References
Airo, A. (2010). Biotic and abiotic controls on the morphological
and textural development of modern microbialites at Lago Sarmiento,
Chile . Stanford University, Geological and Environmental Sciences
Department, Ph. D ….
Anadón, P., Cabrera, L., & Kelts, K. (2009). Lacustrine facies
analysis (Vol. 30). John Wiley & Sons.
Anderson, N. T., Kelson, J. R., Kele, S., Daëron, M., Bonifacie, M.,
Horita, J., Mackey, T. J., John, C. M., Kluge, T., Petschnig, P., Jost,
A. B., Huntington, K. W., Bernasconi, S. M., & Bergmann, K. D. (2021).
A Unified Clumped Isotope Thermometer Calibration (0.5–1,100°C) Using
Carbonate-Based Standardization. Geophysical Research Letters ,48 (7), e2020GL092069. https://doi.org/10.1029/2020GL092069
Apolinarska, K., Pełechaty, M., & Noskowiak, D. (2015). Differences in
stable isotope compositions of freshwater snails from surface sediments
of two Polish shallow lakes. Limnologica , 53 , 95–105.
https://doi.org/10.1016/j.limno.2015.06.003
Arenas-Abad, C., Vázquez-Urbez, M., Pardo-Tirapu, G., & Sancho-Marcén,
C. (2010). Fluvial and associated carbonate deposits. Developments
in Sedimentology , 61 , 133–175.
Beck, W. C., Grossman, E. L., & Morse, J. W. (2005). Experimental
studies of oxygen isotope fractionation in the carbonic acid system at
15, 25, and 40 C. Geochimica et Cosmochimica Acta , 69 (14),
3493–3503.
Bernasconi, S. M., Daëron, M., Bergmann, K. D., Bonifacie, M., Meckler,
A. N., Affek, H. P., Anderson, N., Bajnai, D., Barkan, E., Beverly, E.,
Blamart, D., Burgener, L., Calmels, D., Chaduteau, C., Clog, M.,
Davidheiser-Kroll, B., Davies, A., Dux, F., Eiler, J., … Ziegler,
M. (2021). InterCarb: A Community Effort to Improve Interlaboratory
Standardization of the Carbonate Clumped Isotope Thermometer Using
Carbonate Standards. Geochemistry, Geophysics, Geosystems ,22 (5), e2020GC009588. https://doi.org/10.1029/2020GC009588
Bernasconi, S. M., Müller, I. A., Bergmann, K. D., Breitenbach, S. F.
M., Fernandez, A., Hodell, D. A., Jaggi, M., Meckler, A. N., Millan, I.,
& Ziegler, M. (2018). Reducing Uncertainties in Carbonate Clumped
Isotope Analysis Through Consistent Carbonate-Based Standardization.Geochemistry, Geophysics, Geosystems , 19 (9), 2895–2914.
https://doi.org/10.1029/2017GC007385
Blisniuk, P. M., & Stern, L. A. (2005). Stable isotope paleoaltimetry:
A critical review. American Journal of Science , 305 (10),
1033–1074. https://doi.org/10.2475/ajs.305.10.1033
Boch, R., Spötl, C., Reitner, J. M., & Kramers, J. (2005). A
lateglacial travertine deposit in Eastern Tyrol (Austria).Austrian Journal of Earth Sciences , 98 , 78–91.
Boch, R., Wang, X., Kluge, T., Leis, A., Lin, K., Pluch, H., Mittermayr,
F., Baldermann, A., Boettcher, M. E., & Dietzel, M. (2019).
Aragonite–calcite veins of the ‘Erzberg’iron ore deposit (Austria):
Environmental implications from young fractures. Sedimentology ,66 (2), 604–635.
Brady, A. L., Laval, B., Lim, D. S. S., & Slater, G. F. (2014).
Autotrophic and heterotrophic associated biosignatures in modern
freshwater microbialites over seasonal and spatial gradients.Organic Geochemistry , 67 , 8–18.
https://doi.org/10.1016/j.orggeochem.2013.11.013
Brenner, M., Whitmore, T. J., Curtis, J. H., Hodell, D. A., & Schelske,
C. L. (1999). Stable isotope (δ13C and δ15N) signatures of sedimented
organic matter as indicators of historic lake trophic state.Journal of Paleolimnology , 22 (2), 205–221.
Broecker, W. (2010). Long-term water prospects in the western United
States. Journal of Climate , 23 (24), 6669–6683.
Capezzuoli, E., Gandin, A., & Pedley, M. (2014). Decoding tufa and
travertine (fresh water carbonates) in the sedimentary record: The state
of the art. Sedimentology , 61 (1), 1–21.
https://doi.org/10.1111/sed.12075
Chamberlain, C. P., & Poage, M. A. (2000). Reconstructing the
paleotopography of mountain belts from the isotopic composition of
authigenic minerals. Geology , 28 (2), 115–118.
https://doi.org/10.1130/0091-7613(2000)28<115:RTPOMB>2.0.CO;2
Cheng, F., Garzione, C., Li, X., Salzmann, U., Schwarz, F., Haywood, A.
M., Tindall, J., Nie, J., Li, L., & Wang, L. (2022). Alpine permafrost
could account for a quarter of thawed carbon based on Plio-Pleistocene
paleoclimate analogue. Nature Communications , 13 (1),
1–12.
Costa, K. C., Hallmark, J., Navarro, J. B., Hedlund, B. P., Moser, D.
