6. References
  1. Grätzel, M.,Photoelectrochemical cells. nature, 2001. 414 (6861): p. 338.
  2. Zhang, Q. and G. Cao,Nanostructured photoelectrodes for dye-sensitized solar cells.Nano Today, 2011. 6 (1): p. 91-109.
  3. Hagfeldt, A., et al.,Dye-sensitized solar cells. Chemical reviews, 2010.110 (11): p. 6595-6663.
  4. Wenham, S. and M. Green,Silicon solar cells. Progress in Photovoltaics: Research and Applications, 1996. 4 (1): p. 3-33.
  5. Shah, A., et al., Thin‐film silicon solar cell technology. Progress in photovoltaics: Research and applications, 2004. 12 (2‐3): p. 113-142.
  6. O’regan, B. and M. Grätzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. nature, 1991. 353 (6346): p. 737.
  7. Sharma, K., V. Sharma, and S. Sharma, Dye-sensitized solar cells: fundamentals and current status. Nanoscale research letters, 2018. 13 (1): p. 381.
  8. Irfan, A., Quantum chemical investigations of electron injection in triphenylamine-dye sensitized TiO2 used in dye sensitized solar cells. Materials Chemistry and Physics, 2013. 142 (1): p. 238-247.
  9. Tarsang, R., et al., Tuning the electron donating ability in the triphenylamine-based D-π-A architecture for highly efficient dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2014. 273 : p. 8-16.
  10. Zhang, M., et al., Design of high-efficiency organic dyes for titania solar cells based on the chromophoric core of cyclopentadithiophene-benzothiadiazole. Energy & Environmental Science, 2013. 6 (10): p. 2944-2949.
  11. Anderson, S., P.N. Taylor, and G.L. Verschoor, Benzofuran trimers for organic electroluminescence.Chemistry–A European Journal, 2004. 10 (2): p. 518-527.
  12. Park, J.M., et al., Effect of additional phenothiazine donor and thiophene π-bridge on photovoltaic performance of quinoxaline cored photosensitizers. Dyes and Pigments, 2019: p. 107568.
  13. Duvva, N., S. Prasanthkumar, and L. Giribabu, Influence of strong electron donating nature of phenothiazine on A3B-type porphyrin based dye sensitized solar cells.Solar Energy, 2019. 184 : p. 620-627.
  14. Naik, P., et al., New carbazole based metal-free organic dyes with D-π-A-π-A architecture for DSSCs: Synthesis, theoretical and cell performance studies. Solar Energy, 2017. 153 : p. 600-610.
  15. Kusumawati, Y., et al.,Combined computational and experimental study of carbazole dyes for iodide-and cobalt-based ZnO DSSCs. Journal of Photochemistry and Photobiology A: Chemistry, 2017. 341 : p. 69-77.
  16. Slimi, A., et al., Molecular Design of D-π-AA Organic Dyes Based on Triphenylamine Derivatives with Various Auxiliary Acceptors for High Performance DSSCs. Journal of Electronic Materials, 2019: p. 1-11.
  17. Manzoor, T., S. Niaz, and A.H. Pandith, Exploring the effect of different coumarin donors on the optical and photovoltaic properties of azo‐bridged push‐pull systems: A theoretical approach. International Journal of Quantum Chemistry, 2019. 119 (18): p. e25979.
  18. Carli, S., et al., A viable surface passivation approach to improve efficiency in cobalt based dye sensitized solar cells. Polyhedron, 2014. 82 : p. 173-180.
  19. Fu, Y., et al., Theoretical screening and design of SM315-based porphyrin dyes for highly efficient dye-sensitized solar cells with near-IR light harvesting.Dyes and Pigments, 2018. 155 : p. 292-299.
  20. Trabelsi, S., et al.,Intramolecular Path Determination of Active Electrons on Push‐Pull Oligocarbazole Dyes‐Sensitized Solar Cells. ChemistryOpen, 2019. 8 (5): p. 580-588.
  21. Liu, Y., et al., Energy Level Control via Molecular Planarization and Its Effect on Interfacial Charge Transfer Processes in Dye-Sensitized Solar Cells. The Journal of Physical Chemistry C, 2019.
  22. ElKhattabi, S., et al.,Theoretical study of the effects of modifying the structures of organic dyes based on N, N-alkylamine on their efficiencies as DSSC sensitizers. Journal of molecular modeling, 2019. 25 (1): p. 9.
  23. Majid, A., et al., First Principles Study of Dendritic Carbazole Photosensitizer Dyes Modified with Different Conjugation Structures. ChemistrySelect, 2019.4 (9): p. 2787-2794.
