References
Andersen JH, Carstensen J, Conley DJ, Dromph K, Fleming-Lehtinen V,
Gustafsson BG, Josefson AB, Norkko A, Villnäs A, Murray C (2016)
Long-term temporal and spatial trends in eutrophication status of the
Baltic Sea. Biol Rev 92: 135–149
Arula, T., Ojaveer, H., & Klais, R. (2014). Impact of extreme climate
and bioinvasion on temporal coupling of spring herring (Clupea
harengus m.) larvae and their prey. Marine Environmental Research, 102,
102-109.
BACC II Author Team (2015) Second assessment of climate change for the
Baltic Sea basin, Regional Climate Studies. Springer, Berlin 501 pp.
Belkin IM (2009) Rapid warming of large marine ecosystems. Progr
Oceanogr 81: 207–213
Bick, A., Burckhardt R., (1989). Erstnachweis von Marenzelleria
viridis (Polychaeta, Spionidae) für den Ostseeraum, mit einem
Bestmmungschluessel der Spioniden der Ostsee. Mitt. Zool. Mus. Berl. 65,
2: 237-247
Carstensen J, Conley DJ, Bonsdorff E, Gustafsson BG, Hietanen S, Janas
U, Jilbert T, Maximov A, Norkko A, Norkko J (2014) Hypoxia in the Baltic
Sea: biogeochemical cycles, benthic fauna, and management. Ambio 43:
26–36
Casini, M., Lövgren, J., Hjelm, J., Cardinale, M., Molinero, J. C., &
Kornilovs, G. (2008). Multi-level trophic cascades in a heavily
exploited open marine ecosystem. Proceedings of the Royal Society B:
Biological Sciences, 275(1644), 1793-1801.
Cederwall H, Elmgren R (1980) Biomass increase of benthic macrofauna
demonstrates eutrophication of the Baltic Sea. Ophelia Suppl. 1: 87–304
Conley, D. J., Carstensen, J., Ærtebjerg, G., Christensen, P. B.,
Dalsgaard, T., Hansen, J. L., & Josefson, A. B. (2007). Long‐term
changes and impacts of hypoxia in Danish coastal waters. Ecol Appl,
17(sp5), S165-S184.
Conley D, Björck S, Bonsdorff E, Carstensen J, Destouni G, Gustafsson
BG, Hietanen S, Kortekaas M, Kuosa H, Meier HEM, Müller-Karulis B,
Nordberg K, Norkko A, Nürnberg G, Pitkänen H, Rabalais NN, Rosenberg R,
Savchuk OP, Slomp CP, Voss M, Wulff F, Zillén L (2009) Hypoxia-related
processes in the Baltic Sea. Environ Sci Technol 43: 3412–3420
Daufresne M, Lengfellner K, Sommer U (2009) Global warming benefits the
small in aquatic ecosystems. Proc Natl Acad Sci USA 106: 12788–12793
Diaz, R. J., & Rosenberg, R. (1995). Marine benthic hypoxia: a review
of its ecological effects and the behavioural responses of benthic
macrofauna. Oceanography and marine biology. An annual review, 33,
245-03.
Doney SC, Ruckelshaus M, Duffy JE, Barry JP, Chan F, English CA, Galindo
HM, Grebmeier JM, Hollowed AB, Knowlton N, Polovina J, Rabalais NN,
Sydeman WJ, Talley LD (2012). Climate change impacts on marine
ecosystems. Ann Rev Mar Sci 4: 11–37
Edwards, M., & Richardson, A. J. (2004). Impact of climate change on
marine pelagic phenology and trophic mismatch. Nature ,430 (7002), 881.
Hänninen, J., Vuorinen, I., & Hjelt, P. (2000). Climatic factors in the
Atlantic control the oceanographic and ecological changes in the Baltic
Sea. Limnology and Oceanography, 45(3), 703-710.
Hébert, M. P., Beisner, B. E., & Maranger, R. (2016). Linking
zooplankton communities to ecosystem functioning: toward an effect-trait
framework. Journal of Plankton Research , 39 (1), 3-12.
HELCOM thematic assessment of eutrophication 2011-2016. (2018).
