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Abstract

This paper aims to construct new mixed-type periodic and lump-type solutions via

the dependent variable transformation and the Hirota’s bilinear form (general bilinear

techniques). This study will be investigated by considering the (3+1)-dimensional gen-

eralized B-type Kadomtsev-Petviashvili equation which describes the weakly dispersive

waves in a homogenous medium in fluid dynamics. The obtained solutions contain

abundant physical structure. Consequently, the dynamical behaviors of these solutions

are graphically discussed for different choices of the free parameters through 3D- and

contour plots.
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1 Introduction

Nonlinear phenomena are investigated in many disciplines of the science, such as the

marine engineering, fluid dynamics, plasma physics, chemistry, applied mathematics and so

on [1-6]. With the development of nonlinear dynamics, the research of nonlinear partial

differential equations (NPDEs) become more and more important. To further understand

these phenomena, solving NPDEs plays a significant role in nonlinear sciences [7-16]. In the

past few decades, many efficient and powerful techniques have been introduced to obtain the

analytical solutions of these equations [17-28].

In this paper, a (3+1)-dimensional generalized B-type Kadomtsev-Petviashvili (BKP)

equation is considered as follows [29]:

uyt + 3uxz − 3ux uxy − 3uy uxx − uxxxy = 0. (1)

Eq.(1) is an exceedingly used model for assaying the dynamics of nonlinear waves and solitons

in various fields of science especially in plasma physics, weakly dispersive environment, and

fluid dynamics. Multiple-soliton solutions are generated and discussed by Ma [29]. Ma

and Zhu [30] derived multiple wave solutions by using the multiple exp-function algorithm.

Tang [31] obtained new analytical solutions which contain different wave structures such as

periodic soliton, kinky periodic solitary, and periodic soliton solutions by using the extended

homoclinic test approach. By employing the improved (G′/G)-expansion method with the

aid of symbolic computation, Liu and Zeng [32] obtain new soliton solutions of the Eq. (1).

The organization of this paper will be arranged as: Section 2 gives the new mixed-

type periodic solutions for the (3+1)-dimensional generalized BKP equation based on the

dependent variable transformation and Hirota’s bilinear form. Section 3 presents the lump-

type solutions and illustrates the dynamical behaviors of the obtained solutions through 3D-

and contour plots. Section 4 makes the conclusions.
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2 New mixed-type periodic solutions

In Substituting the transformation u = 2 [ln ξ(x, y, z, t)]x into Eq.(1), we have the follow-

ing Hirota’s bilinear form [33-37]

(DtDy −D3
xDy + 3DxDz)f · f = 0 (2)

Equivalently, we have

− ξtξy + ξxxxξy − 3ξzξx − 3ξxyξxx + 3ξxξxxy + ξ (ξyt + 3ξxz − ξxxxy) = 0. (3)

In order to obtain the new mixed-type periodic solutions, a direct test function is written as

ξ = k1 e
ζ1 + e−ζ1 + k2 tan (ζ2) + k3 tanh (ζ3) , (4)

where ζi = ηi x + µi y + γi z + νi t, i = 1, 2, 3 and ηi, µi, γi, νi are unknown constants. Sub-

stituting Eq.(4) into Eq.(3), we have

Case(1)

k2 = µ1 = γ1 = η3 = ν3 = 0, ν1 =
η3

1µ3 − 3η1γ3

µ3

, (5)

where η1, γ3, µ3, k1 and k3 are arbitrary constants. Then

ξ = e
xη1+

t(η31µ3−3η1γ3)
µ3 k1 + e

−xη1−
t(η31µ3−3η1γ3)

µ3 + k3 tanh (yµ3 + zγ3) . (6)

Substituting Eq.(6) into u = 2 [ln ξ]x, the first mixed-type periodic solution is read as

u1 =
2[e

xη1+
t(η31µ3−3η1γ3)

µ3 k1η1 − e−xη1−
t(η31µ3−3η1γ3)

µ3 η1]

e
xη1+

t(η31µ3−3η1γ3)
µ3 k1 + e

−xη1−
t(η31µ3−3η1γ3)

µ3 + k3 tanh (yµ3 + zγ3)

. (7)

The physical structure of Eq.(7) is exhibited in Fig. 1.
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(a) (b) (c)

Fig. 1. Solution (7) at k1 = k3 = −0.5, η1 = −1, µ3 = 1 γ3 = 1, z = −2,

(a) x = −10, (b) x = 0, (c) x = 10.

