References:
[1] Yazid, M., Sidik, N., Yahya, W., Heat and mass transfer
characteristics of carbon nanotube nanofluids: A review, Renewable
and Sustainable Energy Reviews , 80 (2017) 914-941.
[2] Hatami, M., Toxicity assessment of multi-walled carbon nanotubes
on Cucurbita pepo L. under well-watered and water-stressed conditions.Ecotoxicology and Environmental Safety , 142 (2017) 274-283.
[3] Zhan, M., Pan, G., Wang, Y., Kuang, T., Zhou, F., Ultrafast
carbon nanotube growth by microwave irradiation, Diamond and
Related Materials , 77 (2017) 65-71.
[4] Farooq, S., Hayat, T., Alsaedi, A., Asghar, S., Mixed convection
peristalsis of carbon nanotubes with thermal radiation and entropy
generation, Journal of Molecular Liquids , 250 (2018) 451-467.
[5] Omidi, M. J., ShayanMehr, M., Improving the dispersion of SWNT
in epoxy resin through a simple Multi-Stage method, Journal of
King Saud University - Science , 31 (2019) 202-208.
[6] Abdallah, S. R., Saidani-Scott, H., Abdellatif, O.E.,
Performance analysis for hybrid PV/T system using low concentration
MWCNT (water-based) nanofluid. Solar Energy , 181 (2019) 108-115.
[7] Rezakazemi, M., Darabi, M., Soroush, E., Mesbah, M.,
CO2 absorption enhancement by water-based nanofluids of
CNT and SiO2 using hollow-fiber membrane contactor.Separation and Purification Technology , 210 (2019) 920-926.
[8] Benos, L.Th., Karvelas, E.G., Sarris, I.E., A theoretical model
for the magnetohydrodynamic natural convection of a CNT-water nanofluid
incorporating a renovated Hamilton-Crosser model. International
Journal of Heat and Mass Transfer , 135 (2019) 548-560.
[9] IiJima, S., Helical microtubules of graphitic carbon.Nature , 354 (1991) 56-58.
[10] A. Moradi, D. Toghraie, A. H. M. Isfahani, A. Hosseinian, An
experimental study on MWCNT–water nanofluids flow and heat transfer in
double-pipe heat exchanger using porous media, J Therm Anal
Calorim 137 (2019) 1797-1807.
https://doi.org/10.1007/s10973-019-08076-0
[11] Chen, W., Zou, C., Li, X., Hao, L., Application of recoverable
carbon nanotube nanofluids insolar desalination system: An experimental
investigation. Desalination , 451 (2019) 92-101.
[12] Choi, T.J., Jang, S.P., Kedziersk, M.A., Effect of surfactants
on the stability and solar thermal absorption characteristics of
water-based nanofluids with multi-walled carbon nanotubes.International Journal of Heat and Mass Transfer , 122 (2018)
483-490.
[13] Selimefendigil, F., Öztop, H.F., Corrugated conductive
partition effects on MHD free convection of CNT-water nanofluid in a
cavity. International Journal of Heat and Mass Transfer , 129
(2019) 265-277.
[14] Mahbubul, I.M., Khan, M.M.A., Ibrahim, N.I., Ali, H.M.,
Sulaiman, F.A.A., Carbon nanotube nanofluid in enhancing the efficiency
of evacuated tube solar collector. Renewable Energy , 121 (2018)
36-44.
[15] A. Hussanan, M. Qasim, Zhi-M. Chen, Heat transfer enhancement
in sodium alginate based magnetic and non-magnetic nanoparticles mixture
hybrid nanofluid, Physica A: Statistical Mechanics and its
Applications (2020), 123957.
https://doi.org/10.1016/j.physa.2019.123957
[16] Taherian, H., Alvarado, J.L., Languri, E.M., Enhanced
thermophysical properties of multiwalled carbon nanotubes based
nanofluids. Part 1: Critical review. Renewable and Sustainable
Energy Reviews , 82 (2018) 4326-4336.
[17] Wang, R., Xie, L., Hameed, S., Wang, C., Ying, Y., Mechanisms
and applications of carbon nanotubes in terahertz devices: A review.Carbon , 132 (2018) 42-58.
[18] M. Gholinia, S. A. H. Kiaeian Moosavi, M. Pourfallah, S.