P., Labahn, S., & Soukup, D. (2008). Geomicrobiological Changes in Two
Ephemeral Desert Playa Lakes in the Western United States.Geomicrobiology Journal , 25 (5), 250–259.
https://doi.org/10.1080/01490450802153033
Crul, R. (1997). Limnology and hydrology of Lakes Tanganyika and Malawi.Studies and Reports in Hydrology , 54 .
Csank, A. Z., Tripati, A. K., Patterson, W. P., Eagle, R. A.,
Rybczynski, N., Ballantyne, A. P., & Eiler, J. M. (2011). Estimates of
Arctic land surface temperatures during the early Pliocene from two
novel proxies. Earth and Planetary Science Letters ,304 (3–4), 291–299.
Daëron, M. (2021). Full propagation of analytical uncertainties in Δ47
measurements. Geochemistry, Geophysics, Geosystems , 22 (5),
e2020GC009592.
Daëron, M., Blamart, D., Peral, M., & Affek, H. P. (2016). Absolute
isotopic abundance ratios and the accuracy of Δ47 measurements.Chemical Geology , 442 , 83–96.
https://doi.org/10.1016/j.chemgeo.2016.08.014
Daëron, M., Drysdale, R. N., Peral, M., Huyghe, D., Blamart, D., Coplen,
T. B., Lartaud, F., & Zanchetta, G. (2019). Most Earth-surface calcites
precipitate out of isotopic equilibrium. Nature Communications ,10 (1), 1–7.
Davies, A. J., & John, C. M. (2019). The clumped (13C18O) isotope
composition of echinoid calcite: Further evidence for “vital effects”
in the clumped isotope proxy. Geochimica et Cosmochimica Acta ,245 , 172–189. https://doi.org/10.1016/j.gca.2018.07.038
Dettman, D. L., Palacios-Fest, M. R., Nkotagu, H. H., & Cohen, A. S.
(2005). Paleolimnological investigations of anthropogenic environmental
change in Lake Tanganyika: VII. Carbonate isotope geochemistry as a
record of riverine runoff. Journal of Paleolimnology ,34 (1), 93–105. https://doi.org/10.1007/s10933-005-2400-x
Dickman, M. (1987). Lake sediment microlaminae and annual mortalities of
photosynthetic bacteria in an oligomictic lake. Freshwater
Biology , 18 (1), 151–164.
https://doi.org/10.1111/j.1365-2427.1987.tb01303.x
Dong, J., Eiler, J., An, Z., Li, X., Liu, W., & Hu, J. (2021). Clumped
isotopic compositions of cultured and natural land-snail shells and
their implications. Palaeogeography, Palaeoclimatology,
Palaeoecology , 577 , 110530.
https://doi.org/10.1016/j.palaeo.2021.110530
Dunca, E., & Mutvei, H. (2001). Comparison of microgrowth pattern in
Margaritifera margaritifera shells from south and north Sweden.American Malacological Bulletin , 16 (1–2), 239–250.
Eagle, R. A., Eiler, J. M., Tripati, A. K., Ries, J. B., Freitas, P. S.,
Hiebenthal, C., Wanamaker, A. D., Taviani, M., Elliot, M., Marenssi, S.,
Nakamura, K., Ramirez, P., & Roy, K. (2013). The influence of
temperature and seawater carbonate saturation state on 13C–18O bond
ordering in bivalve mollusks. Biogeosciences , 10 (7),
4591–4606. https://doi.org/10.5194/bg-10-4591-2013
Eagle, R. A., Risi, C., Mitchell, J. L., Eiler, J. M., Seibt, U.,
Neelin, J. D., Li, G., & Tripati, A. K. (2013). High regional climate
sensitivity over continental China constrained by glacial-recent changes
in temperature and the hydrological cycle. Proceedings of the
National Academy of Sciences , 110 (22), 8813–8818.
https://doi.org/10.1073/pnas.1213366110
Egger, A. E., Ibarra, D. E., Weldon, R., Langridge, R. M., Marion, B.,
Hall, J., Starratt, S. W., & Rosen, M. R. (2018). Influence of pluvial
lake cycles on earthquake recurrence in the northwestern Basin and
Range, USA. Geological Society of America Special Paper ,536 , 1–28.
Epstein, S., Buchsbaum, R., Lowenstam, H. A., & Urey, H. C. (1953).
Revised carbonate-water isotopic temperature scale. Geological
Society of America Bulletin , 64 (11), 1315–1326.
Esper, J., George, S. St., Anchukaitis, K., D’Arrigo, R., Ljungqvist, F.
C., Luterbacher, J., Schneider, L., Stoffel, M., Wilson, R., & Büntgen,
U. (2018). Large-scale, millennial-length temperature reconstructions
from tree-rings. Dendrochronologia , 50 , 81–90.
https://doi.org/10.1016/j.dendro.2018.06.001
Feakins, S. J., Kirby, M. E., Cheetham, M. I., Ibarra, Y., & Zimmerman,
S. R. H. (2014). Fluctuation in leaf wax D/H ratio from a southern
California lake records significant variability in isotopes in
precipitation during the late Holocene. Organic Geochemistry ,66 , 48–59. https://doi.org/10.1016/j.orggeochem.2013.10.015
Fein, J. B. (2017). Advanced biotic ligand models: Using surface
complexation modeling to quantify metal bioavailability to bacteria in
geologic systems. Chemical Geology , 464 , 127–136.
https://doi.org/10.1016/j.chemgeo.2016.10.001
Ferrero, M., Farías, M. E., & Siñeriz, F. (2004). Preliminary
characterization of microbial communities in high altitude wetlands of
northwestern Argentina by determining terminal restriction fragment
length polymorphisms. Revista Latinoamericana de Microbiologia ,46 (3–4), 72–80.
