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Abstract: The eastern Qinghai-Tibet Plateau (EQTP) is the source regions of the Yangtze, 

Lancang/Mekong, and Nujiang/Salween rivers. Their hydrologic dynamics are key to water 

resources in the downstream area. An analysis of the spatiotemporal variations in terrestrial water 

storage (TWS) in this region has practical significance for regional social prosperity and the 

stability of the ecological environment. In this paper, the monthly GRACE Level 2 Release 6 

(RL06) products were employed to invert TWS changes from April 2002 to August 2016, and 

dominant factors contributing to the changes in TWS in subbasins and decreasing and increasing 

areas were analyzed systematically. We concluded that. (1) the TWS in EQTP showed a slight 

decreasing trend from 2002 to 2016 with the obvious spatial heterogeneity. The TWS trend ranged 

from -0.94~0.91 mm/m with a decreasing trend in the southwest and an increasing trend in the 

north. The pattern in TWS is approximately similar to the change in soil moisture (ΔSM). (2) the 

decrease in TWS may be attributed to the increase of evapotranspiration, which has approximately 

increased by 53%, and increase of glacial ablation and reduction of precipitation in EQTP. 

Moreover, the decrease in evapotranspiration can partly explain the increase in areas with TWS 

increase. However, we speculated that the lakes supplemented by glaciers are the main cause of 

the regional changes in TWS. Glacial ablation is the dominant factor in the region where a 

substantial decrease in TWS is observed (an approximately 69% contribution). (3) the decrease in 

TWS mainly occurs in summer and is mainly due to the increase in evaporation in summer 

because of warming, increase in wind speed and decrease in the relative humidity. (4) the mass 

balance of glaciers was estimated indirectly based on the GRACE results, but a further study is 

needed to determine the specific process. 

 

Keywords: TWS; GRACE; Spatiotemporal differentiation; Controlling factors 

 

1 Introduction 

The Qinghai-Tibet Plateau, the Earth’s third pole, possesses water resources feed billion of 
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people downstream in China, India, Pakistan and other countries in the region(Pritchard, 2017; 

Shrestha et al., 2015; Q. Zhao et al., 2019). The temporal and spatial changes in its water storage 

capacity have a major impact on the social economic development and livelihood of the region. In 

the context of global climate change, the ablation of ice and snow in this region has accelerated 

and the land water cycle has undergone significant changes, particularly in the eastern region 

(EQTP). Glaciers, frozen soils, lakes and wetlands are key components involving in hydrologic 

processes associated with water resources sustainable development in EQTP. The region is 

controlled by the South Asian and East Asian monsoons, the subtropical westerly jets, and the 

Siberian high system. These factors, combined with the topographical characteristics of 

north-south trending high mountains and deep-incised valleys, create unique spatial and temporal 

differences in the characteristics of the terrestrial water cycle in EQTP. The region is characterized 

by the three river systems of Jinsha, Lancang and Nujiang in parallel from east to west (we here 

refer to the system as three parallel river basins (TPRB)) in the transition zone between the 

Qinghai-Tibet Plateau and the Yunnan-Guizhou Plateau. In recent years, EQTP has been attracted 

increasing attention from various sectors due to issues of the increased frequency and intensity of 

natural disasters, ecological degradation, and less social and economic development. Frequent 

natural disasters are mainly represented by large-scale and long-term droughts and regional floods. 

From the perspective of hydrology, an important cause of droughts and floods is an abnormality in 

terrestrial water dynamics. Many studies on drought and floods events in different basins (e.g., the 

Amazon basin (J. L. Chen, Wilson, Tapley, Yang, & Niu, 2009), Texas basin (Long et al., 2013), 

Haihe basin (J. Wang, Jiang, Huang, & Wang, 2014), and Liaohe basin (X. Chen, Jiang, & Li, 

2018)) have shown that the spatial and temporal characteristics of regional water storage displayed 

varying degrees of abnormal fluctuations during the disaster period, and this abnormal fluctuation 

is generally linked to climate change (Forootan et al., 2019). The variability of TWS has been 

observed in EQTP, but the detailed characteristics of the fluctuations, the range of fluctuations and 

the spatial differences in the fluctuations remain unclear and must be elucidated.  

The logistic constraints are always the challenge in traditional site-monitoring of TWS in 

basins with tough terrains though they can provide process data. Modeling practice for a large 

river basin is a measure to understand the interaction of various hydrological components and 

processes including droughts and floods, but these need as many measurements as possible for 

parameter validation and verification. Studies have reported that the TWS derived from Gravity 

Recovery and Climate Experiment (GRACE) satellite data showed potential both in revealing 

changes in surface water storage and ability supporting large scale hydrologic modeling (Frappart 

& Ramillien, 2018; Klees R 2006; Z. Luo, Yao, Li, & Huang, 2016; P. Yang, Xia, Zhan, Qiao, & 

Wang, 2017; K. Zhao & Li, 2017). As mentioned before, GRACE has applied in many river basins 

and has displayed satisfactory results in TWS changes (Feng et al., 2017; Khaki et al., 2018; W. LI 

et al., 2018; Ni et al., 2014; Qiong, Luo, Zhong, & Wang, 2013; L. Wang, Kaban, Thomas, Chen, 

& Ma, 2019; Zhen et al., 2018). The promising application can also be found for demonstration of 

TWS variability in the Three Gorges reservoir area, the Guanzhong Plain and some medium-scale 



basins. The derived TWS from GRACE may benefit understanding TWS variability for rugged 

terrain basins like EQTP with large spatial relief and with limited in-situ measurements. The TWS 

data is also a treasure for the model validation and verification in these complex rivers. 

