References

[1] Ruan Q, Yang K, Wang W, Jiang L, Song J. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med 2020:1–3. doi:10.1007/s00134-020-05991-x.
[2] Cao B, Wang Y, Wen D, Liu W, Wang J, Fan G, et al. A Trial of Lopinavir–Ritonavir in Adults Hospitalized with Severe Covid-19. N Engl J Med 2020:NEJMoa2001282. doi:10.1056/NEJMoa2001282.
[3] Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 2020;395:1054–62. doi:10.1016/S0140-6736(20)30566-3.
[4] Li N, Ma W-T, Pang M, Fan Q-L, Hua J-L. The Commensal Microbiota and Viral Infection: A Comprehensive Review. Front Immunol 2019;10:1551. doi:10.3389/fimmu.2019.01551.
[5] Dang AT, Marsland BJ. Microbes, metabolites, and the gut–lung axis. Mucosal Immunol 2019;12:843–50. doi:10.1038/s41385-019-0160-6.
[6] Sender R, Fuchs S, Milo R. Are We Really Vastly Outnumbered? Revisiting the Ratio of Bacterial to Host Cells in Humans. Cell 2016;164:337–40. doi:10.1016/j.cell.2016.01.013.
[7] Brown JM, Hazen SL. Targeting of microbe-derived metabolites to improve human health: The next frontier for drug discovery. J Biol Chem 2017:8560–8. doi:10.1074/jbc.R116.765388.
[8] Grice EA, Segre JA. The Human Microbiome: Our Second Genome. Annu Rev Genomics Hum Genet 2012;13:151–70. doi:10.1146/annurev-genom-090711-163814.
[9] Shogbesan O, Poudel DR, Victor S, Jehangir A, Fadahunsi O, Shogbesan G, et al. A Systematic Review of the Efficacy and Safety of Fecal Microbiota Transplant for Clostridium difficile Infection in Immunocompromised Patients. Can J Gastroenterol Hepatol 2018;2018:1394379. doi:10.1155/2018/1394379.
[10] Strachan DP. Hay fever, hygiene, and household size. BMJ 1989;299:1259–60. doi:10.1136/bmj.299.6710.1259.
[11] Shreiner A, Huffnagle GB, Noverr MC. The “Microflora Hypothesis” of Allergic Disease. Adv Exp Med Biol 2008;635:113–34.
[12] Waterhouse J. Post-hunter-gatherer era microbes’ role in allergic/autoimmune disease. Authorea Prepr 2020. doi:10.22541/AU.158035512.24828861.
[13] Preliminary Estimates of the Prevalence of Selected Underlying Health Conditions Among Patients with Coronavirus Disease 2019 — United States, February 12–March 28, 2020. MMWR Morb Mortal Wkly Rep 2020;69:382–386. doi:10.15585/mmwr.mm6913e2external icon.
[14] Fulop T, Larbi A, Dupuis G, Le Page A, Frost EH, Cohen AA, et al. Immunosenescence and Inflamm-Aging As Two Sides of the Same Coin: Friends or Foes? Front Immunol 2018;8:1960. doi:10.3389/fimmu.2017.01960.
[15] Du Y, Li X, Su C, Wang L, Jiang J, Hong B. The human gut microbiome – a new and exciting avenue in cardiovascular drug discovery. Expert Opin Drug Discov 2019;14:1037–52. doi:10.1080/17460441.2019.1638909.
[16] Vaughan A, Frazer ZA, Hansbro PM, Yang IA. COPD and the gut-lung axis: the therapeutic potential of fibre. J Thorac Dis 2019;11:S2173–80. doi:10.21037/jtd.2019.10.40.
[17] Potgieter M, Bester J, Kell DB, Pretorius E. The dormant blood microbiome in chronic, inflammatory diseases. FEMS Microbiol Rev 2015;39:567–91. doi:10.1093/femsre/fuv013.
[18] Dickson RP, Martinez FJ, Huffnagle GB. The Role of the Microbiome in Exacerbations of Chronic Lung Diseases. Lancet 2014;384:691–702. doi:10.1016/s0140-6736(14)61136-3.
[19] Yitbarek A, Taha-Abdelaziz K, Hodgins DC, Read L, Nagy É, Weese JS, et al. Gut microbiota-mediated protection against influenza virus subtype H9N2 in chickens is associated with modulation of the innate responses. Sci Rep 2018;8:1–12. doi:10.1038/s41598-018-31613-0.
[20] Steed AL, Christophi GP, Kaiko GE, Sun L, Goodwin VM, Jain U, et al. The microbial metabolite desaminotyrosine protects from influenza through type I interferon. Science (80- ) 2017;357:498–502. doi:10.1126/science.aam5336.
[21] Ji J, Sun Q, Wang Q, Zhang H, Qin F, Wang Q, et al. Probiotics Confers Protection Against RSV Infections by Regulating Gut and Lung Microbiotas to Activate Antiviral Responses of Alveolar Macrophage. SSRN Prepr 2019. doi:10.2139/ssrn.3471990.