Supplementary report to the ‘State of the Baltic Sea ’ report.
Eutrophication Supplementary Report. Baltic Sea Environment Proceedings
156.www.helcom.fi/publications
Hernroth L (ed) (1985) Recommendations on methods for marine biological
studies in the Baltic Sea. Mesozooplankton biomass assessment. Baltic
Mar Biol Publ 10:l-32
Holopainen R, Lehtiniemi M, Meier HEM, Albertsson J, Gorokhova E, Kotta
J, Viitasalo M (2016) Impacts of changing climate on the non-indigenous
invertebrates in the northern Baltic Sea by end of the twenty-first
century. Biol Invasions 10.1007/s10530-016-1197-z
Huisman, J., Codd, G. A., Paerl, H. W., Ibelings, B. W., Verspagen, J.
M., & Visser, P. M. (2018). Cyanobacterial blooms. Nature Reviews
Microbiology, 16(8), 471.
Jónasdóttir, S. H., Visser, A. W., Richardson, K., & Heath, M. R.
(2015). Seasonal copepod lipid pump promotes carbon sequestration in the
deep North Atlantic. Proceedings of the National Academy of Sciences,
112(39), 12122-12126.
Jurgensone I, Carstensen J, Ikauniece A, Kalveka B (2011) Long-term
changes and controlling factors of phytoplankton community in the Gulf
of Riga (Baltic Sea). Estuaries and Coasts (2011) 34:1205–1219.
Kabel K, Moros M, Porsche C, Neumann T, Adolphi F, Andersen TJ, Siegel
H, Gerth M, Leipe T, Jansen E, Damsté JSS (2012) Impact of climate
change on the Baltic Sea ecosystem over the past 1,000 years. Nat Clim
Change 2: 871–874
Karlson K, Rosenberg R, Bonsdorff E (2002) Temporal and spatial
large-scale effects of eutrophication and oxygen deficiency on benthic
fauna in Scandinavian and Baltic waters: a review. Oceanogr Mar Biol 40:
427–489
Katajisto, T. (2004). Effects of anoxia and hypoxia on the dormancy and
survival of subitaneous eggs of Acartia bifilosa (Copepoda:
Calanoida). Marine Biology, 145(4), 751-757.
Kauppi, L., Norkko, A., & Norkko, J. (2018). Seasonal population
dynamics of the invasive polychaete genus Marenzelleria spp. in
contrasting soft-sediment habitats. Journal of Sea Research, 131, 46-60.
Klais, R., Norros, V., Lehtinen, S., Tamminen, T., & Olli, K. (2017).
Community assembly and drivers of phytoplankton functional structure.
Functional Ecology, 31(3), 760-767.
Kotta, J., Simm, M., Kotta, I., Kanošina, I., Kallaste, K., & Raid, T.
(2004). Factors controlling long-term changes of the eutrophicated
ecosystem of Pärnu Bay, Gulf of Riga. Hydrobiologia, 514(1-3), 259-268.
Kotta, J., Lauringson, V., Martin, G., Simm, M., Kotta, I., Herkül, K.,
& Ojaveer, H. (2008). Gulf of Riga and Pärnu Bay. In Ecology of Baltic
coastal waters (pp. 217-243). Springer, Berlin, Heidelberg.
Kuosa, H., Fleming-Lehtinen, V., Lehtinen, S., Lehtiniemi, M., Nygård,
H., Raateoja, M., … & Suikkanen, S. (2017). A retrospective view of
the development of the Gulf of Bothnia ecosystem. Journal of Marine
Systems, 167, 78-92.
Leech, D. M., Pollard, A. I., Labou, S. G., & Hampton, S. E. (2018).
Fewer blue lakes and more murky lakes across the continental US:
Implications for planktonic food webs. Limnology and Oceanography,
63(6), 2661-2680.
Lehmann A, Krauss W, and Hinrichsen H-H (2002) Effects of remote and
local atmospheric forcing on circulation and upwelling in the Baltic
Sea. Tellus 54: 299–316.