Flügel, E. (2004). Microfacies of carbonate rocks: Analysis,
interpretation and application . Springer Science & Business Media.
Gallagher, T. M., & Sheldon, N. D. (2013). A new paleothermometer for
forest paleosols and its implications for Cenozoic climate.Geology , 41 (6), 647–650. https://doi.org/10.1130/G34074.1
Ghosh, P., Adkins, J., Affek, H., Balta, B., Guo, W., Schauble, E. A.,
Schrag, D., & Eiler, J. M. (2006). 13C–18O bonds in carbonate
minerals: A new kind of paleothermometer. Geochimica et
Cosmochimica Acta , 70 (6), 1439–1456.
Ghosh, P., Garzione, C. N., & Eiler, J. M. (2006). Rapid Uplift of the
Altiplano Revealed Through 13C-18O Bonds in Paleosol Carbonates.Science , 311 (5760), 511–515.
https://doi.org/10.1126/science.1119365
Gierlowski-Kordesch, E. H. (2010). Lacustrine carbonates.Developments in Sedimentology , 61 , 1–101.
Grauel, A.-L., Hodell, D. A., & Bernasconi, S. M. (2016). Quantitative
estimates of tropical temperature change in lowland Central America
during the last 42 ka. Earth and Planetary Science Letters ,438 , 37–46. https://doi.org/10.1016/j.epsl.2016.01.001
Gregory-Wodzicki, K. M. (2000). Uplift history of the Central and
Northern Andes: A review. GSA Bulletin , 112 (7),
1091–1105.
https://doi.org/10.1130/0016-7606(2000)112<1091:UHOTCA>2.0.CO;2
Gwynn, J. W. (2007). Great Salt Lake Brine Chemistry Databases and
Reports, 1966-2006 . Utah Geological Survey Salt Lake City, UT.
Hansen, J., Satoa, M., Kharechaa, P., Beerlingc, D., Bernerd, R.,
Masson-delmottee, V., Paganid, M., Raymof, M., Royerg, D. L., &
Zachosh, J. C. (2008). Target Atmospheric CO2: Where Should
Humanity Aim?” The Open Atmospheric Science Journal .
Henkes, G. A., Passey, B. H., Wanamaker Jr, A. D., Grossman, E. L.,
Ambrose Jr, W. G., & Carroll, M. L. (2013). Carbonate clumped isotope
compositions of modern marine mollusk and brachiopod shells.Geochimica et Cosmochimica Acta , 106 , 307–325.
Hill, P. S., Tripati, A. K., & Schauble, E. A. (2014). Theoretical
constraints on the effects of pH, salinity, and temperature on clumped
isotope signatures of dissolved inorganic carbon species and
precipitating carbonate minerals. Geochimica et Cosmochimica
Acta , 125 , 610–652. https://doi.org/10.1016/j.gca.2013.06.018
Horton, T. W., Defliese, W. F., Tripati, A. K., & Oze, C. (2016).
Evaporation induced 18O and 13C enrichment in lake systems: A global
perspective on hydrologic balance effects. Quaternary Science
Reviews , 131 , 365–379.
https://doi.org/10.1016/j.quascirev.2015.06.030
Hren, M. T., & Sheldon, N. D. (2012). Temporal variations in lake water
temperature: Paleoenvironmental implications of lake carbonate δ18O and
temperature records. Earth and Planetary Science Letters ,337 , 77–84.
Hren, M. T., Sheldon, N. D., Grimes, S. T., Collinson, M. E., Hooker, J.
J., Bugler, M., & Lohmann, K. C. (2013). Terrestrial cooling in
Northern Europe during the Eocene–Oligocene transition.Proceedings of the National Academy of Sciences , 110 (19),
7562–7567.
Hudson, A. M., Quade, J., Ali, G., Boyle, D., Bassett, S., Huntington,
K. W., De los Santos, M. G., Cohen, A. S., Lin, K., & Wang, X. (2017).
Stable C, O and clumped isotope systematics and 14C geochronology of
carbonates from the Quaternary Chewaucan closed-basin lake system, Great
Basin, USA: Implications for paleoenvironmental reconstructions using
carbonates. Geochimica et Cosmochimica Acta , 212 ,
274–302. https://doi.org/10.1016/j.gca.2017.06.024
Huntington, K. W., & Lechler, A. R. (2015). Carbonate clumped isotope
thermometry in continental tectonics. Tectonophysics ,647–648 , 1–20. https://doi.org/10.1016/j.tecto.2015.02.019
Huntington, K. W., Saylor, J., Quade, J., & Hudson, A. M. (2015). High
late Miocene–Pliocene elevation of the Zhada Basin, southwestern
Tibetan Plateau, from carbonate clumped isotope thermometry.Geological Society of America Bulletin , 127 (1–2),
181–199. https://doi.org/10.1130/B31000.1
Huntington, K. W., Wernicke, B. P., & Eiler, J. M. (2010). Influence of
climate change and uplift on Colorado Plateau paleotemperatures from
carbonate clumped isotope thermometry: COLORADO PLATEAU CARBONATES.Tectonics , 29 (3). https://doi.org/10.1029/2009TC002449
Ibarra, D. E., Egger, A. E., Weaver, K. L., Harris, C. R., & Maher, K.