[22] Liu X-R, Xu Q, Xiao J, Deng Y-M, Tang Z-H, Tang Y-L, et al. Role of oral microbiota in atherosclerosis. Clin Chim Acta 2020;506:191–5. doi:10.1016/j.cca.2020.03.033.
[23] Joshi R, Khandelwal B, Joshi D, Gupta OP. Chlamydophila Pneumoniae Infection and Cardiovascular Disease. N Am J Med Sci 2013;5:169–81. doi:10.4103/1947-2714.109178.
[24] Zhang D, Li S, Wang N, Tan H-Y, Zhang Z, Feng Y. The Cross-Talk Between Gut Microbiota and Lungs in Common Lung Diseases. Front Microbiol 2020;11:301. doi:10.3389/fmicb.2020.00301.
[25] Adeshirlarijaney A, Gewirtz AT. Considering gut microbiota in treatment of type 2 diabetes mellitus. Gut Microbes 2020;2020:1–12. doi:10.1080/19490976.2020.1717719.
[26] Arai Y, Martin-Ruiz CM, Takayama M, Abe Y, Takebayashi T, Koyasu S, et al. Inflammation, But Not Telomere Length, Predicts Successful Ageing at Extreme Old Age: A Longitudinal Study of Semi-supercentenarians. EBioMedicine 2015;2:1549–58. doi:10.1016/j.ebiom.2015.07.029.
[27] Beharka AA, Meydani M, Wu D, Leka LS, Meydani A, Meydani SN. Interleukin-6 Production Does Not Increase With Age. J Gerontol A Biol Sci Med Sci 2001;56:B81–8. doi:10.1093/gerona/56.2.B81.
[28] Ward-Caviness CK, Weaver AM, Buranosky M, Pfaff ER, Neas LM, Devlin RB, et al. Associations Between Long-Term Fine Particulate Matter Exposure and Mortality in Heart Failure Patients. J Am Hear Assoc 2020;9:e012517. doi:10.1161/JAHA.119.012517.
[29] Shah AS, Langrish JP, Nair H, McAllister DA, Hunter AL, Donaldson K, et al. Global association of air pollution and heart failure: a systematic review and meta-analysis. Lancet 2013;382:1039–48. doi:10.1016/S0140-6736(13)60898-3.
[30] Requia WJ, Adams MD, Arain A, Papatheodorou S, Koutrakis P, Mahmoud M. Global Association of Air Pollution and Cardiorespiratory Diseases: A Systematic Review, Meta-Analysis, and Investigation of Modifier Variables. Am J Public Health 2018;108:S123-s130. doi:10.2105/AJPH.2017.303839.
[31] Qin T, Zhang F, Zhou H, Ren H, Du Y, Liang S, et al. High-Level PM2.5/PM10 Exposure Is Associated With Alterations in the Human Pharyngeal Microbiota Composition. Front Microbiol 2019;10:54. doi:10.3389/fmicb.2019.00054.
[32] Su Y-C, Jalalvand F, Thegerström J, Riesbeck K. The Interplay Between Immune Response and Bacterial Infection in COPD: Focus Upon Non-typeable Haemophilus influenzae. Front Immunol 2018;9:2530. doi:10.3389/fimmu.2018.02530.
[33] Samek L. Overall human mortality and morbidity due to exposure to air pollution. Int J Occup Med Environ Health 2016;29:417–26. doi:10.13075/ijomeh.1896.00560.
[34] Croft DP, Zhang W, Lin S, Thurston SW, Hopke PK, Masiol M, et al. The Association between Respiratory Infection and Air Pollution in the Setting of Air Quality Policy and Economic Change. Ann Am Thorac Soc 2019;16:321–30. doi:10.1513/AnnalsATS.201810-691OC.
[35] Babatola SS. Global burden of diseases attributable to air pollution. J Public Health Africa 2018;9:813. doi:10.4081/jphia.2018.813.
[36] Wu X, Nethery RC, Sabath BM, Braun D, Dominici F. Exposure to air pollution and COVID-19 mortality in the United States. MedRxiv Prepr 2020. doi:10.1101/2020.04.05.20054502.
[37] Conticini E, Frediani B, Caro D. Can atmospheric pollution be considered a co-factor in extremely high level of SARS-CoV-2 lethality in Northern Italy? Environ Pollut 2020;2020:114465. doi:10.1016/j.envpol.2020.114465.
[38] Rossati A. Global Warming and Its Health Impact. Int J Occup Environ Med 2017;8:7–20. doi:10.15171/ijoem.2017.963.
[39] Zinöcker MK, Lindseth IA. The Western Diet-Microbiome-Host Interaction and Its Role in Metabolic Disease. Nutrients 2018;10:365. doi:10.3390/nu10030365.
[40] Kopp W. How Western Diet And Lifestyle Drive The Pandemic Of Obesity And Civilization Diseases. Diabetes Metab Syndr Obes 2019;12:2221–36. doi:10.2147/DMSO.S216791.
