References:
[1]J. Yin, Y. Ma, Y. Qian, D. Wang, Experimental investigation of the bubble separation route for an axial gas–liquid separator for TMSR, ANN NUCL ENERGY, 97(2016) 1-6.
[2]B. Cai, J. Wang, L. Sun, N. Zhang, C. Yan, Experimental study and numerical optimization on a vane-type separator for bubble separation in TMSR, PROG NUCL ENERG, 74(2014) 1-13.
[3]J. Yin, J. Li, Y. Ma, H. Li, W. Liu, D. Wang, Study on the Air Core Formation of a Gas-Liquid Separator, J FLUID ENG-T ASME, 137(2015) 91301.
[4]R. Hreiz, C. Gentric, N. Midoux, Numerical investigation of swirling flow in cylindrical cyclones, CHEM ENG RES DES, 89(2011) 2521-2539.
[5]J. Yin, Y. Qian, T. Zhang, D. Wang, Measurement on the flow structure of a gas-liquid separator applied in TMSR, ANN NUCL ENERGY, 126(2019) 20-32.
[6]N.I. Kolev, Multiphase Flow Dynamics 3, Thermal and Mechanical Interactions, Springer, 2007.
[7]J.A. Delgadillo, M. Al Kayed, D. Vo, A.S. Ramamurthy, CFD SIMULATIONS OF A HYDROCYCLONE IN ABSENCE OF AN AIR CORE, J MIN METALL B, 48(2012) 197-206.
[8]J. Yin, J. Li, Y. Ma, D. Wang, Numerical approach on the performance prediction of a gas-liquid separator for TMSR, J NUCL SCI TECHNOL, 53(2016) 1134-1141.
[9]R. Hreiz, C. Gentric, N. Midoux, Numerical investigation of swirling flow in cylindrical cyclones, CHEM ENG RES DES, 89(2011) 2521-2539.
[10]O. Kitoh, Experimental study of turbulent swirling flow in a straight pipe, J FLUID MECH, 225(1991) 445-479.
[11]L.P.M. Marins, D.G. Duarte, J.B.R. Loureiro, C.A.C. Moraes, A.P. Silva Freire, LDA and PIV characterization of the flow in a hydrocyclone without an air-core, J PETROL SCI ENG, 70(2010) 168-176.
[12]Z. Liu, Y. Zheng, L. Jia, J. Jiao, Q. Zhang, Stereoscopic PIV studies on the swirling flow structure in a gas cyclone, CHEM ENG SCI, 61(2006) 4252-4261.
[13]S. Shi, L. Wang, J. Yin, X. Sun, Measurement of liquid-phase velocity field around taylor bubbles in slug flows, 2017 Japan-U.S. Seminar on Two-Phase Flow Dynamics, Sapporo, Hokkaido, Japan, 2017.
[14]W. Zhang, P.P. Sarkar, Near-ground tornado-like vortex structure resolved by particle image velocimetry (PIV), EXP FLUIDS, 52(2012) 479-493.
[15]J. Pruvost, J. Legrand, P. Legentilhomme, L. Doubliez, Particle image velocimetry investigation of the flow-field of a 3D turbulent annular swirling decaying flow induced by means of a tangential inlet, EXP FLUIDS, 29(2000) 291-301.
[16]S. Nogueira, R.G. Sousa, A. Pinto, M.L. Riethmuller, J. Campos, Simultaneous PIV and pulsed shadow technique in slug flow: a solution for optical problems, EXP FLUIDS, 35(2003) 598-609.
[17]Z. Liu, M. Ramezani, R.O. Fox, J.C. Hill, M.G. Olsen, Flow Characteristics in a Scaled-up Multi-inlet Vortex Nanoprecipitation Reactor, IND ENG CHEM RES, 54(2015) 4512-4525.
[18]W.K. Evans, A. Suksangpanomrung, A.F. Nowakowski, The simulation of the flow within a hydrocyclone operating with an air core and with an inserted metal rod, CHEM ENG J, 143(2008) 51-61.
[19]L. Gomez, R. Mohan, O. Shoham, Swirling gas-liquid two-phase flow - Experiment and modeling - Part II: Turbulent quantities and core stability, J FLUID ENG-T ASME, 126(2004) 943-959.
[20]F.M. Erdal, S.A. Shirazi, Local velocity measurements and computational fluid dynamics (CFD) simulations of swirling flow in a cylindrical cyclone, J ENERG RESOUR-ASME, 126(2004) 326-333.
[21]X.W. Wang, Y. Zhou, W.O. Wong, Turbulent Flow Structure and Swirl Number Effect in a Cyclone, J FLUID ENG-T ASME, 133(2011).
[22]M. Narasimha, A.N. Mainza, P.N. Holtham, M.S. Brennan, Air-core modelling for hydrocyclones operating with solids, INT J MINER PROCESS, 102(2012) 19-24.