The spatiotemporal characteristics of TWS and its change are results of the integrated effect of 

climate change and human activities (Hu, Liu, Bao, & El-Tantawi, 2018). Precipitation, runoff, 

and evapotranspiration are the dominating processes of changes in TWS either in space or in time 

(Frappart, Ramillien, & Ronchail, 2013; Tangdamrongsub, Hwang, & Kao, 2011; T. Yang, Wang, 

Chen, Chen, & Yu, 2015). Being one of active processes in rivers, the depletion of glaciers and 

snow cover is influential factor in TWS dynamics (Syed, Famiglietti, Rodell, Chen, & Wilson, 

2008). As for anthropogenic processes like irrigation, abstraction of groundwater, land use, etc. 

also impact TWS in high populated area (de Beurs, Henebry, Owsley, & Sokolik, 2015; Huang et 

al., 2015; Khandu, Forootan, Schumacher, Awange, & Müller Schmied, 2016).  According to a 

recent study, the dominant factor contributing to the increase in TWS in eastern India and 

southeastern Tibet was increased precipitation, while the decrease was mainly attributed to a 

decrease in precipitation and an increase in irrigation water (Rodell et al., 2018). Another study, 

however, pointed out that evapotranspiration dominates the TWS depletion in the Brahmaputra 

and precipitation played an important role on the TWS accumulation in the upper Yangtze, and 

additionally glacier mass loss was the most likely cause of TWS decrease in Brahmaputra (Meng, 

Su, Li, & Tong, 2019). Two findings show partly different dominated factors of TWS change in 

almost the same area (the most part of EQTP), which leads us to understand with uncertainty. The 

possible reasons account for it are different datasets used and different division of regions for 

exploring controlling factors. The latter may be more principal because each 

region has its own particular local climates, relief conditions and human conditions, and some 

factors affecting judgment will be involved if evaluating dominated factors in large scale region; 

for instance, in EQTP, human activities are less intensive and their impact on TWS can be ignored, 

but the widely distributed glaciers and snow in this area force us to consider the substantial 

impacts of snow and ice meltwater on TWS. Consequently, the controlling factors for variations in 

TWS should be further discussed with more validated datasets and detailed geographic division, 

especially in EQTP with complex relief condition. In order to clarify the spatiotemporal variation 

of TWS in EQTP and the controlling factors for such changes, based on the optimized data 

processing method and time series analysis, firstly, we get GRACE derived TWS in EQTP and 

describe the variations. Secondly, we divide EQTP into several parts according its geographical 

conditions and present the dominant factors associated with the increase and decrease in TWS 

throughout the region and in subbasins to provide references for local agriculture and animal 

husbandry and ecological water demand predictions and management. Section 2 describes the 

study area. In section 3, we detailed describe the datasets and methods we used. Section 4 presents 

the results and section 5 provides discussions of controlling factors in TWS variations. The study 

is summarized and concluded in section 6. 

2 Study area 



We defined EQTP as the region that covers the entire TPRB (90°E-101°E, 27°N-36°N) with 

an approximate area 1,207,400 km2 (TPRB 399,000 km2), including the sources of the Nujiang 

River, the Lancangjiang River, and the Jinshajiang River, as well as their basins in north of 

Yunnan province, and part of the big bend region at Brahmaputra (Figure 1). The part of 

Brahmaputra is included because there is glacierized area which may affect notably on the TWS 

change in the context of glacier retreat in high mountain Asia. The topography of the region is 

complicated, with an average altitude exceeding 3000 m, and the terrain fluctuates substantially, as 

it is generally high in the north and low in the south, high in the west and low in the east, and 

inclines downward from northwest to southeast. The study area is within the influence of the 

southwest monsoon and the southeast monsoon. It traverses the subtropical zone, the plateau 

temperate zone, and the plateau subfrozen zone from south to north, with substantial differences in 

climate. Its ecological environment and meteorological conditions are not only affected by the 

uplift of the Qinghai-Tibet Plateau but also affected by the formation and evolution of the 

longitudinal range-gorge. Dry-hot valleys surrounded by a relatively humid environment with a 

high temperature in this region are very common, such as the TPRB region (J. Guo, Wang, Bai, & 

Lu, 2006; Y. Luo, 2009). The soil in EQTP consists predominantly of sandy loam and loam. Loam 

soil is characterized by moderate loose and fine soil, a slow increase in temperature in spring, a 

good water storage capacity, and a good soil structure, while sandy loam has more sand and stones, 

blocks when dry, and a weaker water holding capacity than loam. The spatial differences in soil 

will cause a difference in the soil water holding capacity, which will affect the changes in TWS. 

Coupled with the complex terrain and varied climatic conditions, the spatial and temporal 

variability in water storage will be more prominent.  

The unique environment and terrain make the region rich in water resources, mineral 

resources, biological resources, and tourism resources, which are closely related to human survival, 

development and resource development. The region has been suffering warming and drying in 

recent decades (T. Li, Wang, Chang, Zhang, & Li, 2018). A rise of 0.7 degrees Celsius in 

temperature and a reduction of 5.5 mm in area-averaged precipitation was posted in the latest 15 

years. The arid climate has caused the region to suffer from frequent environmental problems, 

such as water shortage, grassland degradation, land desertification and soil erosion, which have 

further produced a series of vicious cycles (T. Li et al., 2018). Therefore, the temporal and spatial 

variations in TWS must be identified as an indicator of regional water resources and their 

responses to climatic events. 



 

Figure 1. Study area mainly represented by TPRB and part of the Brahmaputra river basin. The 

locations of weather stations are shown. 

3 Data and methods 

3.1 Data 

3.1.1 GRACE RL06 

The GRACE satellite is a convenient and effective tool to obtain the highly precise 

temporal changes in the gravitational field at a particular moment. The data collected by the 

GRACE satellite have been applied in geodynamics, hydrology and other fields (Tapley, Bettadpur, 

Watkins, & Reigber, 2004). In this paper, GRACE LEVEL-2 (RL06) GSM (spherical harmonic 

coefficient of the geoid model) data produced by the Center for Space Research, University of 

Texas at Austin (UTCSR) were employed to calculate the TWS. The data were collected from 

April 2012 to August 2016, with a time resolution of 1 month, and the spherical harmonic 

coefficient of gravity was truncated to order 60. RL06 is still the same as RL05 in the form of 

expression, which mainly reflects the regularized spherical harmonic coefficient after deducting 

the influences of nontidal atmosphere and ocean masses, the influences of various tidal factors 

(including solid tide, sea tide, earth rotation polar tide, etc.) and the gravitational disturbances 

caused by the sun and moon (Bettadpur, 2018). However, some new background fields are 

adopted for RL06, and the processing method has been improved, resulting in a substantial 

reduction in error, particularly the error of the north-south strip (Gao, Lu, & Shi, 2019; Save, 

2017). 

