REFERENCES
Abdel-Fattah, G.M., El-Haddad, S.A., Hafez, E.E., & Rashad, Y.M.
(2011). Induction of defense responses in common bean plants byarbuscular mycorrhizal fungi. Microbiological Research ,
166, 268–281.
Andersen, E. J., Ali, S., Byamukama, E., Yen, Y., & Nepal, M. P.
(2018). Disease Resistance Mechanisms in Plants. Genes , 9(7),
339.
Amaral, L.S., Debona, D., Costa, L.C., Luiza, A., José, R.S., Fabrício,
R.O., & Rodrigues, A. (2019). Biochemical insights into basal and
induced resistance in cabbage to black rot. Journal of
Phytopathology , 167, 390–403.
Bagheri, L.M., Nasr-Esfahani, M., Abdossi, V., & Naderi, D. (2020).
Analysis of candidate genes expression associated with defense responses
to root and collar rot disease caused by Phytophthora capsici in
peppers Capsicum annuum , Genomics , 112(3), 2309-2317.
Beaudoin-Eagan, L.D & Thorpe, T.A. (1985). Shikimate pathway activity
during shoot initiation in tobacco callus cultures. Plant
Physiology , 73,228-232.
Bharathi, E., Santha Lakshmi Prasad, M., Yadav, P., & Bee, H. (2019).
Defense responses to Fusarium oxysporum f. sp. riciniinfection in castor (Ricinus communis L.) cultivars. Indian
Phytopathology , 72, 647-656.
Bradford, M.M. (1976). A rapid and sensitive method for the quantitation
of microgram quantities of protein utilizing the principle of
protein-dye binding. Analytical Biochemistry , 72,248-254.
Chen, C., Belanger, R.R., Benhamou, N., & Paullitz, T.C. (2000).
Defense enzymes induced in cucumber roots by treatment with plant growth
promoting rhizobacteria (PGPR). Physiological Molecular Plant
Pathology , 56, 1323.
Constabel, C.P., & Ryan, C.A. (1998). A survey of wound-and methyl
jasmonate-induced leaf polyphenol oxidase in crop plants,Phytochemistry , 47 (4), 507–511.
Dazy, M., Jung, V., Férard, J.F., & Masfaraud, J.F. (2008). Ecological
recovery of 712 vegetation at a former coke-factory industrial
wasteland: Role of plant 713 antioxidant enzymes and possible
implications in site restoration. Chemosphere , 74,57-63.
Erwin, D. C., & Ribeiro, O. K. (1996). Phytophthora Disease Worldwide.
APS Press. St. Paul, MN, pp, 562.
Fernandes, C.F., Moraes, V.C.P., Vasconcelos, L.M., Silveira, J.A.G., &
Oliveira, J.T.A. (2006). Induction of an anionic peroxidase in cowpea
leaves by exogenous salicylic acid. Journal of Plant Physiology ,
163, 1040-1048.
Garg, N., & Manchanda, G. (2009). ROS generation in plants: Boon or
bane? Plant Biosystems , 143, 81-96.
Gratão, P.L., Monteiro, C.C., Carvalho, R.F., Tezotto, T., Piotto, F.A.,
Peres, L.E., & Azevedo, R.A. (2012). Biochemical dissection of
diageotropica and Never ripe tomato mutants to Cd-stressful conditions,Plant Physiology and Biochemistry , 56, 79-96.
Hashemi, L., Golparvar, A.R., Nasr Esfahani, M., & Golabadi, M. (2019).
Correlation between cucumber genotype and resistance to damping-off
disease caused by Phytophthora melonis , Biotechnology &
Biotechnological Equipment , 33(1), 1494-1504.
Hatami, N., Aminaee, M.M., Zohdi, H., & Tanideh, T. (2013). Damping-off
disease in greenhouse cucumber in Iran. Archives of Phytopathology
and Plant Protection , 46(7), 796–802.
Huang, J., Gu, M., Lai, Z., Fan, B., Shi, K., Zhou, Y. H., Yu, J.Q., &
Chen, Z. (2010). Functional analysis of the Arabidopsis PAL gene family
in plant growth, development, and response to environmental stress.Plant Physiology , 153, 1526–1538.
Jiang, S., Han, S., He, D., Cao, G., Fang, K., Xiao, X., Yi, J., & Wan,
X. (2019). The accumulation of phenolic compounds and increased
activities of related enzymes contribute to early defense against walnut
blight. Physiological and Molecular Plant Pathology , 108, 101433.
Jung, W.J., F. Maboodb, A. Souleimanovb, & D.L. Smith. (2011).
Induction of defense-related enzymes in soybean leaves by class IId
bacteriocins (thuricin 17 and bacthuricin F4) purified from Bacillus
strains. Microbiological Research , 167, 14-19.
Khatediya, N.K., Parmar, D.V., Mahatma, M.K., & Pareek, M.