  24. Duan, T., et al.,Triphenylamine-based organic dyes containing a 1, 2, 3-triazole bridge for dye-sensitized solar cells via a ‘Click’reaction. Dyes and Pigments, 2012. 94 (1): p. 28-33.
  25. Shi, S., et al., Effect of Oligothiophene π-Bridge Length on the Photovoltaic Properties of D–A Copolymers Based on Carbazole and Quinoxalinoporphyrin.Macromolecules, 2012. 45 (19): p. 7806-7814.
  26. Zhang, F., et al.,Triphenylamine-based dyes for dye-sensitized solar cells. Dyes and Pigments, 2009. 81 (3): p. 224-230.
  27. Khazraji, A.C., et al.,Controlling dye (Merocyanine-540) aggregation on nanostructured TiO2 films. An organized assembly approach for enhancing the efficiency of photosensitization. The Journal of Physical Chemistry B, 1999. 103 (22): p. 4693-4700.
  28. Hara, K., et al., Effect of additives on the photovoltaic performance of coumarin-dye-sensitized nanocrystalline TiO2 solar cells. Langmuir, 2004. 20 (10): p. 4205-4210.
  29. Wang, Z.-S., et al.,Photophysical and (photo) electrochemical properties of a coumarin dye. The Journal of Physical Chemistry B, 2005.109 (9): p. 3907-3914.
  30. Cai, N., et al., An organic D-π-A dye for record efficiency solid-state sensitized heterojunction solar cells. Nano letters, 2011. 11 (4): p. 1452-1456.
  31. Li, Y., et al.,Alkali-metal-doped B80 as high-capacity hydrogen storage media.The Journal of Physical Chemistry C, 2008. 112 (49): p. 19268-19271.
  32. Li, G., et al., Novel TPD-based organic D–π–A dyes for dye-sensitized solar cells.Chemical Communications, 2009(16): p. 2201-2203.
  33. Li, G., et al., Efficient structural modification of triphenylamine-based organic dyes for dye-sensitized solar cells. The Journal of Physical Chemistry C, 2008. 112 (30): p. 11591-11599.
  34. Barnsley, J.E., et al., Benzo [c][1, 2, 5] thiadiazole donor–acceptor dyes: A synthetic, spectroscopic, and computational study. The Journal of Physical Chemistry A, 2016. 120 (11): p. 1853-1866.
  35. Barnsley, J.E., et al.,Flicking the switch on donor–acceptor interactions in hexaazatrinaphthalene dyes: A spectroscopic and computational study.ChemPhotoChem, 2017. 1 (10): p. 432-441.
  36. Hara, K., et al., Molecular design of coumarin dyes for efficient dye-sensitized solar cells. The Journal of Physical Chemistry B, 2003. 107 (2): p. 597-606.
  37. Zhang, L., J.M. Cole, and C. Dai,Variation in optoelectronic properties of azo dye-sensitized TiO2 semiconductor interfaces with different adsorption anchors: carboxylate, sulfonate, hydroxyl and pyridyl groups. ACS applied materials & interfaces, 2014. 6 (10): p. 7535-7546.
  38. Wang, Z.-S., et al.,Hexylthiophene-functionalized carbazole dyes for efficient molecular photovoltaics: tuning of solar-cell performance by structural modification. Chemistry of Materials, 2008.20 (12): p. 3993-4003.
  39. Sánchez-de-Armas, R., et al.,Direct vs indirect mechanisms for electron injection in dye-sensitized solar cells. The Journal of Physical Chemistry C, 2011. 115 (22): p. 11293-11301.
  40. Duncan, W.R. and O.V. Prezhdo,Theoretical studies of photoinduced electron transfer in dye-sensitized TiO2. Annu. Rev. Phys. Chem., 2007. 58 : p. 143-184.
  41. Nawrocka, A. and S. Krawczyk,Electronic excited state of alizarin dye adsorbed on TiO2 nanoparticles: a study by electroabsorption (Stark effect) spectroscopy. The Journal of Physical Chemistry C, 2008.112 (27): p. 10233-10241.
  42. Homocianu, M., Solvent effects on the electronic absorption and fluorescence spectra.Journal of Advanced Research in Physics, 2011. 2 (1).
  43. Valentic, N., et al., Solvent effects on electronic absorption spectra of 3-N-(4-substituted phenyl)-5-carboxy uracils. Journal of the Serbian Chemical Society, 1999. 64 (3): p. 149-154.
