References
[1] I. Kimber, D.A. Basketter,
G.F. Gerberick, R.J. Dearman, Allergic contact dermatitis, Int.
Immunopharmacol., 2 (2002) 201-211.
[2] R. Luebke, Immunotoxicant
screening and prioritization in the twenty-first century, Toxicologic
pathology, 40 (2012) 294-299.
[3] G. Schaafsma, E.D. Kroese,
E.L.J.P. Tielemans, J.J.M. Van de Sandt, C.J. Van Leeuwen, REACH,
non-testing approaches and the urgent need for a change in mind set,
Regul Toxicol Pharm, 53 (2009) 70-80.
[4] M. Divkovic, C.K. Pease, G.F.
Gerberick, D.A. Basketter, Hapten–protein binding: from theory to
practical application in the in vitro prediction of skin
sensitization, Contact dermatitis, 53 (2005) 189-200.
[5] D.W. Roberts, G. Patlewicz,
P.S. Kern, F. Gerberick, I. Kimber, R.J. Dearman, C.A. Ryan, D.A.
Basketter, A.O. Aptula, Mechanistic applicability domain classification
of a local lymph node assay dataset for skin sensitization, Chem. Res.
Toxicol., 20 (2007) 1019-1030.
[6] T. Maurer, I. Kimber, Draining
lymph node cell activation in guinea pigs: comparisons with the murine
local lymph node assay, Toxicology, 69 (1991) 209-218.
[7] I. Kimber, C. Weisenberger, A
murine local lymph node assay for the identification of contact
allergens. Assay development and results of an initial validation study,
Arch Toxicol, 63 (1989) 274-282.
[8] A. Natsch, R. Emter, H.
Gfeller, T. Haupt, G. Ellis, Predicting skin sensitizer potency based onin vitro data from KeratinoSens and kinetic peptide binding:
global versus domain-based assessment, Toxicological Sciences, 143
(2014) 319-332.
[9] D.W. Roberts, A. Natsch, High
Throughput Kinetic Profiling Approach for Covalent Binding to Peptides:
Application to Skin Sensitization Potency of Michael Acceptor
Electrophiles, Chemical Research in Toxicology, 22 (2009) 592-603.
[10] F. Gerberick, M. Aleksic, D.
Basketter, S. Casati, A.T. Karlberg, P. Kern, I. Kimber, J.P.
Lepoittevin, A. Natsch, J. Ovigne, C. Rovida, H. Sakaguchi, T. Schultz,
Chemical Reactivity Measurement and the Predictive Identification of
Skin Sensitisers, Altern Lab Anim., 36 (2008) 215-242.
[11] D.W. Roberts, A.O. Aptula,
G. Patlewicz, C. Pease, Chemical reactivity indices and mechanism-based
read-across for non-animal based assessment of skin sensitisation
potential, Journal of Applied Toxicology, 28 (2008) 443-454.
[12] A.O. Aptula, G. Patlewicz,
D.W. Roberts, Skin Sensitization: Reaction Mechanistic Applicability
Domains for Structure−Activity Relationships, Chem. Res. Toxicol., 18
(2005) 1420-1426.
[13] G.F. Gerberick, J.D.
Vassallo, R.E. Bailey, J.G. Chaney, S.W. Morrall, J.-P. Lepoittevin,
Development of a peptide reactivity assay for screening contact
allergens, Toxicological Sciences, 81 (2004) 332-343.
[14] N. Andreas, B. Caroline, F.
Leslie, G. Frank, N. Kimberly, H. Allison, I. Heather, L. Robert, O.
Stefan, R. Hendrik, The intra-and inter-laboratory reproducibility and
predictivity of the KeratinoSens assay to predict skin sensitizersin vitro : results of a ring-study in five laboratories,
Toxicology in Vitro , 25 (2011) 733-744.
[15] S. Hoffmann, N.
Kleinstreuer, N. Alépée, D. Allen, A.M. Api, T. Ashikaga, E. Clouet, M.
Cluzel, B. Desprez, N. Gellatly, Non-animal methods to predict skin
sensitization (I): the Cosmetics Europe database, Critical reviews in
toxicology, 48 (2018) 344-358.
[16] N.C. Kleinstreuer, S.
Hoffmann, N. Alépée, D. Allen, T. Ashikaga, W. Casey, E. Clouet, M.