[41] Keller KB, Lemberg L. Obesity and the metabolic syndrome. Am J Crit Care 2003;12:167–70.
[42] Guilleminault L, Williams EJ, Scott HA, Berthon BS, Jensen M, Wood LG. Diet and Asthma: Is It Time to Adapt Our Message? Nutrients 2017;9:1227. doi:10.3390/nu9111227.
[43] Hallberg SJ, Gershuni VM, Hazbun TL, Athinarayanan SJ. Reversing Type 2 Diabetes: A Narrative Review of the Evidence. Nutrients 2019;11:766. doi:10.3390/nu11040766.
[44] Ornish D, Brown SE, Scherwitz LW, Billings JH, Armstrong WT, Ports TA, et al. Can lifestyle changes reverse coronary heart disease? The Lifestyle Heart Trial. Lancet 1990;336:129–33. doi:10.1016/0140-6736(90)91656-u.
[45] Scoditti E, Massaro M, Garbarino S, Toraldo DM. Role of Diet in Chronic Obstructive Pulmonary Disease Prevention and Treatment. Nutrients 2019;11:1357. doi:10.3390/nu11061357.
[46] Khaodhiar L, Ling P, Blackburn G, Bistrian B. Serum Levels of interleukin-6 and C-reactive Protein Correlate With Body Mass Index Across the Broad Range of Obesity. JPEN J Parenter Enteral Nutr 2004;28:410–5. doi:10.1177/0148607104028006410.
[47] Selvin E, Paynter NP, Erlinger TP. The Effect of Weight Loss on C-Reactive Protein: A Systematic Review. Arch Intern Med 2007;167:31–9. doi:10.1001/archinte.167.1.31.
[48] Smidowicz A, Regula J. Effect of Nutritional Status and Dietary Patterns on Human Serum C-Reactive Protein and Interleukin-6 Concentrations. Adv Nutr 2015;6:738–47. doi:10.3945/an.115.009415.
[49] Ornish D. Avoiding revascularization with lifestyle changes: The Multicenter Lifestyle Demonstration Project. Am J Cardiol 1998;82:72T-76T. doi:10.1016/s0002-9149(98)00744-9.
[50] Tuomilehto J, Lindström J, Eriksson JG, Valle TT, Hämäläinen H, Ilanne-Parikka P, et al. Prevention of Type 2 Diabetes Mellitus by Changes in Lifestyle among Subjects with Impaired Glucose Tolerance. N Engl J Med 2001;344:1343–50. doi:10.1056/NEJM200105033441801.
[51] Chiba M, Ishii H, Komatsu M. Recommendation of plant-based diets for inflammatory bowel disease. Transl Pediatr 2019;8:23–7. doi:10.21037/tp.2018.12.02.
[52] Jethwa H, Prince M, Bukhari M, Abraham S. The evidence for dietary manipulation in inflammatory arthritis. Int J Clin Rheumtol 2019;14:190–9.
[53] Sebastiani G, Barbero AH, Borrás-Novell C, Casanova MA, Aldecoa-Bilbao V, Andreu-Fernández V, et al. The Effects of Vegetarian and Vegan Diet during Pregnancy on the Health of Mothers and Offspring. Nutrients 2019;11:557. doi:10.3390/nu11030557.
[54] De Angelis M, Ferrocino I, Calabrese FM, De Filippis F, Cavallo N, Siragusa S, et al. Diet influences the functions of the human intestinal microbiome. Sci Rep 2020;10:4247. doi:10.1038/s41598-020-61192-y.
[55] Morrison KE, Jašarević E, Howard CD, Bale TL. It’s the fiber, not the fat: significant effects of dietary challenge on the gut microbiome. Microbiome 2020;8:15. doi:10.1186/s40168-020-0791-6.
[56] Vereecke L, Elewaut D. Spondyloarthropathies: Ruminococcus on the horizon in arthritic disease. Nat Rev Rheumatol 2017;13:574–6. doi:10.1038/nrrheum.2017.130.
[57] Schirmer M, Garner A, Vlamakis H, Xavier RJ. Microbial genes and pathways in inflammatory bowel disease. Nat Rev Microbiol 2019;17:497–511. doi:10.1038/s41579-019-0213-6.
[58] Toya T, Corban MT, Marrietta E, Horwath IE, Lerman LO, Murray JA, et al. Coronary artery disease is associated with an altered gut microbiome composition. PLoS One 2020;15:e0227147. doi:10.1371/journal.pone.0227147.
[59] Meslier V, Laiola M, Roager HM, De Filippis F, Roume H, Quinquis B, et al. Mediterranean diet intervention in overweight and obese subjects lowers plasma cholesterol and causes changes in the gut microbiome and metabolome independently of energy intake. Gut 2020;2020:gutjnl-2019-320438. doi:10.1136/gutjnl-2019-320438.
[60] Hall AB, Yassour M, Sauk J, Garner A, Jiang X, Arthur T, et al. A novel Ruminococcus gnavus clade enriched in inflammatory bowel disease patients. Genome Med 2017;9:103. doi:10.1186/s13073-017-0490-5.
