Reference

1.
Aerts, R. (1997). Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems. Oikos , 79, 439-449.
2.
Andersen, R., Grasset, L., Thormann, M.N., Rochefort, L. & Francez, A.-J. (2010). Changes in microbial community structure and function following Sphagnum peatland restoration. Soil Biology and Biochemistry , 42, 291-301.
3.
Andersson, S., Nilsson, S.I. & Saetre, P. (2000). Leaching of dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) in mor humus as affected by temperature and pH. Soil Biology and Biochemistry , 32, 1-10.
4.
Aon, M.A., Cabello, M.N., Sarena, D.E., Colaneri, A.C., Franco, M.G., Burgos, J.L. et al. (2001). I. Spatio-temporal patterns of soil microbial and enzymatic activities in an agricultural soil.Applied Soil Ecology , 18, 239-254.
5.
Bååth, E. (1998). Growth rates of bacterial communities in soils at varying pH: a comparison of the thymidine and leucine incorporation techniques. Microbial Ecology , 36, 316-327.
6.
Bahram, M., Hildebrand, F., Forslund, S.K., Anderson, J.L., Soudzilovskaia, N.A., Bodegom, P.M. et al. (2018). Structure and function of the global topsoil microbiome. Nature , 560, 233.
7.
Bar-On, Y.M., Phillips, R. & Milo, R. (2018). The biomass distribution on Earth. Proceedings of the National Academy of Sciences , 115, 6506-6511.
8.
Bardgett, R.D. & Wardle, D.A. (2010). Aboveground-belowground linkages: biotic interactions, ecosystem processes, and global change . Oxford University Press.
9.
Bardgett, R.D., Wardle, D.A. & Yeates, G.W. (1998). Linking above-ground and below-ground interactions: how plant responses to foliar herbivory influence soil organisms. Soil Biology and Biochemistry , 30, 1867-1878.
10.
Beare, M.H., Neely, C.L., Coleman, D.C. & Hargrove, W.L. (1990). A substrate-induced respiration (SIR) method for measurement of fungal and bacterial biomass on plant residues. Soil Biology and Biochemistry , 22, 585-594.
11.
Birkhofer, K., Bezemer, T.M., Bloem, J., Bonkowski, M., Christensen, S., Dubois, D. et al. (2008). Long-term organic farming fosters below and aboveground biota: Implications for soil quality, biological control and productivity. Soil Biology and Biochemistry , 40, 2297-2308.
12.
Brockett, B.F.T., Prescott, C.E. & Grayston, S.J. (2012). Soil moisture is the major factor influencing microbial community structure and enzyme activities across seven biogeoclimatic zones in western Canada.Soil Biology and Biochemistry , 44, 9-20.
13.
Caldwell, B.A. (2005). Enzyme activities as a component of soil biodiversity: a review. Pedobiologia , 49, 637-644.
14.
Chapin, F.S., Matson, P.A. & Vitousek, P. (2011). Principles of terrestrial ecosystem ecology . Springer Science & Business Media.
15.
Chen, D., Mi, J., Chu, P., Cheng, J., Zhang, L., Pan, Q. et al.(2015). Patterns and drivers of soil microbial communities along a precipitation gradient on the Mongolian Plateau. Landscape Ecology , 30, 1669-1682.
16.
Chen, Y.-L., Ding, J.-Z., Peng, Y.-F., Li, F., Yang, G.-B., Liu, L.et al. (2016). Patterns and drivers of soil microbial communities in Tibetan alpine and global terrestrial ecosystems. Journal of Biogeography , 43, 2027-2039.
17.
Classen, A.T., Sundqvist, M.K., Henning, J.A., Newman, G.S., Moore, J.A., Cregger, M.A. et al. (2015). Direct and indirect effects of climate change on soil microbial and soil microbial‐plant interactions: What lies ahead? Ecosphere , 6, 1-21.
18.
Crowther, T.W., Hoogen, J.v.d., Wan, J., Mayes, M.A., Keiser, A.D., Mo, L. et al. (2019). The global soil community and its influence on biogeochemistry. Science , 365, eaav0550.
19.
de Vries, F.T., Manning, P., Tallowin, J.R.B., Mortimer, S.R., Pilgrim, E.S., Harrison, K.A. et al. (2012). Abiotic drivers and plant traits explain landscape-scale patterns in soil microbial communities.Ecology letters , 15, 1230-1239.
20.