Cluzel, B. Desprez, N. Gellatly, Non-animal methods to predict skin
sensitization (II): an assessment of defined approaches, Critical
reviews in toxicology, 48 (2018) 359-374.
[17] J. Fitzpatrick, D. Roberts,
G. Patlewicz, An evaluation of selected (Q) SARs/expert systems for
predicting skin sensitisation potential, SAR and QSAR in Environmental
Research, 29 (2018) 439-468.
[18] S.J. Enoch, J.C. Madden,
M.T. Cronin, Identification of mechanisms of toxic action for skin
sensitisation using a SMARTS pattern based approach, SAR QSAR Environ
Res, 19 (2008) 555-578.
[19] G. Patlewicz, N. Jeliazkova,
A. Gallegos Saliner, A.P. Worth, Toxmatch-a new software tool to aid in
the development and evaluation of chemically similar groups, SAR QSAR
Environ Res, 19 (2008) 397-412.
[20] D. Roberts, D. Williams, The
derivation of quantitative correlations between skin sensitisation and
physio-chemical parameters for alkylating agents, and their application
to experimental data for sultones, Journal of Theoretical Biology, 99
(1982) 807-825.
[21] V.M. Alves, S.J. Capuzzi,
E.N. Muratov, R.C. Braga, T.E. Thornton, D. Fourches, J. Strickland, N.
Kleinstreuer, C.H. Andrade, A. Tropsha, QSAR models of human data can
enrich or replace LLNA testing for human skin sensitization, Green
Chemistry, 18 (2016) 6501-6515.
[22] J.C. Dearden, M. Hewitt,
D.W. Roberts, S. Enoch, P. Rowe, K. Przybylak, G. Vaughan-Williams, M.
Smith, G.G. Pillai, A.R. Katritzky, Mechanism-based QSAR modeling of
skin sensitization, Chemical research in toxicology, 28 (2015)
1975-1986.
[23] C. Braeuning, A. Braeuning,
H. Mielke, A. Holzwarth, M. Peiser, Evaluation and improvement of QSAR
predictions of skin sensitization for pesticides, SAR and QSAR in
Environmental Research, 29 (2018) 823-846.
[24] A. Wilm, J. Kühnl, J.
Kirchmair, Computational approaches for skin sensitization prediction,
Critical reviews in toxicology, 48 (2018) 738-760.
[25] M. Hirota, T. Ashikaga, H.
Kouzuki, Development of an artificial neural network model for risk
assessment of skin sensitization using human cell line activation test,
direct peptide reactivity assay, KeratinoSens™ and in silicostructure alert parameter, Journal of Applied Toxicology, 38 (2018)
514-526.
[26] J.W. van der Veen, E.
Rorije, R. Emter, A. Natsch, H. van Loveren, J. Ezendam, Evaluating the
performance of integrated approaches for hazard identification of skin
sensitizing chemicals, Regul Toxicol Pharm, 69 (2014) 371-379.
[27] G. Patlewicz, M.W. Chen,
C.A. Bellin, Non-testing approaches under REACH – help or hindrance?
Perspectives from a practitioner within industry, SAR QSAR Env. Res., 22
(2011) 67-88.
[28] D.W. Roberts, R. Fraginals,
J.P. Lepoittevin, C. Benezra, Refinement of the relative alkylation
index (RAI) model for skin sensitization and application to mouse and
guinea-pig test data for alkyl alkanesulphonates, Arch Dermatol Res.,
286 (1991) 387-394.
[29] D.W. Roberts, A.O. Aptula,
G. Patlewicz, Electrophilic Chemistry Related to Skin Sensitization.
Reaction Mechanistic Applicability Domain Classification for a Published
Data Set of 106 Chemicals Tested in the Mouse Local Lymph Node Assay,
Chem. Res. Toxicol., 20 (2007) 44-60.
[30] D.W. Roberts, T.W. Schultz,
E.M. Wolf, A.O. Aptula, Experimental Reactivity Parameters for Toxicity
Modeling: Application to the Acute Aquatic Toxicity of
SN2 Electrophiles to Tetrahymena pyriformis, Chem. Res.
Toxicol., 23 (2009) 228-234.
[31] D.W. Roberts, A.O. Aptula,
G.Y. Patlewicz, Chemistry-based risk assessment for skin sensitization:
quantitative mechanistic modeling for the S(N)Ar domain, Chem. Res.