Case(2)

k3 = µ1 = γ1 = η2 = ν2 = 0, ν1 =
η3

1µ2 − 3η1γ2

µ2

, (8)

where η1, γ2, µ2, k1 and k2 are free real constants. Then

ξ = e
xη1+

t(η31µ2−3η1γ2)
µ2 k1 + e

−xη1−
t(η31µ2−3η1γ2)

µ2 + k2 tan (yµ2 + zγ2) . (9)

Substituting Eq.(9) into u = 2 [ln ξ]x, the second mixed-type periodic solution is read as

u2 =
2[e

xη1+
t(η31µ2−3η1γ2)

µ2 k1η1 − e−xη1−
t(η31µ2−3η1γ2)

µ2 η1]

e
xη1+

t(η31µ2−3η1γ2)
µ2 k1 + e

−xη1−
t(η31µ2−3η1γ2)

µ2 + k2 tan (yµ2 + zγ2)

. (10)

Case(3)

k1 = µ1 = γ1 = η2 = ν2 = η3 = ν3 = 0, ν1 =
η3

1µ2 − 3η1γ2

µ2

, γ3 =
µ3γ2

µ2

, (11)

where η1, γ2, µ2, µ3, k2 and k3 are free real constants. Then

ξ = k2 tan (yµ2 + zγ2) + e
−xη1−

t(η31µ2−3η1γ2)
µ2 + k3 tanh

(
yµ3 +

zγ2µ3

µ2

)
. (12)

Substituting Eq.(12) into u = 2 [ln ξ]x, the third mixed-type periodic solution is read as

u3 =
−2e

−xη1−
t(η31µ2−3η1γ2)

µ2 η1

k2 tan (yµ2 + zγ2) + e
−xη1−

t(η31µ2−3η1γ2)
µ2 + k3 tanh

(
yµ3 + zγ2µ3

µ2

) . (13)
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The physical structure of Eq.(13) is revealed in Figs. 2-4.

(a) (b) (c)

Fig. 2. Solution (13) at k3 = k2 = −0.5, η1 = µ2 = µ3 = 1, γ2 = −1, x = 0,

(a) y = −20, (b) y = 0, (c) y = 20.

(a) (b) (c)

Fig. 3. Solution (13) at k3 = k2 = −0.5, η1 = µ2 = µ3 = 1, γ2 = −1, x = 0,

(a) t = −1, (b) t = 0, (c) t = 1.

(a) (b) (c)

Fig. 4. Solution (13) at k3 = k2 = −0.5, η1 = µ2 = µ3 = 1, γ2 = −1, z = 0,

(a) t = −2, (b) t = 0, (c) t = 2.
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Case(4)

k1 = η2 = ν2 = η3 = ν3 = 0, ν1 =
η3

1µ1 − 3η1γ1

µ1

, γ2 =
µ2γ1

µ1

, γ3 =
µ3γ1

µ1

, (14)

where η1, µ1, γ1, µ2, µ3, k2 and k3 are free real constants. Then

ξ = k2 tan

(
yµ2 +

zγ1µ2

µ1

)
+ k3 tanh

(
yµ3 +

zγ1µ3

µ1

)
+ e

−xη1−yµ1−zγ1−
t(η31µ1−3η1γ1)

µ1 . (15)

Substituting Eq.(15) into u = 2 [ln ξ]x, the fourth mixed-type periodic solution is read as

u4 = [−2e
−xη1−yµ1−zγ1−

t(η31µ1−3η1γ1)
µ1 η1]/[k2 tan

(
yµ2 +

zγ1µ2

µ1

)
+ e

−xη1−yµ1−zγ1−
t(η31µ1−3η1γ1)

µ1 + k3 tanh

(
yµ3 +

zγ1µ3

µ1

)
]. (16)

The physical structure for the solution in Eq.(16) is similar to that one given by Eq.(13).

