Application
VFA produced from carbohydrate-rich streams may serve as building blocks
for the production of higher-value compounds compared to low-value
biogas (Kleerebezem et al., 2015). Open culture fermentation can be used
to produce organic acids from a complex substrate such as wastewater.
Combining open culture fermentation with granular sludge technology, the
production of a VFA rich effluent with a low solid content is possible.
This is ideal for processes where the consumption of VFA results in a
particulate endproduct like polyhydroxyalkanoates (PHA) that can be
separated from the water phase (Jelmer Tamis, Lužkov, Jiang, Loosdrecht,
& Kleerebezem, 2014). Tamis et al., (2014) demonstrated that minimizing
the influent solid concentrations in the PHA production process enables
maximization of the PHA content of biomass.
The granular sludge technology provides besides a low solid effluent, a
high volumetric productivity. Uncoupling of the solid and liquid
retention enables reduction of the bioreactor volume while maintaining
similar output in terms fermentation products formed. This study showed
the diversity of the product spectrum that can be obtained through
control of the SRT. There was no mechanistic explanation found why in
this study one product spectrum prevailed over others at different SRT.
Conclusion
This study showed the successive establishment of anaerobic granular
sludge cultures enriched on glucose at 1-2 d, 10-20 d and 40-50 d SRT at
a pH of 5.5. Two distinct product spectra were obtained (i) at 40-50 d
SRT a propionate:acetate mixture of 2.05:1
(molpropionate:molacetate) was obtained;
with a VFA production yield of 0.79 ± 0.12 (n=18)
gCOD·gCOD-1. (ii) At 1-2 d and 10-20 d SRT an acetate
dominated, 0.71-0.75
molacetate·molVFA-1,
product spectrum was obtained. Overall, high VFA yields of 0.77-0.79
gCOD·gCOD-1 from glucose fermentations were obtained.
Furthermore, compact sludge beds were obtained as SVI60 were ranging
within 11-44 mL·gTSS-1, and Bifidobacterium
scardovii was the prevailent microorganism in all systems. Substrate
specific uptake rates varied from 0.2-0.7
gCOD·gVSS-1·h-1. Despite the
relatively low qSmax, the glucose consumption rate of
the systems varied from 100
gCOD·L-1·d-1 to a maximum rate of
1100 gCOD·L-1·d-1. Overall, this
work showed the benefits of granular sludge technology for fermenting
carbohydrate-rich water resulting in a VFA rich effluent with a low
concentration solids. The possibilities of applying anaerobic granular
sludge are just touched upon and more understanding is desired to
control the product spectrum and granulation.
Acknowledgements
The financial support from the Dutch Applied Science foundation
(NWO-TTW) and Paques BV through the VFA-platform program (Project No.
12998) is gratefully acknowledged.
References
Agler, M. T., Wrenn, B. A., Zinder, S. H., & Angenent, L. T. (2011).
Waste to bioproduct conversion with undefined mixed cultures: The
carboxylate platform. Trends in Biotechnology , 29 (2),
70–78. https://doi.org/10.1016/j.tibtech.2010.11.006
Bengtsson, S., Hallquist, J., Werker, A., & Welander, T. (2008).
Acidogenic fermentation of industrial wastewaters: Effects of chemostat
retention time and pH on volatile fatty acids production.Biochemical Engineering Journal , 40 (3), 492–499.
https://doi.org/10.1016/j.bej.2008.02.004
Bolaji, I. O., & Dionisi, D. (2017). Acidogenic fermentation of
vegetable and salad waste for chemicals production: Effect of pH buffer
and retention time. Journal of Environmental Chemical
Engineering , 5 (6), 5933–5943.
https://doi.org/10.1016/j.jece.2017.11.001
Crabbendam, P. M., Neijssel, O. M., Tempest, D. W., & Amsterdam, U.
Van. (1985). Metabolic and energetic aspects of the growth of
Clostridium butyricum on glucose in chemostat culture Pia, 375–382.