(2014). Rise and fall of late Pleistocene pluvial lakes in response to
reduced evaporation and precipitation: Evidence from Lake Surprise,
California. GSA Bulletin , 126 (11–12), 1387–1415.
https://doi.org/10.1130/B31014.1
Ibarra, D. E., Oster, J. L., Winnick, M. J., Caves Rugenstein, J. K.,
Byrne, M. P., & Chamberlain, C. P. (2018). Warm and cold wet states in
the western United States during the Pliocene–Pleistocene.Geology , 46 (4), 355–358.
Ingalls, M., Rowley, D., Olack, G., Currie, B., Li, S., Schmidt, J.,
Tremblay, M., Polissar, P., Shuster, D. L., Lin, D., & Colman, A.
(2017). Paleocene to Pliocene low-latitude, high-elevation basins of
southern Tibet: Implications for tectonic models of India-Asia
collision, Cenozoic climate, and geochemical weathering. GSA
Bulletin , 130 (1–2), 307–330. https://doi.org/10.1130/B31723.1
John, C. M., & Bowen, D. (2016). Community software for challenging
isotope analysis: First applications of ‘Easotope’ to clumped isotopes:
Community software for challenging isotope analysis. Rapid
Communications in Mass Spectrometry , 30 (21), 2285–2300.
https://doi.org/10.1002/rcm.7720
Jones, M. D., Roberts, C. N., & Leng, M. J. (2007). Quantifying
climatic change through the last glacial–interglacial transition based
on lake isotope palaeohydrology from central Turkey. Quaternary
Research , 67 (3), 463–473.
Kato, H., Amekawa, S., Kano, A., Mori, T., Kuwahara, Y., & Quade, J.
(2019). Seasonal temperature changes obtained from carbonate clumped
isotopes of annually laminated tufas from Japan: Discrepancy between
natural and synthetic calcites. Geochimica et Cosmochimica Acta ,244 , 548–564. https://doi.org/10.1016/j.gca.2018.10.016
Kaufman, D., McKay, N., Routson, C., Erb, M., Davis, B., Heiri, O.,
Jaccard, S., Tierney, J., Dätwyler, C., & Axford, Y. (2020). A global
database of Holocene paleotemperature records. Scientific Data ,7 (1), 1–34.
Kele, S., Breitenbach, S. F. M., Capezzuoli, E., Meckler, A. N.,
Ziegler, M., Millan, I. M., Kluge, T., Deák, J., Hanselmann, K., John,
C. M., Yan, H., Liu, Z., & Bernasconi, S. M. (2015). Temperature
dependence of oxygen- and clumped isotope fractionation in carbonates: A
study of travertines and tufas in the 6–95°C temperature range.Geochimica et Cosmochimica Acta , 168 , 172–192.
https://doi.org/10.1016/j.gca.2015.06.032
Kelts, K., & Hsü, K. J. (1978). Freshwater Carbonate Sedimentation. In
A. Lerman (Ed.), Lakes: Chemistry, Geology, Physics (pp.
295–323). Springer New York.
https://doi.org/10.1007/978-1-4757-1152-3_9
Kim, S.-T., & O’Neil, J. R. (1997). Equilibrium and nonequilibrium
oxygen isotope effects in synthetic carbonates. Geochimica et
Cosmochimica Acta , 61 (16), 3461–3475.
https://doi.org/10.1016/S0016-7037(97)00169-5
Kim, S.-T., O’Neil, J. R., Hillaire-Marcel, C., & Mucci, A. (2007).
Oxygen isotope fractionation between synthetic aragonite and water:
Influence of temperature and Mg2+ concentration. Geochimica et
Cosmochimica Acta , 71 (19), 4704–4715.
https://doi.org/10.1016/j.gca.2007.04.019
Kimball, J., Eagle, R., & Dunbar, R. (2016). Carbonate “clumped”
isotope signatures in aragonitic scleractinian and calcitic gorgonian
deep-sea corals. Biogeosciences , 13 (23), 6487–6505.
https://doi.org/10.5194/bg-13-6487-2016
Kluge, T., Affek, H. P., Zhang, Y. G., Dublyansky, Y., Spötl, C.,
Immenhauser, A., & Richter, D. K. (2014). Clumped isotope thermometry
of cryogenic cave carbonates. Geochimica et Cosmochimica Acta ,126 , 541–554.
Li, H., Liu, X., Arnold, A., Elliott, B., Flores, R., Kelley, A. M., &
Tripati, A. (2021). Mass 47 clumped isotope signatures in modern
lacustrine authigenic carbonates in Western China and other regions and
implications for paleotemperature and paleoelevation reconstructions.Earth and Planetary Science Letters , 562 , 116840.
https://doi.org/10.1016/j.epsl.2021.116840
Li, H., Liu, X., Tripati, A., Feng, S., Elliott, B., Whicker, C.,
Arnold, A., & Kelley, A. M. (2020). Factors controlling the oxygen
isotopic composition of lacustrine authigenic carbonates in Western
China: Implications for paleoclimate reconstructions. Scientific
Reports , 10 (1), 16370.
https://doi.org/10.1038/s41598-020-73422-4
Li, L., Fan, M., Davila, N., Jesmok, G., Mitsunaga, B., Tripati, A., &
Orme, D. (2019). Carbonate stable and clumped isotopic evidence for late
Eocene moderate to high elevation of the east-central Tibetan Plateau
and its geodynamic implications. GSA Bulletin , 131 (5–6),
831–844. https://doi.org/10.1130/B32060.1
Linacre, E. T. (1993). Data-sparse estimation of lake evaporation, using
a simplified Penman equation. Agricultural and Forest
Meteorology , 64 (3–4), 237–256.