Toxicol., 24 (2011) 1003-1011.
[32] D.W. Roberts, A.O. Aptula,
G. Patlewicz, Mechanistic Applicability Domains for Non-Animal Based
Prediction of Toxicological Endpoints. QSAR Analysis of the Schiff Base
Applicability Domain for Skin Sensitization, Chem. Res. Toxicol., 19
(2006) 1228-1233.
[33] Y. Li, Y.J. Tseng, D. Pan,
J. Liu, P.S. Kern, G.F. Gerberick, A.J. Hopfinger, 4D-Fingerprint
Categorical QSAR Models for Skin Sensitization Based on the
Classification of Local Lymph Node Assay Measures, Chem. Res. Toxicol.,
20 (2007) 114-128.
[34] M.D. Miller, D.M. Yourtee,
A.G. Glaros, C.C. Chappelow, J.D. Eick, A.J. Holder, Quantum Mechanical
Structure−Activity Relationship Analyses for Skin Sensitization, J.
Chem. Inf. Model., 45 (2005) 924-929.
[35] S. Weaver, M.P. Gleeson, The
importance of the domain of applicability in QSAR modeling, J Mol Graph
Model, 26 (2008) 1315-1326.
[36] M.P. Gleeson, Plasma protein
binding affinity and its relationship to molecular structure: an
in-silico analysis, J. Med. Chem., 50 (2007) 101-112.
[37] H. Kubinyi, QSAR and 3D QSAR
in drug design Part 1: methodology, Drug Discov. Today, 2 (1997)
457-467.
[38] M. Clark, R.D. Cramer Iii,
D.M. Jones, D.E. Patterson, P.E. Simeroth, Comparative molecular field
analysis (CoMFA). 2. Toward its use with 3D-structural databases,
Tetrahedron Comput. Methodol., 3 (1990) 47-59.
[39] R.D. Cramer, D.E. Patterson,
J.D. Bunce, Comparative molecular field analysis (CoMFA). 1. Effect of
shape on binding of steroids to carrier proteins, J. Am. Chem. Soc., 110
(1988) 5959-5967.
[40] P. Labute, A widely
applicable set of descriptors, J. Mol. Graph. Model., 18 (2000) 464-477.
[41] M. Pastor, G. Cruciani, I.
McLay, S. Pickett, S. Clementi, GRid-INdependent descriptors (GRIND): a
novel class of alignment-independent three-dimensional molecular
descriptors., J. Med. Chem., 43 (2000) 3233-3243.
[42] L.B. Kier, An index of
flexibility from molecular shape descriptors, Prog. Clin. Biol. Res.,
291 (1989) 105-109.
[43] A.R. Leach, B.K. Shoichet,
C.E. Peishoff, Prediction of protein-ligand interactions. Docking and
scoring: successes and gaps, J. Med. Chem., 49 (2006) 5851-5855.
[44] G.L. Warren, C.W. Andrews,
A.M. Capelli, B. Clarke, J. LaLonde, M.H. Lambert, M. Lindvall, N.
Nevins, S.F. Semus, S. Senger, G. Tedesco, I.D. Wall, J.M. Woolven, C.E.
Peishoff, M.S. Head, A critical assessment of docking programs and
scoring functions, J. Med. Chem., 49 (2006) 5912-5931.
[45] N.D. Yilmazer, M. Korth,
Comparison of Molecular Mechanics, Semi-Empirical Quantum Mechanical,
and Density Functional Theory Methods for Scoring Protein–Ligand
Interactions, J. Phys. Chem. B., 117 (2013) 8075-8084.
[46] D.L. Mobley, M.K. Gilson,
Predicting Binding Free Energies: Frontiers and Benchmarks, Annu. Rev.
Biophys., 46 (2017) 531-558.
[47] E. Stjernschantz, C.
Oostenbrink, Improved ligand-protein binding affinity predictions using
multiple binding modes., Biophys. J., 98 (2010) 2682-2691.
[48] M.P. Gleeson, D. Gleeson,
QM/MM Calculations in Drug Discovery: A Useful Method for Studying
Binding Phenomena?, J. Chem. Inf. Model., (2009).
[49] T. Zhou, D.Z. Huang, A.
Caflisch, Quantum Mechanical Methods for Drug Design, Curr. Top. Med.