(2018). Increased accumulation of phenolic metabolites in groundnut
(Arachis hypogaea L.) genotypes contribute to defense
against Sclerotium rolfsii infection, Archives of
Phytopathology and Plant
Protection , 51(9-10), 530-549, DOI: 10.1080/03235408.2018.1490519.
Kim, D.S., & Huang, B.K. (2014). An important role of the pepper
phenylalanine ammonia-lyase gene (PAL1) in salicylic aciddependent
signalling of the defense response to microbial pathogens. Journal
of Experimental Botany , 65, 2295-2306.
Khodadadi, F., Tohidfar, M., Vahdati, K., Dandekar, A.M., & Leslie,
C.A. (2020). Functional analysis of walnut polyphenol oxidase gene
(JrPPO1) in transgenic tobacco plants and PPO induction in response to
walnut bacterial blight. Plant pathology , 69(4), 756-764.
Lamichhane, J.R., Dürr, C., Schwanck, A.A., Robin, M.H, Sarthou, J.P.,
Cellier, V., Messéan, A., & Aubertot, J.N. (2017). Integrated
management of damping-off diseases. A review. Agronomy for
Sustainable Development , 37, 10. Li, L., & Steffens, J. (2002).
Overexpression of polyphenol oxidase in transgenic tomato plants results
in enhanced bacterial disease resistance. Planta , 215, 239-47.
pmid: 12029473.
Mandal, S., & Mitra, A., (2007). Reinforcement of cell wall in roots ofLycopersicon esculentum through induction of phenolic compounds
and lignin by elicitors. Physiological and Molecular Plant
Pathology , 71, 201-209.
Mydlarz, L.D., & Harvell, C.D. (2006). Peroxidase activity and
inducibility in the see fan coral exposed to a fungal pathogen.Comparative Biochemistry & Physiology . 10, 1016.
Moghbeli, E., Nemati, S.H., Aroiee, H., & Olfati, J.A. (2017).
Evaluation of Resistance, Enzymatic Response, and Phenolic compounds in
roots of F1 cucumber hybrids to Fusarium oxysporium F. SP.Radicis-Cucumerium . Journal of Horticultural Research ,
25(1), 117–124. DOI: 10.1515/johr-2017-0012.
Moghaddam, G.A, Rezayatmand, Z., Nasr Esfahani, M. & Khozaei, M.
(2019). Genetic defense analysis of tomatoes in response to early blight
disease, Alternaria alternata . Plant Physiology and
Biochemistry , 142, 500-509.
Moradi, N., Rahimian, H., Dehestani, A., & Babaeizad, V. (2016).
Cucumber Response to Sphaerotheca fuliginea: Differences in antioxidant
enzymes activity and pathogenesis-related gene expression in susceptible
and resistant genotypes. Journal of Plant Molecular Breeding ,
4(2), 33- 40.
Nasr Esfahani, M. (2018). Analysis of virulence and genetic variability
of Alternaria alternata associated with leaf spot disease in
potato plants in Iran. Acta Mycologica , 53, 1-9.
Nasr Esfahani, M., Chatraee, M., Shafizadeh, S., Jalaji, S. (2012).
Evaluation of resistance of cucurbit and cucumber cultivars toPhytophthora drechsleri in Greenhouse. Iranian Seed
and Plant Improvement Journal , 28,407-417.
Nasr Esfahani M, Nasehi A, Rahmanshirazi P. (2014). Susceptibility
assessment of bell pepper genotypes to crown and root rot disease.Arch Phytopathol Plant Protect ; 47: 944–953.
Nasr Esfahani, M. (2019). Morphological, virulence and genetic
variability of Ulocladium atrum causing potato leaf blight
disease in Iran. J Plant Prot Res 59: 41-49.
Nasr Esfahani, M. (2020). Genetic variability and virulence of some
Iranian Rhizoctonia solani isolates associated with stem canker
and black scurf of potato (Solanum tuberosum L.). J. Plant
Prot. Res . 60 (1): 21–30.
Nazavari, K., Jamali, F., Bayat, F., & Modarresi, M. (2016). Evaluation
of resistance to seedling damping-off caused by Phytophthora
drechsleri in cucumber cultivars under greenhouse conditions.Biological Forum , 8, 54-60.
Nostar, O., Ozdemir, F., Bor, M., Turkan, I., & Tosun, N. (2013).
Combined effects of salt stress and cucurbit downy mildew
(Pseudoperospora cubensis Berk. and Curt. Rostov.) infection on
growth, physiological traits and antioxidant activity in cucumber
(Cucumis sativus L.) seedling. Physiological and Molecular
Plant Pathology , 83, 84-92.
Pandey, V., A.K. Tewari, & Saxena, D. (2017). Activities of defensive
antioxidant enzymes and biochemical compounds induced by bioagents in
Indian mustard against alternaria blight . Proceedings of
the National Academy of Sciences, 2, 1–10.