MacDonald, R. (1996). Baseline physical, biological and chemical
parameters of 21 lakes, Togiak National Wildlife Refuge, 1984-1990 .
Togiak National Wildlife Refuge, US Fish and Wildlife Service.
Marić, I., Šiljeg, A., Cukrov, N., Roland, V., & Domazetović, F.
(2020). How fast does tufa grow? Very high-resolution measurement of the
tufa growth rate on artificial substrates by the development of a
contactless image-based modelling device. Earth Surface Processes
and Landforms , 45 (10), 2331–2349.
https://doi.org/10.1002/esp.4883
McElwain, J. C. (2004). Climate-independent paleoaltimetry using
stomatal density in fossil leaves as a proxy for CO2 partial pressure.Geology , 32 (12), 1017–1020.
https://doi.org/10.1130/G20915.1
McGee, D., Moreno-Chamarro, E., Marshall, J., & Galbraith, E. D.
(2018). Western US lake expansions during Heinrich stadials linked to
Pacific Hadley circulation. Science Advances , 4 (11),
eaav0118.
Meckler, A. N., Vonhof, H., & Martínez-García, A. (2021). Temperature
Reconstructions Using Speleothems. Elements , 17 (2),
101–106. https://doi.org/10.2138/gselements.17.2.101
Mering, J. A. (2015). New constraints on water temperature at Lake
Bonneville from carbonate clumped isotopes . University of California,
Los Angeles.
Müller, I. A., Rodriguez-Blanco, J. D., Storck, J.-C., do Nascimento, G.
S., Bontognali, T. R. R., Vasconcelos, C., Benning, L. G., &
Bernasconi, S. M. (2019). Calibration of the oxygen and clumped isotope
thermometers for (proto-)dolomite based on synthetic and natural
carbonates. Chemical Geology , 525 , 1–17.
https://doi.org/10.1016/j.chemgeo.2019.07.014
Oviatt, C. G., Habiger, G. D., & Hay, J. E. (1994). Variation in the
composition of Lake Bonneville marl: A potential key to lake-level
fluctuations and paleoclimate. Journal of Paleolimnology ,11 (1), 19–30. https://doi.org/10.1007/BF00683268
Pace, A., Bourillot, R., Bouton, A., Vennin, E., Galaup, S., Bundeleva,
I., Patrier, P., Dupraz, C., Thomazo, C., Sansjofre, P., Yokoyama, Y.,
Franceschi, M., Anguy, Y., Pigot, L., Virgone, A., & Visscher, P. T.
(2016). Microbial and diagenetic steps leading to the mineralisation of
Great Salt Lake microbialites. Scientific Reports , 6 (1),
31495. https://doi.org/10.1038/srep31495
Pacton, M., Hunger, G., Martinuzzi, V., Cusminsky, G., Burdin, B.,
Barmettler, K., Vasconcelos, C., & Ariztegui, D. (2015).
Organomineralization processes in freshwater stromatolites: A living
example from eastern Patagonia. The Depositional Record ,1 (2), 130–146. https://doi.org/10.1002/dep2.7
Passey, B. H., Levin, N. E., Cerling, T. E., Brown, F. H., & Eiler, J.
M. (2010). High-temperature environments of human evolution in East
Africa based on bond ordering in paleosol carbonates. Proceedings
of the National Academy of Sciences , 107 (25), 11245–11249.
https://doi.org/10.1073/pnas.1001824107
Pedley, H. M. (1990). Classification and environmental models of cool
freshwater tufas. Sedimentary Geology , 68 (1–2), 143–154.
Pedone, V. A. (2002). Oxygen-isotope composition of Great Salt Lake,
1979 to 1996. Great Salt Lake: An Overview of Change , 121–126.
Pérez, L., Bugja, R., Lorenschat, J., Brenner, M., Curtis, J.,
Hoelzmann, P., Islebe, G., Scharf, B., & Schwalb, A. (2011). Aquatic
ecosystems of the Yucatan peninsula (Mexico), Belize, and Guatemala.Hydrobiologia , 661 (1), 407–433.
Petersen, S. V., Defliese, W. F., Saenger, C., Daëron, M., Huntington,
K. W., John, C. M., Kelson, J. R., Bernasconi, S. M., Colman, A. S.,
Kluge, T., Olack, G. A., Schauer, A. J., Bajnai, D., Bonifacie, M.,
Breitenbach, S. F. M., Fiebig, J., Fernandez, A. B., Henkes, G. A.,
Hodell, D., … Winkelstern, I. Z. (2019). Effects of Improved 17O
Correction on Interlaboratory Agreement in Clumped Isotope Calibrations,
Estimates of Mineral-Specific Offsets, and Temperature Dependence of
Acid Digestion Fractionation. Geochemistry, Geophysics,
Geosystems , 20 (7), 3495–3519.
https://doi.org/10.1029/2018GC008127
Petryshyn, V. A., Juarez Rivera, M., Agić, H., Frantz, C. M., Corsetti,
F. A., & Tripati, A. E. (2016). Stromatolites in Walker Lake (Nevada,
Great Basin, USA) record climate and lake level changes
~35,000years ago. Palaeogeography,
Palaeoclimatology, Palaeoecology , 451 , 140–151.
https://doi.org/10.1016/j.palaeo.2016.02.054
Petryshyn, V. A., Lim, D., Laval, B. L., Brady, A., Slater, G., &
Tripati, A. K. (2015). Reconstruction of limnology and microbialite
formation conditions from carbonate clumped isotope thermometry.Geobiology , 13 (1), 53–67.
https://doi.org/10.1111/gbi.12121
Phillips, K. N., & Van Denburgh, A. S. (1971). Hydrology and
geochemistry of Abert, Summer, and Goose Lakes and other closed-basin
lakes in south-central Oregon . US Government Printing Office.