DeLong, E.F., Harwood, C.S., Chisholm, P.W., Karl, D.M., Moran, M.A., Schmidt, T.M. et al. (2011). Incorporating microbial processes into climate models. The American Academy of Microbiology Washington DC.
21.
Ding, J., Zhang, Y., Wang, M., Sun, X., Cong, J., Deng, Y. et al.(2015). Soil organic matter quantity and quality shape microbial community compositions of subtropical broadleaved forests. Mol Ecol , 24, 5175-5185.
22.
Eskelinen, A., Stark, S. & Männistö, M. (2009). Links between plant community composition, soil organic matter quality and microbial communities in contrasting tundra habitats. Oecologia , 161, 113-123.
23.
Falkowski, P.G., Fenchel, T. & Delong, E.F. (2008). The microbial engines that drive Earth’s biogeochemical cycles. Science , 320, 1034-1039.
24.
Fierer, N. & Jackson, R.B. (2006). The diversity and biogeography of soil bacterial communities. Proceedings of the National Academy of Sciences , 103, 626-631.
25.
Fierer, N., Strickland, M.S., Liptzin, D., Bradford, M.A. & Cleveland, C.C. (2009). Global patterns in belowground communities. Ecology letters , 12, 1238-1249.
26.
Firestone, M.K., Killham, K. & McColl, J.G. (1983). Fungal toxicity of mobilized soil aluminum and manganese. Appl. Environ. Microbiol. , 46, 758-761.
27.
Frostegård, a., A. A. & Bååth, E. (1996). The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil.Biology and Fertility of Soils , 22, 59-65.
28.
Haefner, J.W. (2005). Modeling biological systems-principles and applications . Springer, New York.
29.
Hanson, C.A., Fuhrman, J.A., Horner-Devine, M.C. & Martiny, J.B. (2012). Beyond biogeographic patterns: processes shaping the microbial landscape. Nature Review Microbiology , 10, 496-506.
30.
Högberg, P., Nordgren, A., Buchmann, N., Taylor, A.F.S., Ekblad, A., Högberg, M.N. et al. (2001). Large-scale forest girdling shows that current photosynthesis drives soil respiration. Nature , 411, 789.
31.
Insam, H. (1990). Are the soil microbial biomass and basal respiration governed by the climatic regime? Soil Biology and Biochemistry , 22, 525-532.
32.
Jost, D.I., Indorf, C., Joergensen, R.G. & Sundrum, A. (2011). Determination of microbial biomass and fungal and bacterial distribution in cattle faeces. Soil Biology and Biochemistry , 43, 1237-1244.
33.
Klamer, M. & Bååth, E. (2004). Estimation of conversion factors for fungal biomass determination in compost using ergosterol and PLFA 18: 2ω6, 9. Soil Biology and Biochemistry , 36, 57-65.
34.
Lin, X., Green, S., Tfaily, M.M., Prakash, O., Konstantinidis, K.T., Corbett, J.E. et al. (2012). Microbial community structure and activity linked to contrasting biogeochemical gradients in bog and fen environments of the Glacial Lake Agassiz Peatland. Appl. Environ. Microbiol. , 78, 7023-7031.
35.
Lipson, D.A., Schadt, C.W. & Schmidt, S.K. (2002). Changes in soil microbial community structure and function in an alpine dry meadow following spring snow melt. Microbial ecology , 43, 307-314.
36.
Martiny, J.B.H., Bohannan, B., J. M., Brown, J.H., Colwell, R.K., Fuhrman, J.A., Green, J.L. et al. (2006). Microbial biogeography: putting microorganisms on the map. Nature Review Microbiology , 4, 102-112.
37.
Mouginot, C., Kawamura, R., Matulich, K.L., Berlemont, R., Allison, S.D., Amend, A.S. et al. (2014). Elemental stoichiometry of Fungi and Bacteria strains from grassland leaf litter. Soil Biology and Biochemistry , 76, 278-285.
38.
Pietikäinen, J., Pettersson, M. & Bååth, E. (2005). Comparison of temperature effects on soil respiration and bacterial and fungal growth rates. FEMS Microbiology Ecology , 52, 49-58.
39.
Pietri, J.C.A. & Brookes, P.C. (2008). Nitrogen mineralisation along a pH gradient of a silty loam UK soil. Soil Biology and Biochemistry , 40, 797-802.
40.
Powlson, D.S. & Jenkinson, D.S. (1981). A comparison of the organic matter, biomass, adenosine triphosphate and mineralizable nitrogen contents of ploughed and direct-drilled soils. The Journal of Agricultural Science , 97, 713-721.