Dabrock, B., Bahl, H., & Gottschalk, G. (1992). Parameters Affecting
Solvent Production by Clostridium pasteurianum. Applied and
Environmental Microbiology , 58 (4), 1233–1239. Retrieved from
http://www.ncbi.nlm.nih.gov/pubmed/16348691%0Ahttp://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC195580
Das, D., & Veziroglu, T. N. (2008). Advances in biological hydrogen
production processes. International Journal of Hydrogen Energy ,33 (21), 6046–6057.
https://doi.org/10.1016/J.IJHYDENE.2008.07.098
De Kok, S., Meijer, J., Van Loosdrecht, M. C. M., & Kleerebezem, R.
(2013). Impact of dissolved hydrogen partial pressure on mixed culture
fermentations. Applied Microbiology and Biotechnology ,97 (6), 2617–2625. https://doi.org/10.1007/s00253-012-4400-x
De Kreuk, M. K., Pronk, M., & Van Loosdrecht, M. C. M. (2005).
Formation of aerobic granules and conversion processes in an aerobic
granular sludge reactor at moderate and low temperatures. Water
Research , 39 (18), 4476–4484.
https://doi.org/10.1016/j.watres.2005.08.031
de Kreuk, M. K., & van Loosdrecht, M. C. M. (2004). Selection of slow
growing organisms as a means for improving aerobic granular sludge
stability. Water Science and Technology , 49 (11–12),
9–17.
de Vries, W., & Stouthamer, A. H. (1967). Pathway of glucose
fermentation in relation to the taxonomy of bifidobacteria.Journal of Bacteriology , 93 (2), 574–576.
Falsen, E., Weiss, N., Inganäs, E., Collins, M. D., Drancourt, M.,
McCartney, A. L., & Hoyles, L. (2015). Bifidobacterium scardovii sp.
nov., from human sources. International Journal of Systematic and
Evolutionary Microbiology , 52 (3), 995–999.
https://doi.org/10.1099/00207713-52-3-995
Gonzalez-Garcia, R., McCubbin, T., Navone, L., Stowers, C., Nielsen, L.,
& Marcellin, E. (2017). Microbial Propionic Acid Production.Fermentation , 3 (2), 21.
https://doi.org/10.3390/fermentation3020021
Grotenhuis, J. T. C., Kissel, J. C., Plugge, C. M., Stams, A. J. M., &
Zehnder, A. J. B. (1991). Role of substrate concentration in particle
size distribution of methanogenic granular sludge in UASB reactors.Water Research , 25 (1), 21–27.
https://doi.org/10.1016/0043-1354(91)90094-7
Hallenbeck, P. C., & Ghosh, D. (2009). Advances in fermentative
biohydrogen production: the way forward? Trends in Biotechnology ,27 (5), 287–297. https://doi.org/10.1016/J.TIBTECH.2009.02.004
Holtzapple, M. T., & Granda, C. B. (2009). Carboxylate Platform: The
MixAlco Process Part 1: Comparison of Three Biomass Conversion
Platforms. Applied Biochemistry and Biotechnology ,156 (1–3), 95–106. https://doi.org/10.1007/s12010-008-8466-y
Kleerebezem, R., Joosse, B., Rozendal, R., & Van Loosdrecht, M. C. M.
(2015). Anaerobic digestion without biogas? Reviews in
Environmental Science and Biotechnology , 14 (4), 787–801.
https://doi.org/10.1007/s11157-015-9374-6
Lanjekar, V. B., Marathe, N. P., Ramana, V. V., Shouche, Y. S., &
Ranade, D. R. (2014). Megasphaera indica sp. nov., an obligate anaerobic
bacteria isolated from human faeces. INTERNATIONAL JOURNAL OF
SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY , 64 (Pt 7), 2250–2256.
https://doi.org/10.1099/ijs.0.059816-0
Lettinga, G., van Velsen, A. F. M., Hobma, S. W., de Zeeuw, W., &
Klapwijk, A. (1980). Use of the upflow sludge blanket (USB) reactor
concept for biological wastewater treatment, especially for anaerobic
treatment. Biotechnology and Bioengineering , 22 (4),
699–734. https://doi.org/10.1002/bit.260220402
Lin, P. Y., Whang, L. M., Wu, Y. R., Ren, W. J., Hsiao, C. J., Li, S.
L., & Chang, J. S. (2007). Biological hydrogen production of the genus
Clostridium: Metabolic study and mathematical model simulation.International Journal of Hydrogen Energy , 32 (12),
1728–1735. https://doi.org/10.1016/j.ijhydene.2006.12.009
Marang, L., Jiang, Y., van Loosdrecht, M. C. M., & Kleerebezem, R.