Case(5)

k2 = k3 = 0, ν1 =
4η3

1µ1 − 3η1γ1

µ1

, (17)

where η1, γ1, µ1 and k1 are free real constants. Substituting these results into (4), we have

ξ = e
xη1+yµ1+zγ1+

t(4η31µ1−3η1γ1)
µ1 k1 + e

−xη1−yµ1−zγ1−
t(4η31µ1−3η1γ1)

µ1 . (18)

Substituting Eq.(18) into u = 2 [ln ξ]x, the fifth mixed-type periodic solution is read as

u5 = 2[e
xη1+yµ1+zγ1+

t(4η31µ1−3η1γ1)
µ1 k1η1 − e−xη1−yµ1−zγ1−

t(4η31µ1−3η1γ1)
µ1 η1]

/ [e
xη1+yµ1+zγ1+

t(4η31µ1−3η1γ1)
µ1 k1 + e

−xη1−yµ1−zγ1−
t(4η31µ1−3η1γ1)

µ1 ]. (19)

The physical structure of Eq.(19) is demonstrated in Fig. 5.
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(a) (b) (c)

Fig. 5. Solution (19) at γ1 = −1, η1 = µ1 = 1, k1 = −2, z = 20, (a) t = −2,

(b) t = 0, (c) t = 2.

Case(6)

k1 = k3 = η2 = µ2 = 0, ν1 =
η3

1µ1 − 3η1γ1

µ1

, ν2 = −3η1γ2

µ1

, (20)

where η1, γ1, γ2, µ1 and k2 are free real constants. Then

ξ = k2 tan

(
zγ2 −

3tη1γ2

µ1

)
+ e

−xη1−yµ1−zγ1−
t(η31µ1−3η1γ1)

µ1 . (21)

Substituting Eq.(21) into u = 2 [ln ξ]x, the sixth mixed-type periodic solution is read as

u6 = − 2e
−xη1−yµ1−zγ1−

t(η31µ1−3η1γ1)
µ1 η1

k2 tan
(
zγ2 − 3tη1γ2

µ1

)
+ e

−xη1−yµ1−zγ1−
t(η31µ1−3η1γ1)

µ1

. (22)

The physical structure of Eq.(22) is shown in Fig. 6.
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(a) (b) (c)

Fig. 6. Solution (22) at η1 = µ1 = 1, γ1 = −1, γ2 = k2 = −2, y = 2,

(a) x = −20, (b) x = 0, (c) x = 20.

Case(7)

k1 = k2 = η3 = µ3 = 0, ν1 =
η3

1µ1 − 3η1γ1

µ1

, ν3 = −3η1γ3

µ1

, (23)

where η1, γ1, γ3, µ1 and k3 are free real constants. Then

ξ = k3 tanh

(
zγ3 −

3tη1γ3

µ1

)
+ e

−xη1−yµ1−zγ1−
t(η31µ1−3η1γ1)

µ1 . (24)

Substituting Eq.(24) into u = 2 [ln ξ]x, the seventh mixed-type periodic solution is read as

u7 = − 2e
−xη1−yµ1−zγ1−

t(η31µ1−3η1γ1)
µ1 η1

k3 tanh
(
zγ3 − 3tη1γ3

µ1

)
+ e

−xη1−yµ1−zγ1−
t(η31µ1−3η1γ1)

µ1

. (25)

The physical structure of Eq.(25) is listed in Fig. 7.