41.
Rillig, M.C. & Mummey, D.L. (2006). Mycorrhizas and soil structure.New Phytologist , 171, 41-53.
42.
Rousk, J. & Bååth, E. (2007a). Fungal and bacterial growth in soil with plant materials of different C/N ratios. FEMS Microbiology Ecology , 62, 258-267.
43.
Rousk, J. & Bååth, E. (2007b). Fungal biomass production and turnover in soil estimated using the acetate-in-ergosterol technique. Soil Biology and Biochemistry , 39, 2173-2177.
44.
Rousk, J., Brookes, P.C. & Baath, E. (2009). Contrasting soil pH effects on fungal and bacterial growth suggest functional redundancy in carbon mineralization. Applied and Environmental Microbiology , 75, 1589-1596.
45.
Rousk, J., Brookes, P.C. & Bååth, E. (2010). Investigating the mechanisms for the opposing pH relationships of fungal and bacterial growth in soil. Soil Biology and Biochemistry , 42, 926-934.
46.
Royer-Tardif, S., Bradley, R. & Parsons, W. (2010). Evidence that plant diversity and site productivity confer stability to forest floor microbial biomass. Soil Biology and Biochemistry , 42, 813-821.
47.
Ruesch, A. & Gibbs, H.K. (2008). New IPCC Tier-1 global biomass carbon map for the year 2000. Available online from the Carbon Dioxide Information Analysis Center [http://cdiac. ornl. gov], Oak Ridge National Laboratory, Oak Ridge, Tennessee .
48.
Schimel, J.P. & Schaeffer, S.M. (2012). Microbial control over carbon cycling in soil. Frontiers in Microbiology , 3, 1-11.
49.
Six, J., Frey, S.D., Thiet, R.K. & Batten, K.M. (2006). Bacterial and fungal contributions to carbon sequestration in agroecosystems.Soil Science Society of America Journal , 70, 555-569.
50.
Song, X., Hoffman, F.M., Iversen, C.M., Yin, Y., Kumar, J., Ma, C.et al. (2017). Significant inconsistency of vegetation carbon density in CMIP5 Earth system models against observational data.Journal of Geophysical Research: Biogeosciences , 122, 2282-2297.
51.
Sparling, G.P. (1992). Ratio of microbial biomass carbon to soil organic carbon as a sensitive indicator of changes in soil organic matter.Soil Research , 30, 195-207.
52.
Steidinger, B.S., Crowther, T.W., Liang, J., Van Nuland, M.E., Werner, G.D., Reich, P.B. et al. (2019). Climatic controls of decomposition drive the global biogeography of forest-tree symbioses.Nature , 569, 404-408.
53.
Turner, B.L., Lambers, H., Condron, L.M., Cramer, M.D., Leake, J.R., Richardson, A.E. et al. (2013). Soil microbial biomass and the fate of phosphorus during long-term ecosystem development. Plant and Soil , 367, 225-234.
54.
van der Heijden, M.G.A., Bardgett, R.D. & Van Straalen, N.M. (2008). The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecology letters , 11, 296-310.
55.
Waring, B.G., Averill, C. & Hawkes, C.V. (2013). Differences in fungal and bacterial physiology alter soil carbon and nitrogen cycling: insights from meta-analysis and theoretical models. Ecology letters , 16, 887-894.
56.
Wieder, W.R., Bonan, G.B. & Allison, S.D. (2013). Global soil carbon projections are improved by modelling microbial processes. Nature Climate Change , 3, 909-912.
57.
Xu, X. (2010). Modeling methane and nitrous oxide exchanges between the atmosphere and terrestrial ecosystems over North America in the context of multifactor global change. In: School of Forestry and Wildlife Sciences . Auburn University Auburn, p. 199.
58.
Xu, X., Schimel, J.P., Janssens, I.A., Song, X., Song, C., Yu, G.et al. (2017). Global pattern and controls of soil microbial metabolic quotient. Ecological Monographs , 87, 429-441.
59.
Xu, X., Schimel, J.P., Thornton, P.E., Song, X., Yuan, F. & Goswami, S. (2014). Substrate and environmental controls on microbial assimilation of soil organic carbon: a framework for Earth system models.Ecology Letters , 17, 547-555.
60.
Xu, X., Thornton, P.E. & Post, W.M. (2013). A global analysis of soil microbial biomass carbon, nitrogen and phosphorus in terrestrial ecosystems. Global Ecology and Biogeography , 22, 737-749.