Piovano, E. L., Ariztegui, D., Bernasconi, S. M., & McKenzie, J. A.
(2004). Stable isotopic record of hydrological changes in subtropical
Laguna Mar Chiquita (Argentina) over the last 230 years. The
Holocene , 14 (4), 525–535.
Platt, N. H., & Wright, V. P. (2009). Lacustrine Carbonates: Facies
Models, Facies Distributions and Hydrocarbon Aspects. InLacustrine Facies Analysis (pp. 57–74). John Wiley & Sons, Ltd.
https://doi.org/10.1002/9781444303919.ch3
Poage, M. A., & Chamberlain, C. P. (2001). Empirical Relationships
Between Elevation and the Stable Isotope Composition of Precipitation
and Surface Waters: Considerations for Studies of Paleoelevation Change.American Journal of Science , 301 (1), 1–15.
https://doi.org/10.2475/ajs.301.1.1
Powers, L., Werne, J. P., Vanderwoude, A. J., Sinninghe Damsté, J. S.,
Hopmans, E. C., & Schouten, S. (2010). Applicability and calibration of
the TEX86 paleothermometer in lakes. Organic Geochemistry ,41 (4), 404–413. https://doi.org/10.1016/j.orggeochem.2009.11.009
Quade, J., Eiler, J., Daëron, M., & Achyuthan, H. (2013). The clumped
isotope geothermometer in soil and paleosol carbonate. Geochimica
et Cosmochimica Acta , 105 , 92–107.
https://doi.org/10.1016/j.gca.2012.11.031
R Core Team. (2022). R: A language and environment for statistical
computing. R Foundation for Statistical Computing.
https://www.R-project.org/
Reati, G. J., Florín, M., Fernández, G. J., & Montes, C. (1996). The
Laguna de Mar Chiquita (Córdoba, Argentina): A little known, secularly
fluctuating, saline lake. International Journal of Salt Lake
Research , 5 (3), 187–219. https://doi.org/10.1007/BF01997137
Román Palacios, C., Carroll, H., Arnold, A., Flores, R., Petersen, S.,
McKinnon, K., & Tripati, A. (2021). BayClump: Bayesian
Calibration and Temperature Reconstructions for Clumped Isotope
Thermometry . https://www.essoar.org/doi/10.1002/essoar.10507995.1
Rowley, D. B., & Garzione, C. N. (2007). Stable Isotope-Based
Paleoaltimetry. Annual Review of Earth and Planetary Sciences ,35 (1), 463–508.
https://doi.org/10.1146/annurev.earth.35.031306.140155
Roy, P. D., Charles-Polo, M. P., Lopez-Balbiaux, N., Pi-Puig, T.,
Sankar, G. M., Lozano-Santacruz, R., Lozano-García, S., & Romero, F. M.
(2014). Last glacial hydrological variations at the southern margin of
sub-tropical North America and a regional comparison. Journal of
Quaternary Science , 29 (5), 495–505.
https://doi.org/10.1002/jqs.2718
Roy, P. D., Rivero-Navarette, A., Lopez-Balbiaux, N., Pérez-Cruz, L. L.,
Metcalfe, S. E., Sankar, G. M., & Sánchez-Zavala, J. L. (2013). A
record of Holocene summer-season palaeohydrological changes from the
southern margin of Chihuahua Desert (Mexico) and possible forcings.The Holocene , 23 (8), 1105–1114.
https://doi.org/10.1177/0959683613483619
Roy, P. D., Rivero-Navarrete, A., Sánchez-Zavala, J. L.,
Beramendi-Orosco, L. E., Muthu-Sankar, G., & Lozano-Santacruz, R.
(2016). Atlantic Ocean modulated hydroclimate of the subtropical
northeastern Mexico since the last glacial maximum and comparison with
the southern US. Earth and Planetary Science Letters , 434 ,
141–150. https://doi.org/10.1016/j.epsl.2015.11.048
Roy, R., Wang, Y., & Jiang, S. (2019). Growth pattern and oxygen
isotopic systematics of modern freshwater mollusks along an elevation
transect: Implications for paleoclimate reconstruction.Palaeogeography, Palaeoclimatology, Palaeoecology , 532 ,
109243. https://doi.org/10.1016/j.palaeo.2019.109243
Saenger, C., Affek, H. P., Felis, T., Thiagarajan, N., Lough, J. M., &
Holcomb, M. (2012). Carbonate clumped isotope variability in shallow
water corals: Temperature dependence and growth-related vital effects.Geochimica et Cosmochimica Acta , 99 , 224–242.
https://doi.org/10.1016/j.gca.2012.09.035
Santi, L., Ibarra, D. E., Mering, J., Arnold, A., Tripati, A., Whicker,
C., & Oviatt, C. G. (2019). Lake level fluctuations in the
Northern Great Basin for the last 25,000 years .
Santi, L. M., Arnold, A. J., Ibarra, D. E., Whicker, C. A., Mering, J.
A., Lomarda, R. B., Lora, J. M., & Tripati, A. (2020). Clumped isotope
constraints on changes in latest Pleistocene hydroclimate in the
northwestern Great Basin: Lake Surprise, California. GSA
Bulletin , 132 (11–12), 2669–2683.
