References
Albert, E., Duboscq, R., Latreille, M., Santoni, S., Beukers, M.,
Bouchet, J.-P., et al. (2018) Allele specific expression and genetic
determinants of transcriptomic variations in response to mild water
deficit in tomato. Plant J .
Albert, E., Segura, V., Gricourt, J., Bonnefoi, J., Derivot, L., and
Causse, M. (2016) Association mapping reveals the genetic architecture
of tomato response to water deficit: focus on major fruit quality
traits. J Exp Bot . 67: 6413–6430.
Aubert, D., Chen, L., Moon, Y.H., Martin, D., Castle, L.A., Yang, C.H.,
et al. (2001) EMF1, a novel protein involved in the control of shoot
architecture and flowering in Arabidopsis. Plant Cell . 13:
1865–75.
Barrero, J.M., Cavanagh, C., Verbyla, K.L., Tibbits, J.F.G., Verbyla,
A.P., Huang, B.E., et al. (2015) Transcriptomic analysis of wheat
near-isogenic lines identifies PM19-A1 and A2 as candidates for a major
dormancy QTL. Genome Biol . 16: 93.
Bradshaw, A.D. (1965) Evolutionary Significance of Phenotypic Plasticity
in Plants. Adv Genet . 13: 115–155.
Broman, K.W., Gatti, D.M., Simecek, P., Furlotte, N.A., Prins, P., Sen,
Ś., et al. (2019) R/qtl2: Software for Mapping Quantitative Trait Loci
with High-Dimensional Data and Multiparent Populations. Genetics .
211: 495–502.
Causse, M., Desplat, N., Pascual, L., Le Paslier, M.-C., Sauvage, C.,
Bauchet, G., et al. (2013) Whole genome resequencing in tomato reveals
variation associated with introgression and breeding events. BMC
Genomics . 14: 791.
Costa, J.M., Ortuño, M.F., and Chaves, M.M. (2007) Deficit Irrigation as
a Strategy to Save Water: Physiology and Potential Application to
Horticulture. J Integr Plant Biol . 49: 1421–1434.
Diouf, I.A., Derivot, L., Bitton, F., Pascual, L., and Causse, M. (2018)
Water Deficit and Salinity Stress Reveal Many Specific QTL for Plant
Growth and Fruit Quality Traits in Tomato. Front Plant Sci . 9:
279.
Driedonks, N., Wolters-Arts, M., Huber, H., de Boer, G.-J., Vriezen, W.,
Mariani, C., et al. (2018) Exploring the natural variation for
reproductive thermotolerance in wild tomato species. Euphytica .
214: 67.
El-Soda, M., Malosetti, M., Zwaan, B.J., Koornneef, M., and Aarts,
M.G.M. (2014) . Trends Plant Sci.
Estañ, M.T., Villalta, I., Bolarín, M.C., Carbonell, E.A., and Asins,
M.J. (2009) Identification of fruit yield loci controlling the salt
tolerance conferred by solanum rootstocks. Theor Appl Genet . 118:
305–312.
Finlay, B.K.W., and Wilkinson, G.N. (1963) THE ANALYSIS OF ADAPTATION IN
A PLANT-BREEDING PROGRAMME The ability of some crop varieties to perform
well over a wide range of environ mental conditions has lcng been
appreciated by the agronomist and plant breeder . In the cereal belts of
southern Au. .
Foolad, M.R. (2007) Genome mapping and molecular breeding of tomato.Int J Plant Genomics . 2007: 64358.
Gage, J.L., Jarquin, D., Romay, C., Lorenz, A., Buckler, E.S., Kaeppler,
S., et al. (2017) The effect of artificial selection on phenotypic
plasticity in maize. Nat Commun . 8: 1348.
Gillespie, J.H., and Turelli, M. (1989) Genotype-environment
interactions and the maintenance of polygenic variation.Genetics . 121.
Giraud, H., Bauland, C., Falque, M., Madur, D., Combes, V., Jamin, P.,
et al. (2017) Reciprocal Genetics: Identifying QTL for General and
Specific Combining Abilities in Hybrids Between Multiparental
Populations from Two Maize (Zea mays L.) Heterotic Groups.Genetics . 207: 1167–1180.