The GRACE monthly gravity field model must be refined because of the error. The satellite 

laser ranging (SLR) C20 has a higher precision and is more sensitive in reflecting seasonal 

characteristics than GRACE. As a result, C20 of SLR is used to replace C20 of GRACE (J L Chen 

& Wilson, 2008; Cheng & Tapley, 2003). In addition, the improved p3m9 decorrelation filtering 

was used to eliminate the north-south strip error, and the 300 km fan filtering was used to reduce 

the high-order spherical harmonic coefficient error in the present study (Han et al., 2005; Zhen et 

al., 2018). After completing the procedure described above, the steady state quality of the Earth 

was estimated by calculating the monthly mean of the spherical harmonic coefficient, and the 

time-varying gravity data were obtained by deducting the steady state. 



3.1.2 Hydrometeorological data 

 (1) Soil moisture data 

 The Global Land Data Assimilation System (GLDAS) datasets, established by the Goddard 

Space Flight Center (NASA) and the National Centers of Environmental Prediction (NCEP), were 

used in present study, which is proved to an efficient tool for examining meteorology and 

hydrology (Wu, Si, He, & Wu, 2019; Xia et al., 2014; P. Yang, Xia, Zhan, & Wang, 2018). 

GLDAS, including three land surface models (NOAH, CLM, and Mosaic) and one hydrological 

model (VIC), provides datasets (global precipitation, soil temperature, runoff, radiation flux and 

other hydrometeorological data) that are simulated based on multiple observation data, 

atmospheric assimilation products and reanalysis data for use by various researchers and relevant 

institutions (Rodell et al., 2004). The four-layer soil moisture data of NOAH have been widely 

used in the inversion of GRACE-derived TWS (W. LI et al., 2018; Zhen et al., 2018; Zhong et al., 

2018). The data derived from NOAH from 2002 to 2016 were employed in this study, with a 

spatial resolution of 1°×1° and a temporal resolution of one month, and were mainly used to 

calculate the scale factor and characterize the soil moisture in the water balance. 

 (2) Precipitation data 

 As the largest input to the TWS, precipitation data are crucial for identifying the regional 

water balance process. Data from four grid models, CN501, TRMM.3b43v7, Global Precipitation 

Climatology Project (GPCP) and Precipitation Estimation from Remotely Sensed Information 

using Artificial Neural Networks-for Climate Data Record (PERSIANN-CDR), were used in this 

study. The accuracy of precipitation in EQTP was inter-validated with these precipitation data by 

comparison with the station data in the region and the bias corrected precipitation data was applied 

to describe the characteristics of the precipitation in EQTP (Figure 1). CN501 data include hourly 

and daily precipitation, temperature and evapotranspiration gridded at 0.25°×0.25° generated by 

interpolation based on observations over 2,400 meteorological stations in China (Jia & Xuejie, 

2013). Trmm.3B43V7 is one of the datasets of Tropical Rainfall Measuring Mission Multisatellite 

Precipitation Analysis (TMPA), with a temporal resolution of 3 hours and a spatial resolution of 

0.25° (Huffman et al., 2007). GPCP data are monthly precipitation at 1°×1° on the globe which 

was inversed from satellite data and verified by more than 6,000 meteorological stations around 

the world (Adler et al., 2018). Based on satellite data inversion results, PERSIANN-CDR are 

simulated by an artificial neural network algorithm with a spatial resolution of 0.25° and a 

temporal resolution of one day (Ashouri et al., 2015). In this paper, the nearest neighbor 

interpolation was used to obtain the results from the model for the corresponding sites, and 

R-square, Bias, RMSE and rRMSE were used to evaluate the accuracy of each application (Junzhi, 

A-Xing, & Zheng, 2012). As shown in Figure 2, CN501, TRMM.3b43v7 and GPCP all displayed 

a good correlation with the station data, which better reflects the characteristics of regional 

precipitation. Moreover, PERSIANN-CDR did not perform well in EQTP. Although the four kinds 

of data have a high precision for estimating precipitation, the precipitation estimates from CN501 

and TRMM.3b43v7 are more accurate than the estimates obtained with the other two datasets. 



From the perspective of RMSR and rRMSE, CN501 is closer to the actual observed value, which 

may be related to the data source of CN501. Considering the limited time sequence length of 

TRMM.3b43v7, we used the precipitation estimated using CN501 in the present study. 

 To minimize the error caused by different data sources, the data for temperature and 

evaporation were also obtained from CN501 in this study, based on the above analysis. 

 

Figure 2. Comparative analysis of different gridded precipitation and measured data 

(4) Runoff data 

Runoff in the region is from the recent release of monthly global runoff data (GRUN) gridded 

at 0.5° by Gionata Ghiggi, which is a dataset simulated by machine learning based on data 

obtained from 35,002 sites (Ghiggi, Humphrey, Seneviratne, & Gudmundsson, 2019). The GRUN 

runoff variation of EQTP in 2002-2014 was calculated to be approximately 0.06 mm/m. 

According to the annual runoff depth of the basin published in the bulletin of Yunnan Water 

Resources (http://www.wcb.yn.gov.cn/list?code=xxgl2) from 2011 to 2015, we deduced that the 

trends for the variation in the surface runoff in Jinshajiang, Lancangjiang and Nujiang are 

approximately 16.16 mm/yr, -3.25 mm/yr and -21.97 mm/yr, respectively, and the equivalent 

water thickness (EWT) variation in the whole region is approximately 0.04 mm/m, weighted by 

basin area, smaller than GRUN because of the exclusion of runoff of Bramhmaputra River and 

some smaller water systems. However, compared with other hydrological simulation results (for 

example, the magnitude of GLDAS-NOAH runoff data in the study area is 10-6-10-7 mm), GRUN 

is considered to be realistic and consistent in the research basins. Therefore, GRUN data were 

employed to depict regional runoff in the present study. 

(5) Groundwater data 

Underground logging can accurately reflect groundwater reserves, but the number of logging 

sites is small and data acquisition is difficult. In recent years, the data from WaterGAP Global 

http://www.wcb.yn.gov.cn/list?code=xxgl2


Hydrology Model (WGHM) simulated by IPG (University of Frankfurt) have better reflected the 

changes in groundwater reserves. In addition, the model also reflects the changes in all forms of 

water, except glaciers. Currently, the results from this model have been widely used (Eicker, 

Schumacher, Kusche, Döll, & Schmied, 2014; Feng, Shum, Zhong, & Pan, 2018). The 

groundwater data from the model were used in the present study, displaying a spatial resolution of 

0.5°×0.5° and a temporal resolution of one month (Döll, Müller Schmied, Schuh, Portmann, & 

Eicker, 2015). 