[61] Vieira SM, Hiltensperger M, Kumar V, Zegarra-Ruiz D, Dehner C, Khan N, et al. Translocation of a gut pathobiont drives autoimmunity in mice and humans. Science 2018;359:1156–61. doi:10.1126/science.aar7201.
[62] Fine RL, Manfredo Vieira S, Gilmore MS, Kriegel MA. Mechanisms and consequences of gut commensal translocation in chronic diseases. Gut Microbes 2020;11:217–30. doi:10.1080/19490976.2019.1629236.
[63] Wypych TP, Marsland BJ, Ubags NDJ. The Impact of Diet on Immunity and Respiratory Diseases. Ann Am Thorac Soc 2017;14(S_5):S339–47. doi:10.1513/AnnalsATS.201703-255AW.
[64] Bailey MA, Holscher HD. Microbiome-Mediated Effects of the Mediterranean Diet on Inflammation. Adv Nutr 2018;9:193–206. doi:10.1093/advances/nmy013.
[65] Bacher P, Hohnstein T, Beerbaum E, Röcker M, Blango MG, Kaufmann S, et al. Human Anti-fungal Th17 Immunity and Pathology Rely on Cross-Reactivity against Candida albicans. Cell 2019;176:1340-1355.e15. doi:10.1016/j.cell.2019.01.041.
[66] Hills RD, Jr., Pontefract BA, Mishcon HR, Black CA, Sutton SC, et al. Gut Microbiome: Profound Implications for Diet and Disease. Nutrients 2019;11:1613. doi:10.3390/nu11071613.
[67] Kumamoto CA. Inflammation and gastrointestinal Candida colonization. Curr Opin Microbiol 2011;14:386–391. doi:10.1016/j.mib.2011.07.015.
[68] Invernizzi R, Lloyd CM, Molyneaux PL. Respiratory microbiome and epithelial interactions shape immunity in the lungs. Immunology 2020:10.1111/imm.13195. doi:10.1111/IMM.13195.
[69] Hall KD, Ayuketah A, Brychta R, Cai H, Cassimatis T, Chen KY, et al. Ultra-Processed Diets Cause Excess Calorie Intake and Weight Gain: An Inpatient Randomized Controlled Trial of Ad Libitum Food Intake. Cell Metab 2019;30:67-77.e3. doi:10.1016/j.cmet.2019.05.008.
[70] Gardner CD, Trepanowski JF, Del Gobbo LC, Hauser ME, Rigdon J, Ioannidis JPA, et al. Effect of Low-Fat vs Low-Carbohydrate Diet on 12-Month Weight Loss in Overweight Adults and the Association With Genotype Pattern or Insulin Secretion: The DIETFITS Randomized Clinical Trial. JAMA 2018;319:667–79. doi:10.1001/jama.2018.0245.
[71] Zeevi D, Korem T, Zmora N, Israeli D, Rothschild D, Weinberger A, et al. Personalized Nutrition by Prediction of Glycemic Responses. Cell 2015;163:1079–94. doi:10.1016/j.cell.2015.11.001.
[72] Elinav E, Segal E, Adamson E. The personalized diet : the pioneering program to lose weight and prevent disease. 1st ed. NY, NY: Grand Central Publishing,; 2017.
[73] Lee SA, Sypniewski C, Bensadon BA, McLaren C, Donahoo WT, Sibille KT, et al. Determinants of Adherence in Time-Restricted Feeding in Older Adults: Lessons from a Pilot Study. Nutrients 2020;12:E874. doi:10.3390/nu12030874.
[74] Wei S, Zhao J, Bai M, Li C, Zhang L, Chen Y. Comparison of glycemic improvement between intermittent calorie restriction and continuous calorie restriction in diabetic mice. Nutr Metab (Lond) 2019;16:60. doi:10.1186/s12986-019-0388-x.
[75] Longo VD, Juventology S. Programmed longevity, youthspan, and juventology. Aging Cell 2019;18:e12843. doi:10.1111/acel.12843.
[76] Longo VD, Panda S. Fasting, circadian rhythms, and time restricted feeding in healthy lifespan. Cell Metab 2016;23:1048–59. doi:10.1016/j.cmet.2016.06.001.
[77] Longo V. Longevity Diet : slow aging, fight disease, optimize weight. NY, NY: Avery Pub Group; 2019.
[78] Cheng C-W, Villani V, Buono R, Wei M, Kumar S, Yilmaz OH, et al. Fasting-mimicking diet promotes Ngn3-driven β-cell regeneration to reverse diabetes. Cell 2017;168:775-788.e12. doi:10.1016/j.cell.2017.01.040.
[79] Rangan P, Choi I, Wei M, Navarrete G, Guen E, Brandhorst S, et al. Fasting-Mimicking Diet Modulates Microbiota and Promotes Intestinal Regeneration to Reduce Inflammatory Bowel Disease Pathology. Cell Rep 2019;26:2704-2719.e6. doi:10.1016/j.celrep.2019.02.019.