Grandillo, S., Termolino, P., and van der Knaap, E. (2013) Molecular
Mapping of Complex Traits in Tomato. In Genetics, Genomics, and
Breeding of Tomato . pp. 150–227 Science Publishers.
Grilli, G., Trevizan Braz, L., Gertrudes, E., and Lemos, M. (2007) QTL
identification for tolerance to fruit set in tomatoby fAFLP markers.Crop Breed Appl Biotechnol . 7: 234–241.
Herath, V. (2019) The architecture of the GhD7 promoter reveals the
roles of GhD7 in growth, development and the abiotic stress response in
rice. Comput Biol Chem . 82: 1–8.
Huang, B.E., and George, A.W. (2011) R/mpMap: A computational platform
for the genetic analysis of multiparent recombinant inbred lines.Bioinformatics . 27: 727–729.
Huang, B.E., George, A.W., Forrest, K.L., Kilian, A., Hayden, M.J.,
Morell, M.K., et al. (2012) A multiparent advanced generation
inter-cross population for genetic analysis in wheat. Plant
Biotechnol J . 10: 826–839.
Huang, H., Gehan, M.A., Huss, S.E., Alvarez, S., Lizarraga, C.,
Gruebbling, E.L., et al. (2017) Cross-species complementation reveals
conserved functions for EARLY FLOWERING 3 between monocots and dicots.Plant Direct . 1: e00018.
Kover, P.X., Valdar, W., Trakalo, J., Scarcelli, N., Ehrenreich, I.M.,
Purugganan, M.D., et al. (2009) A multiparent advanced generation
inter-cross to fine-map quantitative traits in Arabidopsis thaliana.PLoS Genet . 5: e1000551.
Kusmec, A., Srinivasan, S., Nettleton, D., and Schnable, P.S. (2017)
Distinct genetic architectures for phenotype means and plasticities in
Zea mays. Nat Plants . 3: 715–723.
Lacaze, X., Hayes, P.M., and Korol, A. (2009) Genetics of phenotypic
plasticity: QTL analysis in barley, Hordeum vulgare. Heredity
(Edinb) . 102: 163–173.
Laitinen, R.A.E., and Nikoloski, Z. (2019) Genetic basis of plasticity
in plants. J Exp Bot . 70: 739–745.
Lê, S., Josse, J., and Husson, F. (2008) FactoMineR: An R package for
multivariate analysis. J Stat Softw . 25: 1–18.
Lin, C.S., Binns, M.R., and Lefkovitch, L.P. (1986) Stability Analysis:
Where Do We Stand?1. Crop Sci . 26: 894.
Lin, T., Zhu, G., Zhang, J., Xu, X., Yu, Q., Zheng, Z., et al. (2014)
Genomic analyses provide insights into the history of tomato breeding.Nat Genet . 46: 1220–1226.
Luo, X., Gao, Z., Wang, Y., Chen, Z., Zhang, W., Huang, J., et al.
(2018) The NUCLEAR FACTOR‐CONSTANS complex antagonizes Polycomb
repression to de‐repress FLOWERING LOCUS T expression in response to
inductive long days in Arabidopsis. Plant J . 95: 17–29.
Malosetti, M., Ribaut, J.-M., and van Eeuwijk, F.A. (2013) The
statistical analysis of multi-environment data: modeling
genotype-by-environment interaction and its genetic basis. Front
Physiol . 4: 44.
Mangin, B., Casadebaig, P., Cadic, E., Blanchet, N., Boniface, M.-C.,
Carrère, S., et al. (2017) Genetic control of plasticity of oil yield
for combined abiotic stresses using a joint approach of crop modelling
and genome-wide association. Plant Cell Environ . 40: 2276–2291.
Mitchell, J., Shennan, C., and Grattan, S. (1991) Developmental-Changes
in Tomato Fruit Composition in Response To Water Deficit and Salinity.Physiol Plant . 83: 177–185.