3.1.3 Measured data 

 To improve the validity and accuracy of the results, we derived the precipitation, 

evapotranspiration, wind speed, wind direction, temperature, humidity and other observation data 

recorded by 36 stations in the study area from the national meteorological center 

(http://data.cma.cn/) (Figure 1). After preprocessing the observed data, the time series of data 

recorded by 36 stations from 2002 to 2016 were obtained. The measured data from each station 

were mainly used to verify the accuracy of data obtained from the model and discuss the effects of 

meteorological factors on TWS. 

3.2 Seasonal-trend decomposition procedure based on Loess (STL) 

 Since the data used in this paper are time series data, which can be decomposed to obtain 

details and to clarify the specific characteristics of changes in timing data. As a commonly used 

time-series decomposition method, STL is widely used in studies related to meteorology and 

hydrology. It divides the time series Y into a trend component T, periodic component (seasonal 

component) S and residual term R to refine and characterize variations in time series data at 

different levels (Cleveland & Cleveland, 1990; Rojo, Rivero, Romero-Morte, Fernandez-Gonzalez, 

& Perez-Badia, 2017; Sanchez-Vazquez, Nielen, Gunn, & Lewis, 2012). STL is divided into an 

inner cycle and outer cycle. The inner cycle is mainly used to fit the trend term and calculate the 

periodic components through detrending, subperiodic smoothing, subperiodic low-pass filtering, 

deperiodizing and trend smoothing. The outer cycle is mainly used to adjust the robustness of the 

weight in the fitting process to remove outliers (Cleveland & Cleveland, 1990). For time series Y, 

the STL decomposition at time i is calculated using equation (1): 

𝑌𝑖 = 𝑇𝑖 + 𝑆𝑖 + 𝑅𝑖   (𝑖 = 1,2, ⋯ , 𝑁)                (1) 

 In the present study, STL is mainly used to decompose time series data, such as TWS, and to 

analyze the characteristics of each component and extract effective information. 

3.3 Inversion of TWS 

 One of the main explanations for the change in the spherical gravity field is the dynamic 

changes in the terrestrial water mass (Tapley et al., 2004), which is expressed in the form of EWT 

using the following equation (Wahr, Molenaar, & Bryan, 1998): 

𝛥ℎ(𝜃, 𝜆) =
𝑅𝜌𝑒

3𝜌𝑤
∑

2𝑛+1

1+𝑘𝑛
𝑊𝑛 ∑ 𝑊𝑚(𝛥𝐶𝑛𝑚 𝑐𝑜𝑠 𝑚 𝜆 + 𝛥𝑆𝑛𝑚 𝑠𝑖𝑛 𝑚 𝜆)𝑛

𝑚=0
𝑁
𝑛=0 𝑃̄𝑛𝑚(𝑐𝑜𝑠 𝜃)    (2) 

 where R represents the mean radius of the Earth, with a value of 6.3781363×103 km. (𝜃, 𝜆) 

refers to the geocentric latitude and longitude of the calculation points, respectively. 𝜌𝑒  is the 

http://data.cma.cn/


average density of the earth, with a value of 5.517×103 kg/m3, and 𝜌𝑤 is the average density of 

water with a specific value of 1×103 kg/m3. kn denotes loading Love numbers, and both 𝛥𝐶𝑛𝑚 

and 𝛥𝑆𝑛𝑚 are normalized spherical harmonic coefficients. 𝑃̄𝑛𝑚(𝑐𝑜𝑠 𝜃) indicates the normalized 

m order n multiplied by the Legendre function. N is the order of the spherical harmonic 

coefficients. Studies have identified significant errors in the higher order terms. As a result, the 

higher order terms usually must be truncated. Generally, N=60 is used to calculate the EWT (Feng 

et al., 2013; Longuevergne, Scanlon, & Wilson, 2010; Swenson & Wahr, 2006). Both Wn and Wm 

are Gaussian filtering smoothing functions. When r1/2 represents the filter radius, the Gaussian 

kernel function W is calculated using equation (3). 

{
𝑊0 =

1

2𝜋
, 𝑊1 =

1

2𝜋
(

1+𝑒−2𝛼

1−𝑒−2𝛼 −
1

𝛼
) , … , 𝑊𝑛+1 = −

2𝑛+1

𝛼
𝑊𝑛 + 𝑊𝑛−1      𝑛>2

𝛼 =
𝑙𝑛 2

1−𝑐𝑜𝑠(𝑟1/2/𝑅)

      （3） 

3.3.1 Recovery of the attenuated signal amplitude 

Errors may also occur in a series of postprocessing operations of GRACE gravity field data 

(Klees R 2006), such as spherical harmonic expansion, spatial filtering (decorrelation filtering, fan 

filtering, etc.), which will cause leakage of the signal (Feng et al., 2017). Researchers have used 

several methods to address these errors. One is to simulate TWS through hydrological models and 

then perform postprocessing, consistent with GRACE to estimate signal leakage, which generally 

depends on the accuracy of hydrological models (Klees R 2006; Longuevergne et al., 2010). The 

other is the widely used scale factor method that employs the hydrological model to estimate the 

leakage ratio of a GRACE postprocessing step, which has been used to restore the real signal and 

reduce the dependence on the hydrological model to some extent. When the signal distribution in 

the research area is relatively uniform, the effect is better (Feng et al., 2017; Matthew, Isabella, & 

Famiglietti, 2009; Swenson & Wahr, 2007; Zhen et al., 2018). In addition, the regional mass 

change evaluation method based on spatial constraints is also applied to eliminate GRACE 

postprocessing errors (Feng et al., 2017; Jacob, Wahr, Pfeffer, & Swenson, 2012). Because some 

scholars obtained better inversion results using a single scale factor in the medium-scale research 

area (W. LI et al., 2018), the scale factor method was adopted to reduce the leakage error in this 

paper. Considering the seasonal characteristics and changing trend characteristics of the time 

series of TWS, STL decomposition was applied to the time series data before and after the 

filtering of TWS obtained by GLDAS, and the scale factors of a trend term and seasonal term 

(defined as double scale factors here) were calculated to recover the loss of signals. The scale 

factors of trend component and seasonal component are 1.14 and 1.05, respectively, and are used 

to recover GLDAS-derived TWS. The result is shown in Figure 3. The R2 is approximately 0.99 

for the comparison between before and after recovery. Except for individual peaks, TWS is 

generally consistent before and after the filter, indicating that the use of double scale factors better 

recovers the signal amplitude attenuation of TWS. Thus, we used this method to reduce the effect 

of the filter on TWS in the experiment. 