[80] Buric I, Farias M, Jong J, Mee C, Brazil IA. What Is the Molecular Signature of Mind–Body Interventions? A Systematic Review of Gene Expression Changes Induced by Meditation and Related Practices. Front Immunol 2017;8:670. doi:10.3389/FIMMU.2017.00670.
[81] Pedersen A, Zachariae R, Bovbjerg DH. Influence of Psychological Stress on Upper Respiratory Infection—A Meta-Analysis of Prospective Studies. Psychosom Med 2010;72:823–32. doi:10.1097/PSY.0b013e3181f1d003.
[82] Rea K, Dinan TG, Cryan JF. The microbiome: A key regulator of stress and neuroinflammation. Neurobiol Stress 2016;4:23–33. doi:10.1016/j.ynstr.2016.03.001.
[83] Dragoş D, Tănăsescu M. The effect of stress on the defense systems. J Med Life 2010;3:10–8.
[84] Richmond BW, Brucker RM, Han W, Du R-H, Zhang Y, Cheng D-S, et al. Airway bacteria drive a progressive COPD-like phenotype in mice with polymeric immunoglobulin receptor deficiency. Nat Commun 2016;7:11240. doi:10.1038/ncomms11240.
[85] Fessell D, Cherniss C. Coronavirus Disease 2019 (COVID-19) and Beyond: Micropractices for Burnout Prevention and Emotional Wellness. J Am Coll Radiol 2020;S1545-1440. doi:10.1016/j.jacr.2020.03.013.
[86] Ma X, Yue Z-Q, Gong Z-Q, Zhang H, Duan N-Y, Shi Y-T, et al. The Effect of Diaphragmatic Breathing on Attention, Negative Affect and Stress in Healthy Adults. Front Psychol 2017;8:874. doi:10.3389/fpsyg.2017.00874.
[87] Lavretsky H, Newhouse PA. Stress, Inflammation and Aging. Am J Geriatr Psychiatry 2012;20:729–733. doi:10.1097/JGP.0b013e31826573cf.
[88] Yiallouris A, Tsioutis C, Agapidaki E, Zafeiri M, Agouridis AP, Ntourakis D, et al. Adrenal Aging and Its Implications on Stress Responsiveness in Humans. Front Endocrinol (Lausanne) 2019;10:54. doi:10.3389/fendo.2019.00054.
[89] Yan Y-X, Xiao H-B, Wang S-S, Zhao J, He Y, Wang W, et al. Investigation of the Relationship Between Chronic Stress and Insulin Resistance in a Chinese Population. J Epidemiol 2016;26:355–360. doi:10.2188/jea.JE20150183.
[90] Yeager MP, Pioli PA, Guyre PM. Cortisol Exerts Bi-Phasic Regulation of Inflammation in Humans. Dose-Response 2011;9:332=347. doi:10.2203/dose-response.10-013.Yeager.
[91] Yeager MP, Guyre CA, Sites BD, Collins JE, Pioli PA, Guyre PM. The Stress Hormone Cortisol Enhances Interferon-υ–Mediated Proinflammatory Responses of Human Immune Cells. Anesth Analg 2018;127:556–63. doi:10.1213/ANE.0000000000003481.
[92] Manalai P, Hamilton RG, Langenberg P, Kosisky SE, Lapidus M, Sleemi A, et al. Pollen-specific immunoglobulin E positivity is associated with worsening of depression scores in bipolar disorder patients during high pollen season. Bipolar Disord 2012;14:90–8. doi:10.1111/j.1399-5618.2012.00983.x.
[93] Kelly K, Ratliff S, Mezuk B. Allergies, asthma, and psychopathology in a nationally-representative US sample. J Affect Disord 2019;251:130–5. doi:10.1016/j.jad.2019.03.026.
[94] Costa-Pinto FA, Basso AS, Britto LRG, Malucelli BE, Russo M. Avoidance behavior and neural correlates of allergen exposure in a murine model of asthma. Brain Behav Immun 2005;19:52–60. doi:10.1016/j.bbi.2004.02.005.
[95] Tonelli LH, Katz M, Kovacsics CE, Gould TD, Joppy B, Hoshino A, et al. Allergic rhinitis induces anxiety-like behavior and altered social interaction in rodents. Brain Behav Immun 2009;23:784–93. doi:10.1016/j.bbi.2009.02.017.
[96] Monda V, Villano I, Messina A, Valenzano A, Esposito T, Moscatelli F, et al. Exercise Modifies the Gut Microbiota with Positive Health Effects. Oxid Med Cell Longev 2017;2017:3831972. doi:10.1155/2017/3831972.
[97] de Souto Barreto P, Rolland Y, Vellas B, Maltais M. Association of Long-term Exercise Training With Risk of Falls, Fractures, Hospitalizations, and Mortality in Older Adults: A Systematic Review and Meta-analysis. JAMA Intern Med 2019;179:394–405. doi:10.1001/jamainternmed.2018.5406.