Munns, R., and Gilliham, M. (2015) Salinity tolerance of crops - what is
the cost? New Phytol . 208: 668–673.
Pascual, L., Desplat, N., Huang, B.E., Desgroux, A., Bruguier, L.,
Bouchet, J.-P.P., et al. (2015) Potential of a tomato MAGIC population
to decipher the genetic control of quantitative traits and detect causal
variants in the resequencing era. Plant Biotechnol J . 13:
565–577.
Ripoll, J., Urban, L., Staudt, M., Lopez-Lauri, F., Bidel, L.P.R., and
Bertin, N. (2014) Water shortage and quality of fleshy fruits—making
the most of the unavoidable. J Exp Bot . 65: 4097–4117.
Rothan, C., Diouf, I., and Causse, M. (2019) Trait discovery and editing
in tomato. Plant J . 97: 73–90.
Scheiner, S.M. (1993) Genetics and Evolution of Phenotypic Plasticity.Annu Rev Ecol Syst . 24: 35–68.
Septiani, P., Lanubile, A., Stagnati, L., Busconi, M., Nelissen, H., Pè,
M.E., et al. (2019) Unravelling the genetic basis of fusarium seedling
rot resistance in the MAGIC maize population: Novel targets for
breeding. Sci Rep . 9: 4–13.
Ungerer, M.C., Halldorsdottir, S.S., Purugganan, M.D., and Mackay,
T.F.C. (2003) Genotype-environment interactions at quantitative trait
loci affecting inflorescence development in Arabidopsis thaliana.Genetics . 165: 353–365.
Valladares, F., Sanchez-Gomez, D., and Zavala, M.A. (2006) Quantitative
estimation of phenotypic plasticity: bridging the gap between the
evolutionary concept and its ecological applications. J Ecol . 94:
1103–1116.
Verbyla, A.P., Cavanagh, C.R., and Verbyla, K.L. (2014) Whole-Genome
Analysis of Multienvironment or Multitrait QTL in MAGIC. G3 Genes,
Genomes, Genet . 4.
Via, S., Gomulkiewicz, R., De Jong, G., Scheiner, S.M., Schlichting,
C.D., and Van Tienderen, P.H. (1995) Adaptive phenotypic plasticity:
consensus and controversy. Trends Ecol Evol . 10: 212–7.
Villalta, I., Bernet, G.P., Carbonell, E.A., and Asins, M.J. (2007)
Comparative QTL analysis of salinity tolerance in terms of fruit yield
using two solanum populations of F7 lines. Theor Appl Genet . 114:
1001–1017.
Xavier, A., Jarquin, D., Howard, R., Ramasubramanian, V., Specht, J.E.,
Graef, G.L., et al. (2018) Genome-Wide Analysis of Grain Yield Stability
and Environmental Interactions in a Multiparental Soybean Population.G3 (Bethesda) . 8: 519–529.
Xu, J., Driedonks, N., Rutten, M.J.M., Vriezen, W.H., de Boer, G.-J.,
and Rieu, I. (2017a) Mapping quantitative trait loci for heat tolerance
of reproductive traits in tomato (Solanum lycopersicum). Mol
Breed . 37: 58.
Xu, J., Wolters-Arts, M., Mariani, C., Huber, H., and Rieu, I. (2017b)
Heat stress affects vegetative and reproductive performance and trait
correlations in tomato (Solanum lycopersicum). Euphytica . 213:
156.
Yan, W., Kang, M.S., Ma, B., Woods, S., and Cornelius, P.L. (2007) GGE
Biplot vs. AMMI Analysis of Genotype-by-Environment Data. Crop
Sci . 47: 643.
Zhao, C., Liu, B., Piao, S., Wang, X., Lobell, D.B., Huang, Y., et al.
(2017) Temperature increase reduces global yields of major crops in four
independent estimates. Proc Natl Acad Sci . 114: 9326–9331.
Zhu, G., Wang, S., Huang, Z., Zhang, S., Liao, Q., Zhang, C., et al.
(2018) Rewiring of the Fruit Metabolome in Tomato Breeding. Cell .
172: 249-261.e12.