World Wide Web (USGS Water Data for the Nation) . OAK CREEK AT RED ROCK CROSSING NR SEDONA, AZ (USGS-09504440) Site Data in the Water Quality Portal. https://www.waterqualitydata.us/provider/NWIS/USGS-AZ/USGS-09504440/
U.S. Geological Survey. (2022b). National Water Information System data available on the World Wide Web (USGS Water Data for the Nation) . USGS 11042510 VAIL LK NR TEMECULA CA. https://waterdata.usgs.gov/nwis/inventory/?site_no=11042510&agency_cd=USGS
U.S. Geological Survey. (2022c). National Water Information System data available on the World Wide Web (USGS Water Data for the Nation) . USGS 09522000 COLORADO RIVER AT NIB, ABOVE MORELOS DAM, AZ. https://waterdata.usgs.gov/nwis/inventory/?site_no=09522000
U.S. Geological Survey. (2022d). National Water Information System data available on the World Wide Web (USGS Water Data for the Nation) . SANTA CLARA RIVER ABV BAKER RES, NR CENTRAL, UT (USGS-09409100). https://www.waterqualitydata.us/provider/NWIS/USGS-UT/USGS-09409100/
USDA Natural Resources Conservation Service. (2022). SNOwpack TELemetry Network (SNOTEL) . SNOwpack TELemetry Network (SNOTEL). https://data.nal.usda.gov/dataset/snowpack-telemetry-network-snotel.
van Dijk, J., Fernandez, A., Storck, J. C., White, T. S., Lever, M., Müller, I. A., Bishop, S., Seifert, R. F., Driese, S. G., Krylov, A., Ludvigson, G. A., Turchyn, A. V., Lin, C. Y., Wittkop, C., & Bernasconi, S. M. (2019). Experimental calibration of clumped isotopes in siderite between 8.5 and 62 °C and its application as paleo-thermometer in paleosols. Geochimica et Cosmochimica Acta ,254 , 1–20. https://doi.org/10.1016/j.gca.2019.03.018
Vasconcelos, C., McKenzie, J. A., Warthmann, R., & Bernasconi, S. M. (2005). Calibration of the δ18O paleothermometer for dolomite precipitated in microbial cultures and natural environments.Geology , 33 (4), 317–320. https://doi.org/10.1130/G20992.1
Velázquez, N. I. T. (2017). Paleohydrology record of the stromatolites of the Bacalar Lagoon: New insight for climate change assessment in the Mexican Caribbean. XVI World Water Congress .
Versteegh, E. A., Vonhof, H. B., Troelstra, S. R., Kaandorp, R. J., & Kroon, D. (2010). Seasonally resolved growth of freshwater bivalves determined by oxygen and carbon isotope shell chemistry.Geochemistry, Geophysics, Geosystems , 11 (8).
Wang, Y., Passey, B., Roy, R., Deng, T., Jiang, S., Hannold, C., Wang, X., Lochner, E., & Tripati, A. (2021). Clumped isotope thermometry of modern and fossil snail shells from the Himalayan-Tibetan Plateau: Implications for paleoclimate and paleoelevation reconstructions.GSA Bulletin , 133 (7–8), 1370–1380. https://doi.org/10.1130/B35784.1
Wilbur, K. M., & Watabe, N. (1963). Experimental Studies on Calcification in Molluscs and the Alga Coccolithus Huxleyi. Annals of the New York Academy of Sciences , 109 (1), 82–112. https://doi.org/10.1111/j.1749-6632.1963.tb13463.x
Wilf, P. (1997). When are leaves good thermometers? A new case for Leaf Margin Analysis. Paleobiology , 23 (3), 373–390. https://doi.org/10.1017/S0094837300019746
Willmott, Cort J., & Matsuura, K. (2001). Terrestrial Air Temperature and Precipitation: Monthly and Annual Time Series (1950—1999) . http://climate.geog.udel.edu/~climate/html_pages/README.ghcn_ts2.html
Wolfe, J. A., Forest, C. E., & Molnar, P. (1998). Paleobotanical evidence of Eocene and Oligocene paleoaltitudes in midlatitude western North America. GSA Bulletin , 110 (5), 664–678. https://doi.org/10.1130/0016-7606(1998)110<0664:PEOEAO>2.3.CO;2
Wrozyna, C., Meyer, J., Dietzel, M., & Piller, W. E. (2022). Neotropical ostracode oxygen and carbon isotope signatures: Implications for calcification conditions. Biogeochemistry , 159 (1), 103–138. https://doi.org/10.1007/s10533-022-00917-9
Xu, H., Ai, L., Tan, L., & An, Z. (2006). Stable isotopes in bulk carbonates and organic matter in recent sediments of Lake Qinghai and their climatic implications. Chemical Geology , 235 (3), 262–275. https://doi.org/10.1016/j.chemgeo.2006.07.005
Yu, S., Liu, J., Xu, J., & Wang, H. (2011). Evaporation and energy balance estimates over a large inland lake in the Tibet-Himalaya.Environmental Earth Sciences , 64 (4), 1169–1176.
Yuan, F., Linsley, B. K., & Howe, S. S. (2006). Evaluating sedimentary geochemical lake-level tracers in Walker Lake, Nevada, over the last 200 years. Journal of Paleolimnology , 36 (1), 37–54.
Zaarur, S., Affek, H. P., & Brandon, M. T. (2013). A revised calibration of the clumped isotope thermometer. Earth and Planetary Science Letters , 382 , 47–57. https://doi.org/10.1016/j.epsl.2013.07.026