 

Figure 3. GLDAS-derived TWS before and after recovery of the double scale factors. 

3.3.2 Water Balance 

 In the vertical direction, regional TWS includes surface runoff (SR), groundwater (GW), soil 

moisture (SM), melting water (including snow melting water (SW) and glacier melting water (G)), 

and the biological water content (Cao, Nan, & Cheng, 2015). The variation in the biological water 

content is relatively small and was ignored in the present study. Therefore, we did not consider the 

conversion process of SR, SM, GW, SW and G, and thus the changes in TWS in the study area 

were roughly measured by calculating changes in soil water (𝛥𝑆𝑀), groundwater (𝛥𝐺𝑊), runoff 

(𝛥𝑆𝑅), snow melting (𝛥𝑆𝑊) and glacier melting (𝛥𝐺). 

Furthermore, from the perspective of the water cycle, the variation in TWS 
𝑑𝑇𝑤𝑠

𝑑𝑡
 can also be 

denoted by changes in precipitation 𝛥𝑃, evaporation 𝛥𝐸𝑇 and runoff 𝛥S𝑅 (Chao & Wang, 2017; 

D. Yang, Yang, & Lei, 2014). Considering the extensive snow and ice cover in the study area, 

snow melt water (SW) and glacier melt water (G) must be considered. The hydropower stations of 

Nujiang and Lancangjiang are mainly concentrated in the middle and lower reaches of the basins; 

hence, reservoir filling in the study area does not exert an effect on the results. Although a plan to 

established eight hydropower stations in the upper reach of Jinshajiang has been proposed, only 

three have been implemented up to 2016 and the scale is relatively small. For Bramhmaputra, no 

large reservoir is located in the study area. Therefore, the impacts of reservoirs in the study area 

have been ignored. Additionally, after ignoring some subtle hydrological processes, 
𝑑𝑇𝑤𝑠

𝑑𝑡
 was 

calculated using formula (4). These variables and temperature are the main parameters used to 

analyze the changes in TWS. 

𝑑𝑇𝑤𝑠

𝑑𝑡
= 𝛥𝑃 + 𝛥𝑆𝑊 + 𝛥𝐺 − 𝛥𝐸𝑇 − 𝛥𝑆𝑅                        (4) 

4 Results  

4.1 The overall trend of TWS in EQTP 

 Using the TWS inversion methods described in section 3.3, the GRACE data were processed 

to obtain the water storage EWT of EQTP. As shown in Figure 4, the TWS showed a decreasing 

trend from 2002 to 2016, with an approximate rate -0.15 mm/m, but showed an increasing trend 

from 2002 to 2005, with an approximate rate 0.89 mm/m. The time series was decomposed to the 

trend item, seasonal item and residual item with STL to refine the characteristics of TWS. The 

seasonal variation in TWS was distinguished from the decomposed signal, which showed 



substantial annual losses in winter and spring and the largest annual surpluses in summer and 

autumn. Its amplitude was maintained at ±50 mm, and no significant interannual variation in the 

seasonal characteristics was observed. The characteristics of changes in the trend term was 

basically consistent with the overall change in TWS, indicating that the change in TWS mainly 

depends on the trend term. The residual term of TWS reflects the characteristics of TWS 

fluctuations and is the most powerful evidence for drought or flood events in the region. No 

obvious pattern of fluctuations in TWS was observed, but obvious abnormal signals were detected, 

such as in the spring of 2003 and 2004, the winter of 2006 and 2015, etc. We counted the annual 

fluctuations in TWS to more intuitively show the surplus and deficits in TWS, and the results are 

shown in Table 1. In general, except for individual years, the loss of the water storage capacity is 

greater than 35 mm, resulting in a drying condition; however, the surplus of water reserves is 

maintained at greater than 30 mm. These findings are consistent with the characteristics of a 

dry-hot valley. Regarding the balance of TWS, losses were observed for 7 years from 2003 to 

2015, particularly in 2004, 2006 and 2011. According to the statistics from the China 

Meteorological Disaster Yearbook issued by the China Meteorological Administration, the drought 

in the northern Yunnan and southeastern Tibet was severe in these years, and the agriculture and 

animal husbandry were substantially affected. Therefore, we affirmed that the losses of TWS in 

these years were related to droughts. From the peak of TWS surplus and deficit, except for 2003, 

2004, 2008, 2010 and 2015, the largest losses in other years appeared in the summer and autumn, 

results that are completely opposite to the seasonal variation in TWS. We speculated that in these 

years, the study area experienced a certain degree of drought. More interestingly, in 2012 and 

2014, the maximum deficit and maximum surplus appeared only one month apart, which may be 

caused by the lag of heavy precipitation on regional soil moisture supplementation. 

 

Figure 4. GRACE-derived TWS time series and characteristics of its composition. 

Table 1 Characteristics of fluctuations in TWS 

year Surplus(mm) Deficit(mm) Budget(mm) max surplus date max deficit date 

2003 52.47  42.29  10.19  2003-06 2003-04 

2004 37.04  57.37  -20.33  2004-07 2004-03 



2005 77.00  47.87  29.13  2005-05 2005-07 

2006 59.49  92.48  -32.98  2006-12 2006-08 

2007 40.19  44.85  -4.66  2007-02 2007-07 

2008 53.39  19.75  33.64  2008-11 2008-01 

2009 39.58  48.67  -9.10  2009-08 2009-06 

2010 42.57  43.04  -0.47  2010-06 2010-02 

2011 30.49  50.38  -19.90  2011-06 2011-09 

2012 49.15  37.38  11.77  2012-08 2012-07 

2013 52.56  36.87  15.69  2013-08 2013-10 

2014 42.84  42.45  0.39  2014-07 2014-06 

2015 58.58  65.55  -6.97  2015-10 2015-12 

 

4.2 Spatial differences in TWS in EQTP 

To understand the spatial differentiation of TWS in EQTP, we next performed a grid-to-grid 

process to obtain the long-term trend, which is defined as monthly average rate of TWS change 

(TWS) here. As shown in Figure 5, overall, the spatial variation rate of TWS ranged from -0.94 to 

0.91 mm/m (the loss in local areas exceeded 1.4 mm/m). The spatial differences were significant. 