Schauble, E. A., Ghosh, P., & Eiler, J. M. (2006). Preferential
formation of 13C–18O bonds in carbonate minerals, estimated using
first-principles lattice dynamics. Geochimica et Cosmochimica
Acta , 70 (10), 2510–2529.
https://doi.org/10.1016/j.gca.2006.02.011
Solari, M. A., Hervé, F., Le Roux, J. P., Airo, A., & Sial, A. N.
(2010). Paleoclimatic significance of lacustrine microbialites: A stable
isotope case study of two lakes at Torres del Paine, southern Chile.Palaeogeography, Palaeoclimatology, Palaeoecology , 297 (1),
70–82. https://doi.org/10.1016/j.palaeo.2010.07.016
Spencer, C., & Kim, S.-T. (2015). Carbonate clumped isotope
paleothermometry: A review of recent advances in CO2 gas evolution,
purification, measurement and standardization techniques.Geosciences Journal , 19 (2), 357–374.
https://doi.org/10.1007/s12303-015-0018-1
Spooner, P. T., Guo, W., Robinson, L. F., Thiagarajan, N., Hendry, K.
R., Rosenheim, B. E., & Leng, M. J. (2016). Clumped isotope composition
of cold-water corals: A role for vital effects? Geochimica et
Cosmochimica Acta , 179 , 123–141.
Stephens, J. C. (1977). Hydrologic Reconnaissance of the Tule Valley
Drainage Basin, Juab and Millard Counties, Utah. State of Utah,
Department of Natural Resources , Technical Publication No. 56 .
Street‐Perrott, F. A., & Harrison, S. P. (2013). Temporal Variations in
Lake Levels Since 30,000 YR BP—An Index of the Global Hydrological
Cycle. In Climate Processes and Climate Sensitivity (pp.
118–129). American Geophysical Union (AGU).
https://doi.org/10.1029/GM029p0118
Stuiver, M., & Grootes, P. M. (2000). GISP2 oxygen isotope ratios.Quaternary Research , 53 (3), 277–284.
Stute, M., & Schlosser, P. (2000). Atmospheric Noble Gases. In P. G.
Cook & A. L. Herczeg (Eds.), Environmental Tracers in Subsurface
Hydrology (pp. 349–377). Springer US.
https://doi.org/10.1007/978-1-4615-4557-6_11
Swart, P. K., Burns, S. J., & Leder, J. J. (1991). Fractionation of the
stable isotopes of oxygen and carbon in carbon dioxide during the
reaction of calcite with phosphoric acid as a function of temperature
and technique. Chemical Geology: Isotope Geoscience Section ,86 (2), 89–96.
Tang, J., Dietzel, M., Fernandez, A., Tripati, A. K., & Rosenheim, B.
E. (2014). Evaluation of kinetic effects on clumped isotope
fractionation (Δ47) during inorganic calcite precipitation.Geochimica et Cosmochimica Acta , 134 , 120–136.
https://doi.org/10.1016/j.gca.2014.03.005
Tierney, J. E., & Russell, J. M. (2009). Distributions of branched
GDGTs in a tropical lake system: Implications for lacustrine application
of the MBT/CBT paleoproxy. Organic Geochemistry , 40 (9),
1032–1036.
Tripati, A. K., Eagle, R. A., Thiagarajan, N., Gagnon, A. C., Bauch, H.,
Halloran, P. R., & Eiler, J. M. (2010). 13C–18O isotope signatures and
‘clumped isotope’ thermometry in foraminifera and coccoliths.Geochimica et Cosmochimica Acta , 74 (20), 5697–5717.
https://doi.org/10.1016/j.gca.2010.07.006
Tripati, A. K., Hill, P. S., Eagle, R. A., Mosenfelder, J. L., Tang, J.,
Schauble, E. A., Eiler, J. M., Zeebe, R. E., Uchikawa, J., Coplen, T.
B., Ries, J. B., & Henry, D. (2015). Beyond temperature: Clumped
isotope signatures in dissolved inorganic carbon species and the
influence of solution chemistry on carbonate mineral composition.Geochimica et Cosmochimica Acta , 166 , 344–371.
https://doi.org/10.1016/j.gca.2015.06.021
Tripati, A. K., Sahany, S., Pittman, D., Eagle, R. A., Neelin, J. D.,
Mitchell, J. L., & Beaufort, L. (2014). Modern and glacial tropical
snowlines controlled by sea surface temperature and atmospheric mixing.Nature Geoscience , 7 (3), 205–209.
https://doi.org/10.1038/ngeo2082
Upadhyay, D., Lucarelli, J., Arnold, A., Flores, R., Bricker, H.,
Ulrich, R. N., Jesmok, G., Santi, L., Defliese, W., Eagle, R. A.,
Carroll, H. M., Bateman, J. B., Petryshyn, V., Loyd, S. J., Tang, J.,
Priyadarshi, A., Elliott, B., & Tripati, A. (2021). Carbonate clumped
isotope analysis (Δ47) of 21 carbonate standards determined via
gas-source isotope-ratio mass spectrometry on four instrumental
configurations using carbonate-based standardization and multiyear data
sets. Rapid Communications in Mass Spectrometry , 35 (17),
e9143. https://doi.org/10.1002/rcm.9143
Urey, H. C. (1947). The thermodynamic properties of isotopic substances.Journal of the Chemical Society (Resumed) , 0 , 562–581.
https://doi.org/10.1039/JR9470000562
U.S. Geological Survey. (2022a). National Water Information System
data available on the World Wide Web (USGS Water Data for the Nation) .