(a) (b) (c)

Fig. 7. Solution (25) at η1 = µ1 = 1, γ1 = −1, γ3 = k3 = −2, x = 20,

(a) y = −20, (b) y = 0, (c) y = 20.
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3 Lump-type solutions

To derive the lump-type solutions of the Eq.(1), we have

ξ = (t~4 + x~1 + y~2 + z~3 + ~5) 2 + (t~9 + x~6 + y~7 + z~8 + ~10) 2

+ ~11 + κ1e
tΞ4+Ξ5+Ξ1x+Ξ2y+Ξ3z + κ2e

−tΞ4−Ξ5−Ξ1x−Ξ2y−Ξ3z, (26)

where ~i(i = 1, · · · , 11), κi(i = 1, 2) and Ξi(1, · · · , 5) are unknown constants. Substituting

Eq.(26) into Eq.(3), the values of the unknown parameters in Eq.(26) are obtained as follows

(I) : ~7 =
~2~6

~1

, ~8 =
~3~6

~1

,Ξ3 =
Ξ2Ξ3

1 + 2Ξ2Ξ4

3Ξ1

, κ2 =
(~2

1 + ~2
6) 2

κ1Ξ4
1

,

Ξ4 = −Ξ3
1

2
− 3Ξ1~3

~2

, ~4 = −3~1~3

~2

, ~9 = −3~3~6

~2

,Ξ2 = −Ξ1~2

~1

, (27)

with ~1 6= 0, ~2 6= 0, Ξ1 6= 0, κ1 6= 0.

(II) : ~7 = −~1~2

~6

, ~8 =
~2~4

3~6

,Ξ1 = Ξ4 = 0, ~9 = −3~3~6

~2

,

Ξ3 =
Ξ2~3

~2

, ~4 = −3~1~3

~2

, (28)

with ~2 6= 0, ~6 6= 0.

(III) : ~8 =
3~1~2~3 + 3~6~7~3 + ~4 (~2

2 + ~2
7)

3~2~6 − 3~1~7

,Ξ2 =
Ξ1ε1

√
~2

2 + ~2
7√

~2
1 + ~2

6

,

~9 =
3~3~2

1 + ~2~4~1 + ~6 (3~3~6 + ~4~7)

~1~7 − ~2~6

,Ξ3 =
Ξ2Ξ3

1 + 2Ξ2Ξ4

3Ξ1

,

~11 =
3κ1κ2Ξ2Ξ3

1 + 3 (~2
1 + ~2

6) (~1~2 + ~6~7)

3~1~3 + ~2~4

,

Ξ4 =

3Ξ4
1(Ξ1~2(~22+~27)+Ξ2(~1(~27−~22)−2~2~6~7))

Ξ2
1(~22+~27)−2Ξ2Ξ1(~1~2+~6~7)+Ξ2

2(~21+~26)
− 2Ξ3

1~2 − 3Ξ1~3

~2

,

~4 =

3

(
Ξ3
1Ξ2(~2~6−~1~7)2

Ξ2
1(~22+~27)−2Ξ2Ξ1(~1~2+~6~7)+Ξ2

2(~21+~26)
− ~1~3

)
~2

, (29)
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with ~2 6= 0, Ξ1 6= 0, 3 ~1~3 + ~2~4 6= 0, ε1 = ±1, ~2~6 − ~1~7 6= 0, ~2
1 + ~2

6 6= 0.

(IV ) : ~7 = −~1~2

~6

, ~8 =
~2~4

3~6

, ~4 =
3Ξ3

1Ξ2~2 (~2
1 + ~2

6)

Ξ2
1~2

2 + Ξ2
2~2

6

− 3~1~3

~2

,

Ξ3 =
Ξ2Ξ3

1 + 2Ξ2Ξ4

3Ξ1

, ~9 = −3~3~6

~2

, ~11 =
2κ1κ2Ξ2

1

~2
1 + ~2

6

,

Ξ4 = −2Ξ3
1 +

3Ξ4
1~2 (Ξ1~2 + Ξ2~1)

Ξ2
1~2

2 + Ξ2
2~2

6

− 3Ξ1~3

~2

,Ξ2 =
ε2Ξ1~2

~6

, (30)

with ~2 6= 0, ~6 6= 0, ~2
1 + ~2

6 6= 0, ε2 = ±1.

(V ) : ~7 = −~1~2

~6

, ~8 =
~2~4

3~6

,Ξ2 = Ξ3 = 0, ~9 = −3~3~6

~2

,

Ξ4 = Ξ3
1 −

3Ξ1~3

~2

, ~4 = −3~1~3

~2

, (31)

with ~2 6= 0, ~6 6= 0.