Chem., 10 (2010) 33-45.
[50] Y.Q. Jing, K.L. Han, Quantum
mechanical effect in protein-ligand interaction, Expert Opin. Drug.
Discov., 5 (2010) 33-49.
[51] K. Raha, M.B. Peters, B.
Wang, N. Yu, A.M. WollaCott, L.M. Westerhoff, K.M. Merz, The role of
quantum mechanics in structure-based drug design, Drug Discov. Today, 12
(2007) 725-731.
[52] M.B. Peters, K. Raha, K.M.
Merz, Quantum mechanics in structure-based drug design, Curr. Opin. Drug
Discov. Dev., 9 (2006) 370-379.
[53] K.E. Shaw, C.J. Woods, A.J.
Mulholland, D.J. Abraham, QM and QM/MM Approaches to Evaluating Binding
Affinities, Burger’s Medicinal Chemistry and Drug Discovery, John Wiley
& Sons, Inc.2003.
[54] M. Promkatkaew, D. Gleeson,
S. Hannongbua, M.P. Gleeson, Skin Sensitization Prediction Using Quantum
Chemical Calculations: A Theoretical Model for the SNAr
Domain, Chemical Research in Toxicology, 27 (2014) 51-60.
[55] S.J. Enoch, D.W. Roberts,
Predicting Skin Sensitization Potency for Michael Acceptors in the LLNA
Using Quantum Mechanics Calculations, Chem. Res. Toxicol., 26 (2013)
767-774.
[56] J. Kostal, A.
Voutchkova-Kostal, CADRE-SS, an in Silico Tool for Predicting
Skin Sensitization Potential Based on Modeling of Molecular
Interactions, Chemical Research in Toxicology, 29 (2016) 58-64.
[57] ICCVAM, LLNA Database:
http://iccvam.niehs.nih.gov/methods/immunotox/rLLNA.htm.
[58] P.S. Kern, F. Gerberick,
C.A. Ryan, I. Kimber, A. Aptula, D. Basketter, Local Lymph Node Data for
the Evaluation of Skin Sensitization Alternatives: A second Compilation,
Dermatitis, 21 (2010) 8-32.
[59] M.J. Frisch, G.W. Trucks,
H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J. Montgomery,
J. A., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J.
Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A.
Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J.
Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M.
Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, V. Bakken, C.
Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J.
Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma,
G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich,
A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K.
Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S.
Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P.
Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham,
C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W.
Chen, M.W. Wong, C. Gonzalez, J.A. Pople, Gaussian 03, Revision C.02,
Gaussian, inc, Wallingford CT, 2004.
[60] Y. Zhao, D.G. Truhlar,
Applications and validations of the Minnesota density functionals, Chem
Phys Lett, 502 (2011) 1-13.
[61] R. Valero, J.R.B. Gomes,
D.G. Truhlar, F. Illas, Good performance of the M06 family of hybrid
meta generalized gradient approximation density functionals on a
difficult case: CO adsorption on MgO(001), J Chem Phys, 129 (2008) -.
[62] ChemAxon JChem:
www.chemaxon.com,
ChemAxon JChem:
www.chemaxon.com.
[63] Statistica 12.
www.statistica.com.
[64] S.E. Anderson, P.D. Siegel,
B.J. Meade, The LLNA: A Brief Review of Recent Advances and Limitations,
J. Allergy, 2011 (2011).
[65] J.M. Fitzpatrick, D.W.
Roberts, G. Patlewicz, Is skin penetration a determining factor in skin
sensitization potential and potency? Refuting the notion of a LogKow
threshold for skin sensitization, Journal of Applied Toxicology, 37
(2017) 117-127.
[66] J. Hilton, R.J. Dearman, P.
Harvey, P. Evans, D.A. Basketter, I. Kimber, Estimation of relative skin
sensitizing potency using the local lymph node assay: A comparison of
formaldehyde with glutaraldehyde, American Journal of Contact
Dermatitis, 9 (1998) 29-33.
[67] I.V. Tetko, P. Bruneau,
Application of ALOGPS to predict 1‐octanol/water distribution
coefficients, logP, and logD, of AstraZeneca in‐house database, Journal
of Pharmaceutical Sciences, 93 (2004) 3103-3110.
[68] ACD Chemsketch 2018.1.1
www.acdlabs.com/.