(2013). Butyrate as preferred substrate for polyhydroxybutyrate
production. Bioresource Technology , 142 , 232–239.
https://doi.org/10.1016/j.biortech.2013.05.031
Paikt, H.-D., & Glatz, B. A. (1997). Enhanced Bacteriocin
Production by Propionibacterium thoenii in Fed-Batch Fermentation:!Journal of Food Protection (Vol. 60). Retrieved from
https://jfoodprotection.org/doi/pdf/10.4315/0362-028X-60.12.1529
Pokusaeva, K., Fitzgerald, G. F., & Van Sinderen, D. (2011).
Carbohydrate metabolism in Bifidobacteria. Genes and Nutrition ,6 (3), 285–306. https://doi.org/10.1007/s12263-010-0206-6
Pronk, M., de Kreuk, M. K., de Bruin, B., Kamminga, P., Kleerebezem, R.,
& van Loosdrecht, M. C. M. (2015). Full scale performance of the
aerobic granular sludge process for sewage treatment. Water
Research , 84 , 207–217.
https://doi.org/10.1016/J.WATRES.2015.07.011
Rittmann, B. E., Crawford, L., & Tuck, C. K. (1986). In Situ
Determination of Kinetic Parameters for Biofilms : Isolation and
Characterization of Oligotrophic Biofilms, 1760 , 1753–1760.
Rombouts, J. L., Mos, G., Weissbrodt, D. G., Kleerebezem, R., & Van
Loosdrecht, M. C. M. (2019). Diversity and metabolism of xylose and
glucose fermenting microbial communities in sequencing batch or
continuous culturing. FEMS Microbiology Ecology , 95 (2),
1–12. https://doi.org/10.1093/femsec/fiy233
Tamis, J., Joosse, B. M., van Loosdrecht, M. C. M., & Kleerebezem, R.
(2015). High-rate volatile fatty acid (VFA) production by a granular
sludge process at low pH. Biotechnology and Bioengineering ,112 (11), 2248–2255. https://doi.org/10.1002/bit.25640
Tamis, Jelmer, Lužkov, K., Jiang, Y., Loosdrecht, M. C. M. van, &
Kleerebezem, R. (2014). Enrichment of Plasticicumulans acidivorans at
pilot-scale for PHA production on industrial wastewater. Journal
of Biotechnology , 192 , 161–169.
https://doi.org/10.1016/J.JBIOTEC.2014.10.022
Tamis, Jelmer, Mulders, M., Dijkman, H., Rozendal, R., van Loosdrecht,
M. C. M., & Kleerebezem, R. (2018). Pilot-Scale Polyhydroxyalkanoate
Production from Paper Mill Wastewater: Process Characteristics and
Identification of Bottlenecks for Full-Scale Implementation.Journal of Environmental Engineering , 144 (10), 04018107.
https://doi.org/10.1061/(ASCE)EE.1943-7870.0001444
Temudo, M. F., Kleerebezem, R., & van Loosdrecht, M. (2007). Influence
of the pH on (open) mixed culture fermentation of glucose: A chemostat
study. Biotechnology and Bioengineering , 98 (1), 69–79.
https://doi.org/10.1002/bit.21412
Temudo, M. F., Muyzer, G., Kleerebezem, R., & Van Loosdrecht, M. C. M.
(2008). Diversity of microbial communities in open mixed culture
fermentations: Impact of the pH and carbon source. Applied
Microbiology and Biotechnology , 80 (6), 1121–1130.
https://doi.org/10.1007/s00253-008-1669-x
Ventura, M., Delgado, S., Milani, C., O’callaghan, A., & Van Sinderen,
D. (2016). Bifidobacteria and Their Role as Members of the Human Gut
Microbiota. Frontiers in Microbiology |
Www.Frontiersin.Org , 1 , 925.
https://doi.org/10.3389/fmicb.2016.00925
Tables
Table 1. Overview system characteristics obtained at different SRT. The
YX/S was obtained by averaging the VSS values obtained
in the effluent together with the biomass growth in the reactor and/or
manual removal of biomass from the reactor.