(V I) : ~7 = −~1~2

~6

, ~8 =
~2~4

3~6

,Ξ3 = 0, ~9 = −3~3~6

~2

,

Ξ4 = Ξ3
1 −

3Ξ1~3

~2

, ~4 = −3~3~6 (~1 + ~6)

~2 (~6 − ~1)
,

Ξ2 =
Ξ1~2~3

Ξ2
1~2 (~1 − ~6)− ~3~6

,

Ξ1 =
ε3
√

2
√

~2
1 + ~2

6

√
~23~26(~21+~26)

(~1−~6)2√
~2~3~6(~21+~26)2

~1−~6

, (32)

with ~2 6= 0, ~6 6= 0, ~1 6= ~6, ε3 = ±1. Substituting Eq.(27)-Eq.(32) into the variable

substitution u = 2 [ln ξ]x, six lump-type solutions can be derived.

As an example, substituting Eq.(26) and Eq.(27) into the variable substitution u =

10



2 [ln ξ]x, the lump-type solution of Eq.(1) can be written as follows

u = [2[−
(~2

1 + ~2
6) 2 exp[Ξ1

(
3t~3
~2 − x+ y~2+z~3

~1

)
+

Ξ3
1(t~1+z~2)

2~1 − Ξ5]

κ1Ξ3
1

+ κ1Ξ1 exp[Ξ1

(
−3t~3

~2

+ x− y~2 + z~3

~1

)
− Ξ3

1 (t~1 + z~2)

2~1

+ Ξ5]

+ 2~1[~1

(
x− 3t~3

~2

)
+ y~2 + z~3 + ~5] + 2~6[~10 + ~6(−3t~3

~2

+ x

+
y~2 + z~3

~1

)]]]/[~11 + κ1 exp[Ξ1

(
−3t~3

~2

+ x− y~2 + z~3

~1

)
− Ξ3

1 (t~1 + z~2)

2~1

+ Ξ5] + [
(
~2

1 + ~2
6

)
2 exp[Ξ1

(
3t~3

~2

− x+
y~2 + z~3

~1

)
+

Ξ3
1 (t~1 + z~2)

2~1

− Ξ5]]/(κ1Ξ4
1) + [~1

(
x− 3t~3

~2

)
+ y~2 + z~3 + ~5]2

+ [~6

(
−3t~3

~2

+ x+
y~2 + z~3

~1

)
+ ~10]2], (33)

with the constraint ~1 6= 0, ~2 6= 0, Ξ1 6= 0 and κ1 6= 0.

To analyze the dynamical behaviors for solution (33), the values of parameters are selected

as follows

~1 = ~5 = 2, ~2 = ~6 = −1, ~3 = 3,

~10 = ~11 = Ξ5 = 0,Ξ1 = −2, κ1 = 1. (34)

Substituting Eq.(34) into Eq.(33), the dynamical behaviors for solution (33) are shown in

Fig. 8 and Fig. 9.

(a) (b) (c)

Fig. 8. Dynamical behaviors for solution (33) with y = 0 when t = −2 in

(a) (d), t = 0 in (b) (e) and t = 2 in (c) (f).
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(a) (b) (c)

Fig. 9. Dynamical behaviors for solution (33) with y = 0 when x = −10 in

(a) (d), x = 0 in (b) (e) and x = 10 in (c) (f).

In Fig. 8, the interaction behavior between two solitary waves and a lump wave can be

found with t = −2; 0; 2 on the x−z plane. The interaction solutions reveal the characteristic

of “elastic collision", that is, two solitary waves and lump wave keep their shape and velocity

invariant in the process of transmission. Fig. 9 demonstrates the interaction behavior

between two solitary waves and a lump wave with x = −10; 0; 10 on the t− z plane.