OAK CREEK AT RED ROCK CROSSING NR SEDONA, AZ (USGS-09504440) Site Data
in the Water Quality Portal.
https://www.waterqualitydata.us/provider/NWIS/USGS-AZ/USGS-09504440/
U.S. Geological Survey. (2022b). National Water Information System
data available on the World Wide Web (USGS Water Data for the Nation) .
USGS 11042510 VAIL LK NR TEMECULA CA.
https://waterdata.usgs.gov/nwis/inventory/?site_no=11042510&agency_cd=USGS
U.S. Geological Survey. (2022c). National Water Information System
data available on the World Wide Web (USGS Water Data for the Nation) .
USGS 09522000 COLORADO RIVER AT NIB, ABOVE MORELOS DAM, AZ.
https://waterdata.usgs.gov/nwis/inventory/?site_no=09522000
U.S. Geological Survey. (2022d). National Water Information System
data available on the World Wide Web (USGS Water Data for the Nation) .
SANTA CLARA RIVER ABV BAKER RES, NR CENTRAL, UT (USGS-09409100).
https://www.waterqualitydata.us/provider/NWIS/USGS-UT/USGS-09409100/
USDA Natural Resources Conservation Service. (2022). SNOwpack
TELemetry Network (SNOTEL) . SNOwpack TELemetry Network (SNOTEL).
https://data.nal.usda.gov/dataset/snowpack-telemetry-network-snotel.
van Dijk, J., Fernandez, A., Storck, J. C., White, T. S., Lever, M.,
Müller, I. A., Bishop, S., Seifert, R. F., Driese, S. G., Krylov, A.,
Ludvigson, G. A., Turchyn, A. V., Lin, C. Y., Wittkop, C., &
Bernasconi, S. M. (2019). Experimental calibration of clumped isotopes
in siderite between 8.5 and 62 °C and its application as
paleo-thermometer in paleosols. Geochimica et Cosmochimica Acta ,254 , 1–20. https://doi.org/10.1016/j.gca.2019.03.018
Vasconcelos, C., McKenzie, J. A., Warthmann, R., & Bernasconi, S. M.
(2005). Calibration of the δ18O paleothermometer for dolomite
precipitated in microbial cultures and natural environments.Geology , 33 (4), 317–320. https://doi.org/10.1130/G20992.1
Velázquez, N. I. T. (2017). Paleohydrology record of the stromatolites
of the Bacalar Lagoon: New insight for climate change assessment in the
Mexican Caribbean. XVI World Water Congress .
Versteegh, E. A., Vonhof, H. B., Troelstra, S. R., Kaandorp, R. J., &
Kroon, D. (2010). Seasonally resolved growth of freshwater bivalves
determined by oxygen and carbon isotope shell chemistry.Geochemistry, Geophysics, Geosystems , 11 (8).
Wang, Y., Passey, B., Roy, R., Deng, T., Jiang, S., Hannold, C., Wang,
X., Lochner, E., & Tripati, A. (2021). Clumped isotope thermometry of
modern and fossil snail shells from the Himalayan-Tibetan Plateau:
Implications for paleoclimate and paleoelevation reconstructions.GSA Bulletin , 133 (7–8), 1370–1380.
https://doi.org/10.1130/B35784.1
Wilbur, K. M., & Watabe, N. (1963). Experimental Studies on
Calcification in Molluscs and the Alga Coccolithus Huxleyi. Annals
of the New York Academy of Sciences , 109 (1), 82–112.
https://doi.org/10.1111/j.1749-6632.1963.tb13463.x
Wilf, P. (1997). When are leaves good thermometers? A new case for Leaf
Margin Analysis. Paleobiology , 23 (3), 373–390.
https://doi.org/10.1017/S0094837300019746
Willmott, Cort J., & Matsuura, K. (2001). Terrestrial Air
Temperature and Precipitation: Monthly and Annual Time Series
(1950—1999) .
http://climate.geog.udel.edu/~climate/html_pages/README.ghcn_ts2.html
Wolfe, J. A., Forest, C. E., & Molnar, P. (1998). Paleobotanical
evidence of Eocene and Oligocene paleoaltitudes in midlatitude western
North America. GSA Bulletin , 110 (5), 664–678.
https://doi.org/10.1130/0016-7606(1998)110<0664:PEOEAO>2.3.CO;2
Wrozyna, C., Meyer, J., Dietzel, M., & Piller, W. E. (2022).
Neotropical ostracode oxygen and carbon isotope signatures: Implications
for calcification conditions. Biogeochemistry , 159 (1),
103–138. https://doi.org/10.1007/s10533-022-00917-9
Xu, H., Ai, L., Tan, L., & An, Z. (2006). Stable isotopes in bulk
carbonates and organic matter in recent sediments of Lake Qinghai and
their climatic implications. Chemical Geology , 235 (3),
262–275. https://doi.org/10.1016/j.chemgeo.2006.07.005
Yu, S., Liu, J., Xu, J., & Wang, H. (2011). Evaporation and energy
balance estimates over a large inland lake in the Tibet-Himalaya.Environmental Earth Sciences , 64 (4), 1169–1176.
Yuan, F., Linsley, B. K., & Howe, S. S. (2006). Evaluating sedimentary
geochemical lake-level tracers in Walker Lake, Nevada, over the last 200
years. Journal of Paleolimnology , 36 (1), 37–54.
Zaarur, S., Affek, H. P., & Brandon, M. T. (2013). A revised
calibration of the clumped isotope thermometer. Earth and
Planetary Science Letters , 382 , 47–57.
https://doi.org/10.1016/j.epsl.2013.07.026