The southwest direction showed a large decreasing trend (defined as R1, the blue line frame in 

Figure 5), which is mainly the flow area of Brahmaputra River, and the north direction showed an 

increasing trend (defined as R2, the yellow line frame in Figure 5), particularly in the area 

recognized as the source of the Jinshajiang Basin. TWS in the central and eastern parts of the 

study area (defined as R3, between the blue line and the yellow line in Figure 5) changed slightly 

and generally maintained a balance. In addition, TWS in the middle and lower reaches of the 

TPRB experienced a significant loss that was largely related to unique topography of a typical 

dry-hot valley. This loss has led to frequent large-scale drought events in recent years. In TPRB, 

the overall performance of the Jinshajiang Basin was an increasing trend with a rate of 0.19 mm/m, 

and a weak downward trend was observed downstream of the basin. The headstream of the 

Lancangjiang Basin showed a slight increase in TWS; nevertheless, the TWS of the whole basin 

generally decreased at a rate of 0.28 mm/m. Nujiang Basin experienced a vast deficit in TWS and 

its negative change rate reached 0.49 mm/m.  



 

Figure 5. Map of the spatial distribution of changes in TWS in EQTP. The study area is divided 

into 3 parts by the yellow line and blue line, which are defined as R2, R3 and R1 from north to 

south, respectively. 

5 Discussion 

5.1 Partitioning components in TWS dynamics 

Due to the limited amount of measured data, data from hydrological models were used to 

further explore the characteristics of variations in each component of TWS. Among these models, 

SM adopts data from the GLDAS-NOAH model, SR adopts data from the GRUN model, and GW 

uses WGHM results. As shown in Figure 6, the regional GW does not display an obvious trend of 

change, consistent with the results reported by Feng and colleagues (Feng et al., 2018), who 

showed that GW is not the main component contributing to the regional change in TWS. The 

change in SW tends to be 0, which is mainly because the snow and ice in the area are mainly 

concentrated in the upstream areas of the basins, and the area covered by ice and snow is much 

smaller than total area of EQTP. Regarding the whole area, the contribution of SW to changes in 

TWS is small, but the amount of change is generally greater than 0 (approximately 0-2 mm), 

particularly after 2011, indicating that the snow melt in basins is increasing. A continuous time 

series data representation for the change in glacier melt water is not available. However, according 

to previous studies, the glacier in EQTP has shown a negative mass balance in recent years, 

namely, the glacier melt water is increasing (Berthier, Cabot, Vincent, & Six, 2016; Kääb, 

Treichler, Nuth, & Berthier, 2015; Zhou, Li, Li, Zhao, & Ding, 2018). The changes in SR and SM 

are basically consistent with TWS, particularly after 2011, when the change in SM is larger. 

Therefore, SM is the main component of TWS. SM is a necessary condition for the survival and 

growth of regional plants. Drought occurs once SM is unable to meet the needs of plant growth. In 

2009-2014, southwestern China, particularly in the Yunnan-Guizhou Plateau, continued to 

experience a drought (RONG Yanshu, 2018), and the drought was most severe in 2010. As shown 

in Figure 6, the extent to which the SM decreased during this period was large. Consequently, we 

inferred that the drought during this period was mainly caused by insufficient soil moisture. 



Notably, in the southwestern drought in 2010, the reduction in TWS was large, while SM did not 

fluctuate substantially, and its rapid decrease occurred in early 2011. This difference may be 

caused by the lag effects of precipitation and evaporation on soil moisture. The decrease in the soil 

water content in 2011-2015 is greater than TWS. According to Zhang, an increase in the surface 

temperature enhanced regional evaporation, so the strengthened drought during the period (Zhang, 

Wang, Huang, Hao, & Duan, 2015). At the same time, due to the increasing temperature, the 

melting of glaciers was accelerated. Thus, we speculated that the acceleration of glacial ablation 

and the increase in evaporation partially contributed to the changes in TWS in the southwest of the 

region. 

 

Figure 6. Trends of changes in TWS and its components  

5.2 Attributes of spatial heterogeneity in TWS 

In this section, we analyze the causes of spatial differences in water reserves based on 

changes in precipitation, evaporation, melt water from ice and snow, runoff, etc. The TWS in R3 

remained stable and will not be discussed here. We mainly analyzed the entire study area and 

zones R1 and R2.  

Based on the results described above, the loss rate of the entire region was 0.15 mm/m for the 

study period. As the change in SW tends to be 0, the contributions of precipitation, evaporation 

and runoff to TWS are mainly discussed here. The variability in evaporation in the region is 

0.0876 mm/m, the variability in precipitation is -0.0334 mm/m, and the variability in runoff is 

0.0078 mm/m (which was not considered a substantial change) (Figure 7(a)). According to 

formula (5), the regional glacial meltwater variability is -0.0212 mm/m. Because continuous time 

series data are not available to verify the glacial variability, this paper uses the results reported by 

Brun and colleagues (Brun, Berthier, Wagnon, Kaab, & Treichler, 2017) for validation. Brun 

reported a mass balance of representative glaciers in the study area of -0.62±0.23 m w.e.yr-1. 

Ignoring the inconsistency of glacial changes, we used -620 mm/yr for the water equivalent of the 

glacier changes in the study area. The area of glaciers in the study area is approximately 7342.79 

km2, as extracted by the Second Glacier Inventory Dataset of China (Version 1.0) (W. Guo et al., 

2015; Wanqin et al., 2014) , and the melting rate of glaciers in the study area is approximately 

calculated as -0.31 mm/m from the area ratio. We concluded that a substantial difference exists 

between the two results, and the rate of variations in glacial melt water in the study by Brun and 

colleagues is even higher than the TWS. One of the main explanations is that most of glacial melt 



water will flow into the lakes, particularly in EQTP with a large number of lakes, leading to a 

small regional mass loss caused by glacial melting. Therefore, from the perspective of the regional 

water balance, the results of this paper may better reflect the contribution of glaciers to the change 

in regional TWS. According to the variability of each parameter, the increase in evaporation is the 

main reason for the decrease in regional TWS (a contribution of approximately 53%), and the 

contributions of glacial ablation and reduced precipitation are approximately the same.  