[98] Kraus W, Powell K, Haskell W, Janz K, Campbell W, Jakicic J, et al. Physical Activity, All-Cause and Cardiovascular Mortality, and Cardiovascular Disease. Med Sci Sports Exerc 2019;51:1270–81. doi:10.1249/MSS.0000000000001939.
[99] Hart PD, Benavidez G, Erickson J. Meeting Recommended Levels of Physical Activity in Relation to Preventive Health Behavior and Health Status Among Adults. J Prev Med Public Heal 2017;50:10–7. doi:10.3961/jpmph.16.080.
[100] Clark A, Mach N. Exercise-induced stress behavior, gut-microbiota-brain axis and diet: a systematic review for athletes. J Int Soc Sports Nutr 2016;13:43. doi:10.1186/s12970-016-0155-6.
[101] Felger JC, Treadway MT. Inflammation Effects on Motivation and Motor Activity: Role of Dopamine. Neuropsychopharmacology 2017;42:216–41. doi:10.1038/npp.2016.143.
[102] Cui H, Kong Y, Zhang H. Oxidative Stress, Mitochondrial Dysfunction, and Aging. J Signal Transduct 2012;2012:646354. doi:10.1155/2012/646354.
[103] Cavaliere G, Trinchese G, Penna E, Cimmino F, Pirozzi C, Lama A, et al. High-Fat Diet Induces Neuroinflammation and Mitochondrial Impairment in Mice Cerebral Cortex and Synaptic Fraction. Front Cell Neurosci 2019;13:509. doi:10.3389/fncel.2019.00509.
[104] Wilmanski T, Diener C, Rappaport N, Patwardhan S, Wiedrick J, Lapidus J, et al. Gut Microbiome Pattern Reflects Healthy Aging and Predicts Extended Survival in Humans. BioRxiv Prepr 2020. doi:10.1101/2020.02.26.966747.
[105] Hermans MAW, Lennep JER van, Daele PLA van, Bot I. Mast Cells in Cardiovascular Disease: From Bench to Bedside. Int J Mol Sci 2019;20:3395. doi:10.3390/ijms20143395.
[106] Shi MA, Shi G-P. Different Roles of Mast Cells in Obesity and Diabetes: Lessons from Experimental Animals and Humans. Front Immunol 2012;3:7. doi:10.3389/fimmu.2012.00007.
[107] Andersson CK, Mori M, Bjermer L, Löfdahl C-G, Erjefält JS. Alterations in Lung Mast Cell Populations in Patients with Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 2010;181:206–17. doi:10.1164/rccm.200906-0932OC.
[108] Theoharides TC, Sismanopoulos N, Delivanis D-A, Zhang B, Hatziagelaki EE, Kalogeromitros D. Mast cells squeeze the heart and stretch the gird: their role in atherosclerosis and obesity. Trends Pharmacol Sci 2011;32:534–42. doi:10.1016/j.tips.2011.05.005.
[109] Li M, Liu K, Michalicek J, Angus JA, Hunt JE, Dell’Italia LJ, et al. Involvement of chymase-mediated angiotensin II generation in blood pressure regulation. J Clin Invest 2004;114:112–20. doi:10.1172/JCI20805.
[110] Becker BF. All because of the mast cell: blocking the angiotensin receptor-1 should be better than inhibiting ACE (theoretically). Cardiovasc Res 2011;92:7–9. doi:10.1093/cvr/cvr214.
[111] Gideon A, Sauter C, Fieres J, Berger T, Renner B, Wirtz PH. Kinetics and Interrelations of the Renin Aldosterone Response to Acute Psychosocial Stress: A Neglected Stress System. J Clin Endocrinol Metab 2020;105:e762–73. doi:10.1210/clinem/dgz190.
[112] Ayada C, Toru Ü, Korkut Y. The relationship of stress and blood pressure effectors. Hippokratia 2015;19:99–108.
[113] Liu Y, Yang Y, Zhang C, Huang F, Wang F, Yuan J, et al. Clinical and biochemical indexes from 2019-nCoV infected patients linked to viral loads and lung injury. Sci China Life Sci 2020;63:364–74. doi:10.1007/s11427-020-1643-8.
[114] Mancini E, Fürst J. View: “Scorched Earth” strategy: The RAS as possible target for treating COVID-19 patients with a combination of three approved pharmaceutical agents. Figshare Prepr 2020. doi:10.13140/RG.2.2.35010.94400.
[115] Satou R, Penrose H, Navar LG. Inflammation as a Regulator of the Renin-Angiotensin System and Blood Pressure. Curr Hypertens Rep 2018;20:100. doi:10.1007/s11906-018-0900-0.
[116] El-Haggar SM, Farrag WF, Kotkata FA. Effect of ketotifen in obese patients with type 2 diabetes mellitus. J Diabetes Complications 2015;29:427–32. doi:10.1016/j.jdiacomp.2015.01.013.
[117] Sismanopoulos N, Delivanis D-A, Mavrommati D, Hatziagelaki E, Conti P, Theoharides TC. Do mast cells link obesity and asthma? Allergy 2013;68:8–15. doi:10.1111/all.12043.