Lehmann A, Getzlaff K, Harlass J (2011) Detailed assessment of climate
variability in the Baltic Sea area for the period 1958 to 2009. Clim Res
46: 185–196
Lehmann A, Hinrichsen H-H, Getzlaff K, Myrberg K (2014) Quantifying the
heterogeneity of hypoxic and anoxic areas in the Baltic Sea by a
simplified coupled hydrodynamic-oxygen consumption model approach. J Mar
Syst 134: 20-28
Leppäranta M, Myrberg K (2009) Physical oceanography of the Baltic Sea.
Springer-Praxis Books in Geophysical Sciences. Berlin, Germany,
Springer- Berlin. 378 pp.
Ljunggren, L., Sandström, A., Bergström, U., Mattila, J., Lappalainen,
A., Johansson, G., … & Eriksson, B. K. (2010). Recruitment failure of
coastal predatory fish in the Baltic Sea coincident with an offshore
ecosystem regime shift. ICES Journal of Marine Science, 67(8),
1587-1595.
Lutz, R. V., Marcus, N. H., & Chanton, J. P. (1992). Effects of low
oxygen concentrations on the hatching and viability of eggs of marine
calanoid copepods. Marine Biology, 114(2), 241-247.
MacKenzie BR, Schiedeck D (2007) Daily ocean monitoring since 1860s
shows record warming on northern European seas. Glob Change Biol 13:
1335-1347
Mäkinen, K., Vuorinen, I., & Hänninen, J. (2017). Climate-induced
hydrography change favours small-bodied zooplankton in a coastal
ecosystem. Hydrobiologia, 792(1), 83-96.
Meier HEM, Hordoir R, Andersson HC, Dieterich C, Eilola K, Gustafsson
BG, Höglund A, Schimanke S (2012) Modeling the combined impact of
changing climate and changing nutrient loads on the Baltic Sea
environment in an ensemble of transient simulations for 1961-2099. Clim
Dynam 39: 2421-2441
Norkko J, Gammal J, Hewitt JE, Josefson AB, Carstensen J, Norkko A
(2015) Seafloor ecosystem function relationships: in situ patterns of
change across gradients of increasing hypoxic stress. Ecosystems
18:1424-1439
Ojaveer, H. (1997). Environmentally induced changes in distribution of
fish aggregations on the coastal slope in the Gulf of Riga. In
Proceedings of the 14th Baltic Marine Biologists
Symposium (Ojaveer, E., ed.), Pärnu, Estonia, 5–6 August 1995, pp.
170–183.
O’Neil, J. M., Davis, T. W., Burford, M. A., & Gobler, C. J. (2012).
The rise of harmful cyanobacteria blooms: the potential roles of
eutrophication and climate change. Harmful Algae, 14, 313-334.
Richardson AJ (2008) In hot water: Zooplankton and climate change. ICES
Journal of Marine Science 65: 279-295
Sherman, K., Solow, A., Jossi, J., & Kane, J. (1998). Biodiversity and
abundance of the zooplankton of the Northeast Shelf ecosystem. ICES
Journal of Marine Science, 55(4), 730-738.
Suikkanen, S., Pulina, S., Engström-Öst, J., Lehtiniemi, M., Lehtinen,
S., & Brutemark, A. (2013). Climate change and eutrophication induced
shifts in northern summer plankton communities. PLoS one, 8(6), e66475.
Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont LJ, Collingham YC,
Erasmus BFN, Siqueira MFD, Grainger A, Hannah L, Hughes L, Huntley B,
Jaarsveld ASV, Midgley GF, Miles L, Ortega-Huerta MA, Peterson AT,
Phillips OL, Williams SE (2004) Extinction risk from climate change.
Nature 427: 145–148
Vaquer-Sunyer, R., & Duarte, C. M. (2008). Thresholds of hypoxia for
marine biodiversity. Proceedings of the National Academy of Sciences,
105(40), 15452-15457.
Vehmaa, A., Katajisto, T., & Candolin, U. (2018). Long‐term changes in
a zooplankton community revealed by the sediment archive. Limnology and
Oceanography, 63(5), 2126-2139.
Vuorinen I, Hänninen J, Viitasalo M, Helminen U, Kuosa H (1998)
Proportion of copepod biomass declines with decreasing salinity in the
Baltic Sea. ICES Journal of Marine Science 55 (4), 767-774.