R1 is the area displaying a severe TWS deficit, with a loss rate of -0.71 mm/m. As shown in 

Figure 7(b), the decrease in regional precipitation decreases and the increase in evaporation are 

similar to the entire region, except that the precipitation (-0.0930 mm/m) and the evaporation 

(0.1912 mm/m) exhibit higher variability. Moreover, regional runoff displays a decreasing trend, 

but the variation rate is small (-0.0026 mm/m) and can generally be ignored. Similarly, the 

variability in glacial meltwater calculated using formula (5) is approximately -0.43 mm/m. Based 

on the results reported by Brun et al., we concluded that the glacial melt variability in R1 is 

approximately -0.64 mm/m (the glacier area is 4368.836 km2, and the water equivalent of the 

glacial melt is 620 mm/yr). A noticeable difference is observed between the two results. 

One explanation for the difference is that the mass balance is quite different for different glaciers 

in this area, based on the mass balance observations reported by Yang and colleagues (W. Yang et 

al., 2010). When the upper limit of the error term of the result reported by Brun and colleagues is 

considered, the results are basically consistent with the calculated value reported in this paper. 

Based on the variability in each variable, glacial melting in R1 is the main reason for the decrease 

in TWS, and the contribution is 61%. Additionally, the increase in evaporation contributes 

substantially to the decrease in TWS. The decrease in precipitation exerts an insignificant effect on 

the reduction in TWS. 

R2 is the area showing an increase in TWS, with a rate of 0.49 mm/m. As shown in Figure 

7(c), although the regional precipitation and runoff increase and evaporation decrease, the extent 

of these changes is small. The contribution of the three parameters to the increase in TWS is no 

more than 5%. According to formula (5), the variability in glacial melt water is approximately 

0.46 mm/m, which is obviously inconsistent with the actual situation. Figure 1 shows the presence 

of many large lakes in R2. According to relevant research, the water volume of lakes in the 

Qinghai-Tibet Plateau has increased significantly in recent years, and many new lakes have 

appeared (X. Li et al., 2019). Therefore, the contribution of the increase in lake water storage to 

the change in TWS must be considered. Currently, detailed data are not available to obtain the 

amount of change in the water storage capacity of these lakes, and thus we can only speculate that 

the increase in TWS observed in this area is closely related to lake expansion. The recharge source 

of these lakes is mainly the glaciers in R2 and those located outside the study area, which 

indirectly shows that glacial changes contribute to the increase in TWS. Considering the 

mechanism of the production and convergence of glacial meltwater, we speculated that the rate of 

ablation of glaciers in this region is higher than in R1. In addition, in recent years, the depth of the 

frozen soil active layer on the Tibetan Plateau has significantly increased, and the freezing depth 



has decreased significantly (Peng, 2018; W. Zhang et al., 2015). From this perspective, the transfer 

of mass from the ablation of frozen soil around the study area may also affect the changes in TWS.  

In TPRB, the changes in TWS show different characteristics in sub-basins, which are caused 

by different factors. Thus, the dominant factor contributing to TWS fluctuations in each sub-basin 

is simply analyzed here. As shown in Table 2, the precipitation in three sub-basins of TPRB 

displays a decreasing trend, and both evaporation and runoff are increasing. Considering the 

low-level effects of snow and ice melt water, the increase in evaporation is the main cause of the 

decrease in TWS in Lancangjiang and Nujiang. In the Jinshajiang Basin, the variability in 

precipitation and evaporation is comparable. Based on a previous analysis, the expansion of lakes 

in this basin is a possible cause of the increasing TWS. After ignoring the change in snow melt 

water, the variability of glacial meltwater in the Lancangjiang and Nujiang Basins were calculated 

to be -0.13 mm/m and -0.27 mm/m, respectively. The change in TWS caused by the expansion of 

the lakes is unable to be deduced at present, and thus the variability in the melt water of the 

Jinshajiang Basin is not discussed here. The melting of glaciers exerts a substantial effect on the 

changes in TWS in two basins, particularly in the Nujiang Basin (the contribution rate to TWS is 

equivalent to the sum of precipitation, evaporation and runoff contribution rates). As the 

temperature of the whole region continues to increase, the melting of ice and snow will accelerate 

and the evaporation will substantially increase. We predict that the degree of dry conditions and 

heat in this area will become more obvious in the future, and the TWS will continue to decrease, 

which will substantially affect the production and living water available in TPRB. 

 

Figure 7. Time series of precipitation, evaporation and runoff in the entire study area (a), R1 (b) 

and R2 (c). 

Table 2. Rates of changes in precipitation, evaporation, runoff in the sub-basins of TPRB (unit: 

mm/m). 



Basins TWS 𝛥𝑃 𝛥𝐸 𝛥𝑆𝑅 𝛥𝐺 

Jinshajiang 0.19 -0.04 0.04 0.02 — 

Lancangjiang -0.28 -0.02 0.10 0.03 -0.13 

Nujiang -0.49 -0.06 0.15 0.01 -0.26 

 

5.3 Factors affecting the decrease in TWS in summer 

Based on the analysis described above, the increase in evaporation is the main cause of the 

decrease in TWS in EQTP during the study period. Additionally, the decrease in precipitation also 

contributes to the decrease to some extent. Generally, of all seasons, the highest levels of 

evaporation are observed in the northern regions during the summer (defined as June, July and 

August, and represented by Q3) (Su & Feng, 2015), when the study area is also significantly 

affected by the Indian Summer Monsoon. Therefore, in this section, we will discuss the changes in 

TWS in the northern region during the summer and the factors that substantially influence 

evaporation. Namely, whether the variations in air temperature, air humidity and wind speed 

converge with the characteristics of changes in evaporation. We will also analyze the variations in 

the Indian Summer Monsoon and its feedback effect on precipitation to analyze the factors that 

affect the change in TWS in the northern region during the summer. 

As shown in Figure 8, it’s observed that water deficit in summer dominates the annual trend 

in TWS in the northern region. Meanwhile, precipitation shows a decreasing trend that converges 

with the varying trends of TWS. Although the rate of decrease in precipitation is small, as the 

main component of the regional water reserves, this small decreasing rate slows the loss of TWS. 

Precipitation varies substantially in regions with complex topographic conditions, but based on the 

time series data, changes in precipitation are mainly affected by atmospheric conditions, and 

topographic and geomorphic features are only amplifiers of atmospheric conditions. In the 

northern region during summer, the study area is mainly affected by the Indian Summer Monsoon 

(Yao et al., 2017), and thus we used the Indian Monsoon Index (IMI) (B. Wang & Fan) to measure 

the relationship between the Indian Summer Monsoon and precipitation during the study period. 