[118] Piliponsky AM, Acharya M, Shubin NJ. Mast Cells in Viral, Bacterial, and Fungal Infection Immunity. Int J Mol Sci 2019;20:E2851. doi:10.3390/ijms20122851.
[119] Kritas SK, Ronconi G, Caraffa A, Gallenga CE, Ross R, Conti P. Mast Cells Contribute to Coronavirus-Induced Inflammation: New Anti-Inflammatory Strategy. J Biol Regul Homeost Agents 2020;34:10.23812/20-Editorial-Kritas. doi:10.23812/20-Editorial-Kritas.
[120] Corley MJ, Sugai C, Schotsaert M, Schwartz RE, Ndhlovu LC. Comparative in vitro transcriptomic analyses of COVID-19 candidate therapy hydroxychloroquine suggest limited immunomodulatory evidence of SARS-CoV-2 host response genes. BioRxiv Prepr 2020. doi:10.1101/2020.04.13.039263.
[121] Graham AC, Temple RM, Obar JJ. Mast Cells and Influenza A Virus: Association with Allergic Responses and Beyond. Front Immunol 2015;6:238. doi:10.3389/fimmu.2015.00238.
[122] Han D, Wei T, Zhang S, Wang M, Tian H, Cheng J, et al. The therapeutic effects of sodium cromoglycate against influenza A virus H5N1 in mice. Influ Other Respir Viruses 2016;10:57–66. doi:10.1111/irv.12334.
[123] Hu Y, Jin Y, Han D, Zhang G, Cao S, Xie J, et al. Mast Cell-Induced Lung Injury in Mice Infected with H5N1 Influenza Virus. J Virol 2012;86:3347–56. doi:10.1128/JVI.06053-11.
[124] Liebler JM, Qu Z, Buckner B, Powers MR, Rosenbaum JT. Fibroproliferation and mast cells in the acute respiratory distress syndrome. Thorax 1998;53:823–9. doi:10.1136/thx.53.10.823.
[125] Overed-Sayer C, Rapley L, Mustelin T, Clarke DL. Are mast cells instrumental for fibrotic diseases? Front Pharmacol 2014;4:174. doi:10.3389/fphar.2013.00174.
[126] Keith P, Day M, Perkins L, Moyer L, Hewitt K, Wells A. A novel treatment approach to the novel coronavirus: an argument for the use of therapeutic plasma exchange for fulminant COVID-19. Crit Care 2020;24:128. doi:10.1186/s13054-020-2836-4.
[127] Dahdah A, Gautier G, Attout T, Fiore F, Lebourdais E, Msallam R, et al. Mast cells aggravate sepsis by inhibiting peritoneal macrophage phagocytosis. J Clin Invest 2014;124:4577–89. doi:10.1172/JCI75212.
[128] Ramos L, Peña G, Cai B, Deitch EA, Ulloa L. Mast Cell Stabilization Improves Survival by Preventing Apoptosis in Sepsis. J Immunol 2010;185:709–16. doi:10.4049/jimmunol.1000273.
[129] Byrne K, Sielaff TD, Michna B, Carey PD, Blocher CR, Vasquez A, et al. Increased Survival Time After Delayed Histamine and Prostaglandin Blockade in a Porcine Model of Severe Sepsis-Induced Lung Injury. Crit Care Med 1990;18:303–8. doi:10.1097/00003246-199003000-00012.
[130] Seeley EJ, Sutherland RE, Kim SS, Wolters PJ. Systemic mast cell degranulation increases mortality during polymicrobial septic peritonitis in mice. J Leukoc Biol 2011;90:591–7. doi:10.1189/jlb.0910531.
[131] Seeley EJ, Matthay MA, Wolters PJ. Inflection points in sepsis biology: from local defense to systemic organ injury. Am J Physiol - Lung Cell Mol Physiol 2012;303:L355-63. doi:10.1152/ajplung.00069.2012.
[132] Ho T-W, Huang C-T, Ruan S-Y, Tsai Y-J, Lai F, Yu C-J. Diabetes mellitus in patients with chronic obstructive pulmonary disease-The impact on mortality. PLoS One 2017;12:e0175794. doi:10.1371/journal.pone.0175794.
[133] Morgan AD, Zakeri R, Quint JK. Defining the relationship between COPD and CVD: what are the implications for clinical practice? Ther Adv Respir Dis 2018;12:1753465817750524. doi:10.1177/1753465817750524.
[134] Holt JB, Zhang X, Presley-Cantrell L, Croft JB. Geographic disparities in chronic obstructive pulmonary disease (COPD) hospitalization among Medicare beneficiaries in the United States. Int J Chron Obstruct Pulmon Dis 2011;6:321–8. doi:10.2147/COPD.S19945.
[135] Halvorsen T, Martinussen P. The Geography of Chronic Obstructive Pulmonary Disease: A Population-Based Study of Norway. Soc Sci Med 2014;111:25–34. doi:10.1016/j.socscimed.2014.03.018.