Prasannath, K. & De Costa, D.M. (2015). Induction of peroxidase
activity in tomato leaf tissues treated with two crop management systems
across a temperature gradient. Proceedings of the International
Conference on Dry Zone Agriculture 2015. Faculty of Agriculture,
University of Jaffna, Sri Lanka. 15th & 16th October 2015. 34-35.
Rais, A., Jabeen, Z., Shair, F., Hafeez, F.Y., & Hassan, M.N. (2017).
Bacillus spp., a bio-control agent enhances the activity of antioxidant
defense enzymes in rice against Pyricularia oryzae . PLoS ONE,
12(11), e0187412. https://doi.org/10.1371/ journal. pone.0187412.
Riedle-Bauer, M. (2000). Role of reactive oxygen species and antioxidant
enzymes in systemic virus infections of plants. Journal of
Phytopathology . 148, 297–302.
Sabbaghi, E., Sabbagh, S.K., Panjehkek, N., & Bolokyazd, H.R. (2018).
Jasmonic Acid Induced Systemic Resistance in Infected Cucumber byPythium aphanidermatum . Journal of agricultural science, 24,
143-152. DOI: 10.15832/ankutbd.446416.
Siddique, Z., K.P. Akhtar, A. Hameed, N. Sarwar, I.U. Haq, & S.A. Khan.
(2014). Biochemical alterations in leaves of resistant and susceptible
cotton genotypes infected systemically by cotton leaf curl Burewala
virus. Journal of Plant Interactions , 9,702–711.
Su, Y., Wang, Z., Xu, L., Peng, Q., Liu, F., Li, Z., & Que, Y. (2016).
Early selection for smut resistance in sugarcane using pathogen
proliferation and changes in physiological and biochemical indices.Frontiers in Plant Science , 7, 1133.
Su, X., Guan, L., & Hu, F. (2019). Comparison of Defensive Enzyme
Activities in the Leaves of Seven Oriental Lily Hybrids after
Inoculation with Botrytis elliptica . Journal of the American
Society for Horticultural Science, 144(1), 55-62.
Solekha, R., Susanto, F.A., Joko, T., Nuringtyas, T.R., & Purwestri,
Y.A. (2019). Phenylalanine ammonia lyase (PAL) contributes to the
resistance of black rice against Xanthomonas oryzae pv.oryzae . Journal of Plant Pathology ,
https://doi.org/10.1007/s42161-019-00426-z.
Saunders, J., & O’neill, N. (2004). The characterization of defense
responses to fungal infection in alfalfa. Biological control , 49,
715–728.
Vanitha, S.C., Niranjana, S.R., & Umesha, S. (2009). Role of
phenylalanine ammonia lyase and polyphenol oxidase in host resistance to
bacterial wilt of tomato. Journal of Phytopathology , 157,
552–557.
Van Rossum, M.W., Alberda, M., & van der Plas, L.H. (1997). Role of
oxidative damage in tulip bulb scale micropropagation, Plant
Science . 130 (2), 207–216.
Wu, T., Wang, R., Xu, X., He, X., Sun, B., Zhong, Y., Liang, Z., Luo,
S., & Lin, Y. (2014). Cucumis sativus L-type lectin receptor
kinase (CsLecRK) gene family response to Phytophthora melonis ,Phytophthora capsici and water immersion in disease resistant and
susceptible cucumber cultivars. Gene , 549, 214-222.
Xie, J.H., Chai, T.T., Xua, R., Liu, D., Yang, Y.X., Deng, Z.C., Jin,
H., & He, H. (2017). Induction of defense-related enzymes in patchouli
inoculated with virulent Ralstonia solanacearum . Electronic
Journal of Biotechnology, 27, 63-69.
Yusuf, C.Y.L. Abdullah, J.O. Shaharuddin, N.A. Abu Seman, I., &
Abdullah, M.P. (2018). Characterization of promoter of EgPAL1, a novel
PAL gene from the oil palm Elaeis guineensis Jacq. Plant
Cell Reports , 37, 265–278.
Zhang, C.Z., Wang, X., Zhang, F., Dong, L., Wu, J., Cheng, Q., Qi, D.,
Yan, X., Jiang, L., Fan, S., Li, N., Li, D., Xu, P., & Zhang, S.
(2017). Phenylalanine ammonia-lyase2.1 contributes to the soybean
response towards Phytophthora sojae infection. Scientific
reports , 7(1), 7242. https://doi.org/10.1038/s41598-017-07832-2.
Zhao, S., Du, C.M., & Tian, C.Y. (2012). Suppression of Fusarium
oxysporum and induced resistance of plants involved in the biocontrol
of cucumber Fusarium wilt by Streptomyces bikiniensis HD 087.World Journal of Microbiology & Biotechnology , 28, 2919–2927.