  44. Venkatraman, V., Yemene, A.E. & Mello, J. Prediction of Absorption Spectrum Shifts in Dyes Adsorbed on Titania . Sci Rep 9, 16983 (2019)
  45. Trivedi, D. and H. Nalwa,Handbook of organic conductive molecules and polymers. Wiley, New York, 1997. 2 : p. 505.
  46. Venkateswararao, A., et al.,Organic dyes containing carbazole as donor and π-linker: optical, electrochemical, and photovoltaic properties. ACS applied materials & interfaces, 2014. 6 (4): p. 2528-2539.
  47. Chen, C.Y., et al.,Multifunctionalized ruthenium‐based supersensitizers for highly efficient dye‐sensitized solar cells. Angewandte Chemie International Edition, 2008. 47 (38): p. 7342-7345.
  48. Qin, P., et al., High incident photon‐to‐current conversion efficiency of p‐type dye‐sensitized solar cells based on NiO and organic chromophores.Advanced Materials, 2009. 21 (29): p. 2993-2996.
  49. Thongkasee, P., et al.,Carbazole-Dendrimer-Based Donor− π–Acceptor Type Organic Dyes for Dye-Sensitized Solar Cells: Effect of the Size of the Carbazole Dendritic Donor. ACS applied materials & interfaces, 2014.6 (11): p. 8212-8222.
  50. Tan, L.-L., et al., Novel organic dyes incorporating a carbazole or dendritic 3, 6-diiodocarbazole unit for efficient dye-sensitized solar cells. Dyes and Pigments, 2014. 100 : p. 269-277.
  51. Van Gisbergen, S. J. A., Snijders, J. G., & Baerends, E. J. (1999). Implementation of time-dependent density functional response equations. Computer Physics Communications , 118 (2-3), 119-138.
  52. Porezag, D., Frauenheim, T., Köhler, T., Seifert, G., & Kaschner, R. (1995). Construction of tight-binding-like potentials on the basis of density-functional theory: Application to carbon. Physical Review B , 51 (19), 12947.
  53. Te Velde, G. T., Bickelhaupt, F. M., Baerends, E. J., Fonseca Guerra, C., van Gisbergen, S. J., Snijders, J. G., & Ziegler, T. (2001). Chemistry with ADF. Journal of Computational Chemistry ,22 (9), 931-967.
  54. Baerends, E. J., Branchadell, V., & Sodupe, M. (1997). Atomic reference energies for density functional calculations. Chemical Physics Letters , 265 (3-5), 481-489.
  55. Izmaylov, A. F., Staroverov, V. N., Scuseria, G. E., Davidson, E. R., Stoltz, G., & Cancès, E. (2007). The effective local potential method: Implementation for molecules and relation to approximate optimized effective potential techniques.The Journal of chemical physics , 126 (8), 084107.
  56. Tarkuc, S., Y.A. Udum, and L. Toppare, Tailoring the optoelectronic properties of donor–acceptor–donor type π-conjugated polymers via incorporating different electron-acceptor moieties. Thin Solid Films, 2012.520 (7): p. 2960-2965.
  57. Kurowska, A., et al., Effect of donor to acceptor ratio on electrochemical and spectroscopic properties of oligoalkylthiophene 1, 3, 4-oxadiazole derivatives.Physical Chemistry Chemical Physics, 2017. 19 (44): p. 30261-30276.
  58. Pathak, S.K., et al.,Columnar self-assembly of star-shaped luminescent oxadiazole and thiadiazole derivatives. Journal of Materials Chemistry C, 2015.3 (12): p. 2940-2952.
  59. Chen, F., et al., Crystal structures, intermolecular interactions and fluorescence properties of a series of symmetrical bi-1, 3, 4-oxadiazole derivatives. Journal of Materials Chemistry C, 2016. 4 (20): p. 4451-4458.
  60. Nattestad, A., et al., Highly efficient photocathodes for dye-sensitized tandem solar cells. Nature materials, 2010. 9 (1): p. 31.
  61. Joly, D., et al., Metal-free organic sensitizers with narrow absorption in the visible for solar cells exceeding 10% efficiency. Energy & Environmental Science, 2015. 8 (7): p. 2010-2018.
  62. Cong, J., et al.,Iodine/iodide-free redox shuttles for liquid electrolyte-based dye-sensitized solar cells. Energy & Environmental Science, 2012.5 (11): p. 9180-9194.
  63. Yin, N., et al., Effect of the π-conjugation length on the properties and photovoltaic performance of A–π–D–π–A type oligothiophenes with a 4, 8-bis (thienyl) benzo [1, 2-b: 4, 5-b′] dithiophene core. Beilstein journal of organic chemistry, 2016. 12 (1): p. 1788-1797.
  64. Fahim, Z.M.E., et al.,Optoelectronic properties of triphenylamine based dyes for solar cell applications. A DFT study. Química Nova, 2018. 41 (2): p. 129-133.