[136] Huang X, Mu X, Deng L, Fu A, Pu E, Tang T, et al. The etiologic origins for chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis 2019;14:1139–58. doi:10.2147/COPD.S203215.
[137] Jaakkola MS, Lajunen TK, Jaakkola JJK. Indoor mold odor in the workplace increases the risk of Asthma-COPD Overlap Syndrome: a population-based incident case–control study. Clin Transl Allergy 2020;10:3. doi:10.1186/s13601-019-0307-2.
[138] Tzortzaki EG, Proklou A, Siafakas NM. Asthma in the Elderly: Can We Distinguish It from COPD? J Allergy 2011;2011:843543. doi:10.1155/2011/843543.
[139] To T, Zhu J, Larsen K, Simatovic J, Feldman L, Ryckman K, et al. Progression from Asthma to Chronic Obstructive Pulmonary Disease. Is Air Pollution a Risk Factor? Am J Respir Crit Care Med 2016;194:429–38. doi:10.1164/rccm.201510-1932OC.
[140] Veil-Picard M, Soumagne T, Vongthilath R, Annesi-Maesano I, Guillien A, Laurent L, et al. Is atopy a risk indicator of chronic obstructive pulmonary disease in dairy farmers? Respir Res 2019;20:124. doi:10.1186/s12931-019-1082-2.
[141] Eguiluz-Gracia I, Pérez-Sánchez N, Bogas G, Campo P, Rondón C. How to Diagnose and Treat Local Allergic Rhinitis: A Challenge for Clinicians. J Clin Med 2019;8:1062. doi:10.3390/jcm8071062.
[142] Baptist AP, Nyenhuis S. Rhinitis in the elderly. Immunol Allergy Clin North Am 2016;36:343–57. doi:10.1016/j.iac.2015.12.010.
[143] Wright BL, Kulis M, Guo R, Orgel KA, Wolf WA, Burks AW, et al. Food-specific IgG4 is associated with eosinophilic esophagitis. J Allergy Clin Immunol 2016;138:1190-1192.e3. doi:10.1016/j.jaci.2016.02.024.
[144] Trost B, Lucchese G, Stufano A, Bickis M, Kusalik A, Kanduc D. No human protein is exempt from bacterial motifs, not even one. Self Nonself 2010;1:328–34. doi:10.4161/self.1.4.13315.
[145] Perelmutter L, Potvin L, Phipps P. lmmunoglobulin E response during viral infections. J Allergy Clin Immunol 1979;64:127–30.
[146] Yang Y, Shen C, Li J, Yuan J, Yang M, Wang F, et al. Exuberant elevation of IP-10, MCP-3 and IL-1ra during SARS-CoV-2 1 infection is associated with disease severity and fatal outcome. MedRxiv Prepr 2020. doi:10.1101/2020.03.02.20029975.
[147] Saukkonen T, Mutt SJ, Jokelainen J, Saukkonen A-M, Raza GS, Karhu T, et al. Adipokines and inflammatory markers in elderly subjects with high risk of type 2 diabetes and cardiovascular disease. Sci Rep 2018;8:1–8. doi:10.1038/s41598-018-31144-8.
[148] Brightling CE, Ammit AJ, Kaur D, Black JL, Wardlaw AJ, Hughes JM, et al. The CXCL10/CXCR3 Axis Mediates Human Lung Mast Cell Migration to Asthmatic Airway Smooth Muscle. Am J Respir Crit Care Med 2005;171:1103–8. doi:10.1164/rccm.200409-1220OC.
[149] Jing H, Liu L, Zhou J, Yao H. Inhibition of C-X-C Motif Chemokine 10 (CXCL10) Protects Mice from Cigarette Smoke-Induced Chronic Obstructive Pulmonary Disease. Med Sci Monit 2018;24:5748–53. doi:10.12659/MSM.909864.
[150] Keshavarzi F. Fungistatic effect of hydroxychloroquine, lessons from a case. Med Mycol Case Rep 2016;13:17–8. doi:10.1016/j.mmcr.2016.09.003.
[151] Gautret P, Lagier J-C, Parola P, Hoang VT, Meddeb L, Sevestre J, et al. Clinical and microbiological effect of a combination of hydroxychloroquine and azithromycin in 80 COVID-19 patients with at least a six-day follow up: an observational study Running title: Hydroxychloroquine-Azithromycin and COVID-19. Travel Med Infect Dis 2020:101663. doi:10.1016/j.tmaid.2020.101663.
[152] Shamshirian A, Hessami A, Heydari K, Alizadeh-Navaei R, Ebrahimzadeh MA, Ghasemian R, et al. Hydroxychloroquine Versus COVID-19: A Rapid Systematic Review and Meta-Analysis. MedRxiv Prepr 2020. doi:10.1101/2020.04.14.20065276.
[153] Magagnoli J, Narendran S, Pereira F, Cummings T, Hardin JW, Sutton SS, et al. Outcomes of hydroxychloroquine usage in United States veterans hospitalized with Covid-19. MedRxiv Prepr 2020. doi:/10.1101/2020.04.16.20065920.