REFERENCES

  1. Jha V, Modi GK. Getting to know the enemy better-the global burden of chronic kidney disease. Kidney Int. 2018; 94(3):462-464.
  2. Rizzi TE, Valenciano A, Bowles M et al. Urine Sediment. 2017.
  3. Perazella MA. The urine sediment as a biomarker of kidney disease. Am J Kidney Dis. 2015; 66(5):748-755.
  4. Yan Z, Zhou H. Automatic classification and recognition of particles in urinary sediment images. Lecture Notes in Electrical Engineering. 2012; 107(226):1071-1078.
  5. Romih R, Korosec P, de Mello WJ, Jezernik K. Differentiation of epithelial cells in the urinary tract. Cell Tissue Res. 2005; 320(2):259-268.
  6. Kim DC, Yoo YM, Jo SS et al. Laboratory evaluation of fully automated urine cell analyzer Sysmex UF-100. 2001.
  7. Becker GJ, Garigali G, Fogazzi GB. Advances in urine microscopy. Am J Kidney Dis. 2016; 67(6):954-964.
  8. Goodgold AL, Reubi F. Appraisal of the Sternheimer-Malbin urinary sediment stain in the diagnosis of pyelonephritis[J]. Urologia Internationalis. 1955; 1(4):225-242.
  9. Mehmet K, Benan K, Perazella MA. Acute tubular necrosis and pre-renal acute kidney injury: utility of urine microscopy in their evaluation- a systematic review. Int Urol Nephrol. 2010; 42(2):425.
  10. Li CY, Fang B, Wang Y et al. Automatic detecting and recognition of casts in urine sediment images. 2009.
  11. Zhang CL, Tang YP, Wang Q. A more effective algorithm of automatic recognition urinary sediment. Computer Engineering & Applications. 2010; 46(3):232-235.
  12. Avci D, Leblebicioglu MK, Poyraz M, Dogantekin E. A new method based on Adaptive Discrete Wavelet Entropy Energy and Neural Network Classifier (ADWEENN) for recognition of urine cells from microscopic images independent of rotation and scaling. J Med Syst. 2014; 38(2):7-7.
  13. Krizhevsky A, Sutskever I, Hinton G. ImageNet classification with deep convolutional neural networks. 2012.
  14. Redmon J, Divvala S, Girshick R, Farhadi A. You only look once: unified, real-time object detection. 2015.
  15. Roy SS, Haque AU, Neubert J. Automatic diagnosis of melanoma from dermoscopic image using real-time object detection. 2018:1-5.
  16. Liu W, Anguelov D, Erhan D et al. SSD: Single Shot MultiBox Detector. 2016.
  17. Girshick R, Donahue J, Darrelland T, Malik J. Rich feature hierarchies for object detection and semantic segmentation. 2014.
  18. Girshick R. Fast R-CNN. Computer Science. 2015.
  19. Zhang L, Lin L, Liang X, He K. Is Faster R-CNN doing well for pedestrian detection? 2016.
  20. Kang R, Liang Y, Lian C, Mao Y. CNN-based automatic urinary particles recognition. 2018.
  21. Cai Z, Fan Q, Feris RS, Vasconcelos N. A unified multi-scale deep convolutional neural network for fast object detection. 2016.
  22. Lin TY, Goyal P, Girshick R, He K, Dollar P. Focal loss for dense object detection. IEEE Trans Pattern Anal Mach Intell. 2018.
  23. Shrivastava A, Gupta A, Girshick R. [IEEE 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)-Las Vegas, NV, USA (2016.6.27-2016.6.30)] 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)-Training Region-Based Object Detectors with Online Hard Exampl. 2016.
  24. Dollar P, Appel R, Belongie S, Perona P. Fast feature pyramids for object detection. IEEE Trans Pattern Anal Mach Intell. 2014; 36(8):1532-45.
  25. Kingma D, Ba J. Adam: a method for stochastic optimization. 2014.