  65. Min, J., et al., Effects of oligothiophene π-bridge length on physical and photovoltaic properties of star-shaped molecules for bulk heterojunction solar cells. Journal of Materials Chemistry A, 2014. 2 (38): p. 16135-16147.
  66. Sutton, J., et al.,Modulation of donor-acceptor distance in a series of carbazole push-pull dyes; A spectroscopic and computational study. Molecules, 2018. 23 (2): p. 421.
  67. Lazrak, M., et al. The computational study of bridge effect in D-π-A photosensitive dyes, based on triphenylamine . in IOP Conference Series: Earth and Environmental Science . 2018. IOP Publishing.
  68. Mohammadi, N. and F. Wang,First-principles study of Carbz-PAHTDDT dye sensitizer and two Carbz-derived dyes for dye sensitized solar cells. Journal of molecular modeling, 2014. 20 (3): p. 2177.
  69. Baldenebro-López, J., et al.,Density functional theory (DFT) study of triphenylamine-based dyes for their use as sensitizers in molecular photovoltaics.International journal of molecular sciences, 2012. 13 (4): p. 4418-4432.
  70. Bayliss, N.S., The effect of the electrostatic polarization of the solvent on electronic absorption spectra in solution. The Journal of Chemical Physics, 1950.18 (3): p. 292-296.
  71. Ooshika, Y., Absorption spectra of dyes in solution. Journal of the physical society of Japan, 1954. 9 (4): p. 594-602.
  72. McRae, E., Theory of solvent effects on molecular electronic spectra. Frequency shifts. The Journal of Physical Chemistry, 1957. 61 (5): p. 562-572.
  73. Lippert, E., Dipolmoment und Elektronenstruktur von angeregten Molekülen. Zeitschrift für Naturforschung A, 1955. 10 (7): p. 541-545.
  74. Baur, M.E. and M. Nicol,Solvent stark effect and spectral shifts. The Journal of Chemical Physics, 1966. 44 (9): p. 3337-3343.
  75. Nicol, M., et al., Solvent stark effect and spectral shifts. II. The Journal of Chemical Physics, 1968. 48 (8): p. 3587-3596.
  76. Suganya, K. and S. Kabilan,Substituent and solvent effects on electronic absorption spectra of some N-(substitutedphenyl) benzene sulphonamides. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2004.60 (5): p. 1225-1228.
  77. Kawski, A., On the estimation of excited-state dipole moments from solvatochromic shifts of absorption and fluorescence spectra. Zeitschrift für Naturforschung A, 2002. 57 (5): p. 255-262.
  78. Mataga, N., Y. Kaifu, and M. Koizumi, Solvent effects upon fluorescence spectra and the dipolemoments of excited molecules. Bulletin of the Chemical Society of Japan, 1956. 29 (4): p. 465-470.
  79. Adeoye, M., et al., Effect of solvents on the electronic absorption spectra of 9, 14 dibenzo (a, c) phenazine and tribenzo (a, c, i) phenazine. Scientific Research and Essays, 2009. 4 (2): p. 107-111.
  80. Galappaththi, K., et al.,Cyanidin-based novel organic sensitizer for efficient dye-sensitized solar cells: DFT/TDDFT study. International Journal of Photoenergy, Article ID 8564293, 2017 . and Berardo, E., et al., Modeling excited states in TiO2 nanoparticles: on the accuracy of a TD-DFT based description. Journal of chemical theory and computation, 2014. 10 (3): p. 1189-1199
  81. Ning, Z., Y. Fu, and H. Tian,Improvement of dye-sensitized solar cells: what we know and what we need to know. Energy & Environmental Science, 2010.3 (9): p. 1170-1181.
  82. Mishra, A., M.K. Fischer, and P. Bäuerle, Metal‐free organic dyes for dye‐sensitized solar cells: From structure: Property relationships to design rules. Angewandte Chemie International Edition, 2009. 48 (14): p. 2474-2499.
  83. Komaguchi, K., et al.,Electron-transfer reaction of oxygen species on TiO2 nanoparticles induced by sub-band-gap illumination. The Journal of Physical Chemistry C, 2009. 114 (2): p. 1240-1245.
  84. Sánchez-de-Armas, R., et al.,Electronic structure and optical spectra of catechol on TiO 2 nanoparticles from real time TD-DFT simulations. Physical Chemistry Chemical Physics, 2011. 13 (4): p. 1506-1514.
  85. Mohankumar, V., et al.,Tuning the lifetime from molecular engineering of carbazole donor based metal-free organic dyes for dye sensitized solar cells–A computational approach. Journal of Molecular Structure, 2019.