In Figure 8, the IMI exhibits a decreasing trend, indicating that the IMI is weakening and the 

moisture brought by the Indian Summer Monsoon is decreasing during this period, which is a 

definite reason for the overall decrease in regional precipitation. Based on the characteristics of 

the change, IMI is more consistent with the change in TWS than the change in precipitation. After 

the summer of 2005, the Indian Summer Monsoon has weakened continuously, but the 

precipitation only decreased slightly with a larger interannual fluctuation in general, which was 

particularly large from 2011 to 2015. Thus, the weakening of the Indian Summer Monsoon is not 

the main cause of the decrease in precipitation in EQTP, which requires further research and we 

will not delve into this topic in the present study. However, we speculate that the increases in 

summer temperature and evaporation (Figure 9), together with the changes in underlying surface 

in the region (the decrease in vegetation cover caused by human activities and the decrease in 

glacier cover area caused by warming in the region, etc.), result in a decrease in the atmospheric 

water vapor content, which may be another explanation for the regional decrease in precipitation. 

As shown in Figure 9, evaporation is the main factor contributing to the decrease in TWS and 

increased significantly in summer, with a higher trend than observed throughout the year. Based 

on these findings, the regional decrease in TWS that is mainly observed in summer is generally 



controlled by the increase in evaporation. To clarify the reasons for the increasing evaporation in 

summer, we selected the meteorological elements with a greater impact on evaporation in the 

region and analyzed their changes. Generally, during the study period, the air temperature 

increased, the wind speed increased, and the air humidity decreased, consistent with the variation 

in evaporation in the region. Air temperature, wind speed and relative humidity all contribute to 

the increase in evaporation in some extent. In terms of the rate of change, the change in relative 

humidity has the greatest contribution to the evaporation, followed by the wind speed. However, 

the relative humidity is also affected by the changes in temperature and air pressure. Therefore, the 

extent of the contributions of the three factors to evaporation is difficult to determine. 

Nevertheless, in terms of the fluctuations, we determined that changes in temperature were the 

most consistent with changes in evaporation, indicating that changes in temperature are the factor 

with the greatest direct effect on evaporation. As shown in Figure 9, the change in regional 

evaporation is consistent with the change in TWS, but the temperature is consistent with TWS due 

to a lag. Regarding the points at which evaporation and temperature changed in the time series 

data, asynchronous correlations were observed between two variables as well, indicating that the 

temperature change exerted a certain lag effect on evaporation. 

 

Figure 8. Changes in TWS, precipitation and IMI in summer.

 

Figure 9. Changes in evaporation, relative humidity, temperature and wind speed in summer. 

6 Conclusions 



 Natural disasters, such as droughts and floods, in EQTP are closely related to changes in 

TWS. In response to these changes, the paper uses data from multiple sources to invert the TWS 

and determine the characteristics of its changes. The characteristics of the temporal and spatial 

variations in TWS and their correlations with regional drought events were quantitatively analyzed. 

Moreover, we clarified the reasons for the spatiotemporal differences in TWS. Overall, we have 

obtained the conclusions listed below.  

 (1) Overall, from 2002 to 2016, the TWS in EQTP shows a slight decreasing trend, and the 

spatial differences are significant. The spatial change rate ranges from -0.94 to 0.91 mm/m, and 

shows a decreasing trend in the southwest and an increasing trend in the north. Although the TWS 

decreased overall, an increasing trend was observed from 2002 to 2005, with a rate of 0.89 mm/m. 

In addition, the seasonal changes in TWS are remarkable, with an amplitude of ±50 mm. The 

effective signals intuitively reflect the fluctuations in the income and expenditure for TWS. Based 

on the statistical analyses, except for individual years, the loss of TWS exceeds 35 mm/yr. In 2004, 

2006 and 2011, the TWS experienced serious losses. In the years when droughts occurred, TWS 

was abnormally fluctuating. Among the subbasins, the Nujiang Basin experienced a substantial 

loss of TWS; Jinshajiang Basin had a surplus of TWS, particularly in the source area and its 

northwest direction; the Lancangjiang Basin basically maintains a balance of water reserves; and 

the Brahmaputra Basin in the study area is the area with the most serious loss. 

(2) ΔSM is the main component of TWS, and the characteristics of the variation in this 

parameter are the same as TWS. In the whole region, ΔSR, ΔGW and ΔSW exert little effect on 

TWS, and the contribution of ΔG is unclear because of the lack of available continuous glacier 

change data. From 2006 to 2015, SM was in a loss state, and ΔGW and ΔSW changed more than 0 

in the corresponding period. Consequently, the continuous decrease in SM was the main cause of 

the drought event during this period. Although the contribution of ΔSW to the change in TWS is 

small, it presents distinct peaks during the dry season that are related to the negative mass balance 

of glaciers. GW fluctuates substantially during the dry season, particularly in the years of 

persistent droughts, indicating that the occurrence of drought disasters exerts a greater impact on 

regional GW. The effect of ΔSR on the change in TWS is somewhat different in each sub-basin. 

 (3) In terms of the factors controlling the changes in TWS, the increase in evaporation is the 

dominant factor contributing to the decrease in TWS in EQTP (a contribution of approximately 

53%), while the contributions of glacial ablation and reduced precipitation to changes in TWS are 

basically equivalent. In the area where water reserves are increasing (region 2), evaporation plays 

a leading role in contributing to changes in TWS among precipitation, evaporation and runoff, but 

the total contribution of the three factors is relatively low. We speculated that expansion of lakes 

replenished by glaciers is the main reason for the change in regional TWS. In the area (R1) 

displaying a loss of TWS, glacier ablation is the main contributing factor (a contribution of 

approximately 61%). Additionally, evaporation has more significant contribution than 

precipitation, although the increase in evaporation and the decrease in precipitation affect the 

decrease in TWS.  



(4) The decrease in TWS mainly occurs in summer. The increase in evaporation in summer is 

the main cause of the decrease in TWS. Additionally, the decrease in precipitation, which serves as 

the input of TWS, also plays a role. The increase in evaporation in summer is the result of an 

increase in temperature, an increase in wind speed and a decrease in relative humidity. The Indian 

Monsoon exerts a certain effect on the decrease in summer precipitation, but the dominant factor 

contributing to the decrease requires further study. 

(5) The application of GRACE-derived TWS combined with accurate precipitation, 

evaporation, runoff and other data allowed us to indirectly estimate the glacier mass balance in the 

basin, but the accuracy of the results largely depends on completely separating the effects of 

underlying surface factors of the basin, such as lakes, reservoirs and permafrost. 
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