4 Conclusion

Based on the dependent variable transformation and Hirota’s bilinear form, new mixed-

type and lump-type solutions of the (3+1)-dimensional generalized BKP equation are pre-

sented. Moreover, Figs. 1-7 show the dynamical behaviors for the mixed-type periodic

solution. Fig. 8 demonstrates the interaction behavior between two solitary waves and a

lump wave on the x − z plane, which describes the characteristic of “elastic collision". Fig.

9 reveals the interaction behavior between two solitary waves and a lump wave on the t− z

plane. As can be seen from the above solution process, the direct test function is very

effective for solving the mixed-type periodic solutions of NPDEs.

References

[1] Ma WX. lumps and their interaction solutions of (3+1)-dimensional linear PDEs. J.

Geom. Phys. 2018;133:10-16.

12



[2] Tang YN, Tao SQ, Guan Q. Lump solitons and the interaction phenomena of them for

two classes of nonlinear evolution equations. Nonlinear Dyn. 2017;89:429-442.

[3] Wazwaz AM, Osman MS. Analyzing the combined multi-waves polynomial solutions in

a two-layer-liquid medium. Comput. Math. Appl. 2018;76(2):276-283.

[4] Wazwaz AM. Two new integrable Kadomtsev-Petviashvili equations with time-

dependent coefficients: multiple real and complex soliton solutions. Wave. Random.

Complex. 2018. DOI: 10.1080/17455030.2018.1559962.

[5] Wazwaz AM. A variety of multiple-soliton solutions for the integrable (4+1)-dimensional

Fokas equation. Wave. Random. Complex. 2018. DOI: 10.1080/17455030.2018.1560515.

[6] Wazwaz AM. Painlevé analysis for a new integrable equation combining the modified

Calogero-Bogoyavlenskii-Schiff (MCBS) equation with its negative-order form. Nonlin-

ear Dyn. 2018;91(2):877-883.

[7] Osman MS, Machado JAT. The dynamical behavior of mixed-type soliton solutions

described by (2+ 1)-dimensional Bogoyavlensky-Konopelchenko equation with variable

coefficients. J. Electromagnet. Wave. 2018;32(11):1457-1464.

[8] Wazwaz AM., Samir AET. Optical Gaussons for nonlinear logarithmic Schrödinger

equations via the variational iteration method. Optik 2019;180:414-418.

[9] Li YZ, Liu JG. Multiple periodic-soliton solutions of the (3+1)-dimensional generalized

shallow water Equation. Pramana 2018;90(6):71.

[10] Wazwaz AM. Construction of a hierarchy of negative-order integrable Burgers equations

of higher orders. Math. Method. Appl. Sci. 2018;42(5):1553-1560.

[11] Lan ZZ. Multi-soliton solutions for a (2+1)-dimensional variable-coefficient nonlinear

schrödinger equation. Appl. Math. Lett. 2018;86:243-248.

13



[12] Osman MS, Machado JAT. New nonautonomous combined multi-wave solutions for

(2+1)-dimensional variable coefficients KdV equation. Nonlinear Dyn. 2018;93(2):733-

740.

[13] Wazwaz AM, Lakhveer K. Complex simplified Hirota¡¯s forms and Lie symmetry anal-

ysis for multiple real and complex soliton solutions of the modified KdV-Sine-Gordon

equation. Nonlinear Dyn. 2019;95(3):2209-2215.

[14] Abdel-Gawad HI, Tantawy M, Osman MS. Dynamic of DNA’s possible impact on its

damage, Math. Method Appl. Sci. 2016;39(2):168-176.

[15] Osman MS. Multi-soliton rational solutions for quantum Zakharov-Kuznetsov equation

in quantum magnetoplasmas, Waves Random Complex. 2016;26(4):434-443.

[16] Osman MS. Multi-soliton rational solutions for some nonlinear evolution equations,

Open Phys. 2016;14(1):26-36.

[17] Wazwaz AM. Abundant solutions of various physical features for the (2+1)-dimensional

modified kdv-Calogero-Bogoyavlenskii-Schiff equation. Nonlinear Dyn. 2017;9(3):1727-

1732.

[18] Wazwaz AM, Lakhveer K. Optical solitons and Peregrine solitons for Nonlinear

Schrödinger equation by variational iteration method. Optik 2019;179:804-809.

