REFERENCES
- Jha V, Modi GK. Getting to know the enemy better-the global burden of
chronic kidney disease. Kidney Int. 2018; 94(3):462-464.
- Rizzi TE, Valenciano A, Bowles M et al. Urine Sediment. 2017.
- Perazella MA. The urine sediment as a biomarker of kidney disease. Am
J Kidney Dis. 2015; 66(5):748-755.
- Yan Z, Zhou H. Automatic classification and recognition of particles
in urinary sediment images. Lecture Notes in Electrical Engineering.
2012; 107(226):1071-1078.
- Romih R, Korosec P, de Mello WJ, Jezernik K. Differentiation of
epithelial cells in the urinary tract. Cell Tissue Res. 2005;
320(2):259-268.
- Kim DC, Yoo YM, Jo SS et al. Laboratory evaluation of fully automated
urine cell analyzer Sysmex UF-100. 2001.
- Becker GJ, Garigali G, Fogazzi GB. Advances in urine microscopy. Am J
Kidney Dis. 2016; 67(6):954-964.
- Goodgold AL, Reubi F. Appraisal of the Sternheimer-Malbin urinary
sediment stain in the diagnosis of pyelonephritis[J]. Urologia
Internationalis. 1955; 1(4):225-242.
- Mehmet K, Benan K, Perazella MA. Acute tubular necrosis and pre-renal
acute kidney injury: utility of urine microscopy in their evaluation-
a systematic review. Int Urol Nephrol. 2010; 42(2):425.
- Li CY, Fang B, Wang Y et al. Automatic detecting and recognition of
casts in urine sediment images. 2009.
- Zhang CL, Tang YP, Wang Q. A more effective algorithm of automatic
recognition urinary sediment. Computer Engineering & Applications.
2010; 46(3):232-235.
- Avci D, Leblebicioglu MK, Poyraz M, Dogantekin E. A new method based
on Adaptive Discrete Wavelet Entropy Energy and Neural Network
Classifier (ADWEENN) for recognition of urine cells from microscopic
images independent of rotation and scaling. J Med Syst. 2014;
38(2):7-7.
- Krizhevsky A, Sutskever I, Hinton G. ImageNet classification with deep
convolutional neural networks. 2012.
- Redmon J, Divvala S, Girshick R, Farhadi A. You only look once:
unified, real-time object detection. 2015.
- Roy SS, Haque AU, Neubert J. Automatic diagnosis of melanoma from
dermoscopic image using real-time object detection. 2018:1-5.
- Liu W, Anguelov D, Erhan D et al. SSD: Single Shot MultiBox Detector.
2016.
- Girshick R, Donahue J, Darrelland T, Malik J. Rich feature hierarchies
for object detection and semantic segmentation. 2014.
- Girshick R. Fast R-CNN. Computer Science. 2015.
- Zhang L, Lin L, Liang X, He K. Is Faster R-CNN doing well for
pedestrian detection? 2016.
- Kang R, Liang Y, Lian C, Mao Y. CNN-based automatic urinary particles
recognition. 2018.
- Cai Z, Fan Q, Feris RS, Vasconcelos N. A unified multi-scale deep
convolutional neural network for fast object detection. 2016.
- Lin TY, Goyal P, Girshick R, He K, Dollar P. Focal loss for dense
object detection. IEEE Trans Pattern Anal Mach Intell. 2018.
- Shrivastava A, Gupta A, Girshick R. [IEEE 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR)-Las Vegas, NV, USA
(2016.6.27-2016.6.30)] 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR)-Training Region-Based Object Detectors with
Online Hard Exampl. 2016.
- Dollar P, Appel R, Belongie S, Perona P. Fast feature pyramids for
object detection. IEEE Trans Pattern Anal Mach Intell. 2014;
36(8):1532-45.
- Kingma D, Ba J. Adam: a method for stochastic optimization. 2014.