Gholinia & D. D. Ganji (2019) A numerical treatment of the
TiO2/C2H6O2–H2O
hybrid base nanofluid inside a porous cavity under the impact of shape
factor in MHD flow, International Journal of Ambient Energy ,
https://doi.org/10.1080/01430750.2019.1614996
[19] Ahmadpour, A.S.A., Hajmohammadi, M.R., Thermal design
improvement of a double-layered microchannel heat sink by using
multi-walled carbon nanotube (MWCNT) nanofluids with non-Newtonian
viscosity. Applied Thermal Engineering , 147 (2019) 205-215.
[20] Loulijat, H., Koumina, A., Zerradi, H., The effect of the
thermal vibration of graphene nanosheets on viscosity of nanofluid
liquid argon containing graphene nanosheets. Journal of Molecular
Liquids , 276 (2019) 936-946.
[21] T. Tayebi, H. F. Öztop, Entropy production during natural
convection of hybrid nanofluid in an annular passage between horizontal
confocal elliptic cylinders, International Journal of Mechanical
Sciences , 171 (2020) 105378.
[22] Syam Sundar, L., Singh, M.K., Sousa, A.C.M., Turbulent heat
transfer and friction factor of nanodiamond-nickel hybrid nanofluids
flow in a tube: An experimental study. International Journal of
Heat and Mass Transfer , 117 (2018) 223-234.
[23] Minea, A.A., Maghlany, W.M.E., Influence of hybrid nanofluids
on the performance of parabolic trough collectors in solar thermal
systems: Recent findings and numerical comparison. Renewable
Energy , 120 (2018) 350-364.
[24] Bellos, E., Tzivanidis, C., Thermal analysis of parabolic
trough collector operating with mono and hybrid nanofluids.Sustainable Energy Technologies and Assessments , 26 (2018)
105-115.
[25] Huminic, G., Huminic, A., The heat transfer performances and
entropy generation analysis of hybrid nanofluids in a flattened tube.International Journal of Heat and Mass Transfer , 119 (2018)
813-827.
[26] T. Hayat, M. W. Ahmada, M. Ijaz Khana, A. Alsaedi, Entropy
optimization in CNTs based nanomaterial flow induced by rotating disks:
A study on the accuracy of statistical declaration and probable error,Computer Methods and Programs in Biomedicine , 184 (2020) 105105.
https://doi.org/10.1016/j.cmpb.2019.105105
[27] T.Hayat, Sohail A.Khan, M.Ijaz Khan, A.Alsaedi, Irreversibility
characterization and investigation of mixed convective reactive flow
over a rotating cone, Computer Methods and Programs in
Biomedicine , 185 (2020) 105168.
https://doi.org/10.1016/j.cmpb.2019.105168
[28] T.Hayat, F.Shah, A.Alsaedi, B.Ahmad, Entropy optimized
dissipative flow of effective Prandtl number with melting heat transport
and Joule heating, International Communications in Heat and Mass
Transfer, 111 (2020) 104454.
https://doi.org/10.1016/j.icheatmasstransfer.2019.104454
[29] M.Gholinia, M.E.Hoseini, S. Gholinia, A numerical investigation
of free convection MHD flow of Walters-B nanofluid over an inclined
stretching sheet under the impact of Joule heating, Thermal
Science and Engineering Progress , 11 (2019) 272-282.https://doi.org/10.1016/j.tsep.2019.04.006
[30] Dinarvand, S., Hosseini, R., Damangir, E., & Pop, I., Series
solutions for steady three-dimensional stagnation point flow of a
nanofluid past a circular cylinder with sinusoidal radius variation .Meccanica , 48 (2013) 643-652.
[31] Tiwari R.K., Das M.S., Heat transfer augmentation in a
two-sided lid-driven differentially heated square cavity utilizing
nanofluids. Int J Heat Mass Transf , 50 (2007) 2002–2018.
[32] Bachok N., Ishak A., Nazar R., Pop I., Flow and heat transfer
at a general three-dimensional stagnation point in a Nano fluid.Physica B , 405 (2010) 4914–4918.
[33] He, J.H., Comparison of homotopy perturbation method and
homotopy analysis method. Appl Math Comput , 156 (2004) 527-539.
[34] Sajid, M., Hayat, T., Comparison of HAM and HPM solutions in
heat radiation equations, International Communications in Heat and
Mass Transfer , 36 (2009) 59-62.
[35] Shqair, M., Solution of different geometries reflected reactors
neutron diffusion equation using the homotopy perturbation method.Results in Physics , 12 (2019) 61-66.
[36] Mohammad, R., Kandasamy, R., Nanoparticle shapes on electric
and magnetic force in water, ethylene glycol and engine oil based Cu,
Al2O3 and SWCNTs. Journal of
Molecular Liquids , 237 (2017) 54-64.