[19] Qawasmeh A, Alquran M. Soliton and Periodic Solutions for (2+1)-Dimensional Dis-

persive Long Water-Wave System. Appl. Math. Sci. 2014;8(50):2455-2463.

[20] Alquran M, Qawasmeh A. Soliton solutions of shallow water wave equations by means

of (G′/G)-expansion method. J. Appl. Anal. Comput. 2014;4(3):221-229.

[21] Osman MS, Wazwaz AM. An efficient algorithm to construct multi-soliton rational

solutions of the (2+ 1)-dimensional kdv equation with variable coefficients. Appl. Math.

Comput. 2018;321:282-289.

14



[22] Ma WX, Yong XL, Zhang HQ. Diversity of interaction solutions to the (2+1)-

dimensional Ito equation. Comput. Math. Appl. 2018;75(1):289-295.

[23] Su JJ, Gao YT, Jia SL. Solitons for a generalized sixth-order variable-coefficient non-

linear schrödinger equation for the attosecond pulses in an optical fiber. Commun.

Nonlinear. Sci. 2017;50:128-141.

[24] Wazwaz AM. Negative-order integrable modified kdv equations of higher orders. Non-

linear Dyn. 2018;93(3):1371-1376.

[25] Lan ZZ, Gao B. Lax pair, infinitely many conservation laws and solitons for a (2+1)-

dimensional Heisenberg ferromagnetic spin chain equation with time-dependent coeffi-

cients, Appl. Math. Lett. 2018;79:6-12.

[26] Osman MS. One-soliton shaping and inelastic collision between double soli-

tons in the fifth-order variable-coefficient Sawada-Kotera equation. Nonlinear Dyn.

2019;96(2):1491-1496.

[27] Osman MS, Ghanbari B, Machado JAT. New complex waves in nonlinear optics based

on the complex Ginzburg-Landau equation with Kerr law nonlinearity. Eur. Phys. J.

Plus 2019;134(1):20.

[28] Lu D, Osman MS, Khater MMA, Attia RAM, Baleanu D. Analytical and numerical

simulations for the kinetics of phase separation in iron (Fe-Cr-X (X= Mo, Cu)) based

on ternary alloys. Physica A 2020;537:122634.

[29] Ma WX, Fan EG. Linear superposition principle applying to Hirota bilinear equations.

Commun. Theor. Phys. 2011;61:950-959.

[30] Ma WX, Zhu ZN. Solving the (3 + 1)-dimensional generalized KP and BKP equations

by the multiple exp-function algorithm. Appl. Math. Comput. 2012;218:11871-11879.

[31] Tang YN, Zai WJ. New exact periodic solitary-wave solutions for the (3+1) -dimensional

generalized KP and BKP equations, Comput. Math. Appl. 2015;70(10):2432-2441.

15



[32] Chen ST, MaWX. Lump solutions of a generalized Calogero-Bogoyavlenskii-Schiff equa-

tion. Comput. Math. Appl. 2018;76(7):1680-1685.

[33] Ma WX, Yong XL, Zhang HQ. Diversity of interaction solutions to the (2+1)-

dimensional Ito equation. Comput. Math. Appl. 2018;75(1):289-295.

[34] Liu SJ, Tang XY, Lou SY. Multiple Darboux-Bäcklund transformations via truncated

Painlevé expansion and Lie point symmetry approach. Chin. Phys. B 2018;27(6):060201.

[35] Li YZ, Liu JG. New periodic solitary wave solutions for the new (2+1)-dimensional

Korteweg-de Vries equation. Nonlinear Dyn. 2018;91(1):497-504.

[36] Ma WX. Riemann-Hilbert problems of a six-component fourth-order AKNS system and

its soliton solutions. Comput. Appl. Math. 2018;37(5):6359-6375.

[37] TanW., Dai ZD, Dai HP. Dynamical analysis of lump solution for the(2+1)-Ito equation.

Therm. Sci. 2017;21(4):1673-1679.

16


	Introduction
	New mixed-type periodic solutions
	Lump-type solutions
	Conclusion

