References
Albert, E., Duboscq, R., Latreille, M., Santoni, S., Beukers, M., Bouchet, J.-P., et al. (2018) Allele specific expression and genetic determinants of transcriptomic variations in response to mild water deficit in tomato. Plant J .
Albert, E., Segura, V., Gricourt, J., Bonnefoi, J., Derivot, L., and Causse, M. (2016) Association mapping reveals the genetic architecture of tomato response to water deficit: focus on major fruit quality traits. J Exp Bot . 67: 6413–6430.
Aubert, D., Chen, L., Moon, Y.H., Martin, D., Castle, L.A., Yang, C.H., et al. (2001) EMF1, a novel protein involved in the control of shoot architecture and flowering in Arabidopsis. Plant Cell . 13: 1865–75.
Barrero, J.M., Cavanagh, C., Verbyla, K.L., Tibbits, J.F.G., Verbyla, A.P., Huang, B.E., et al. (2015) Transcriptomic analysis of wheat near-isogenic lines identifies PM19-A1 and A2 as candidates for a major dormancy QTL. Genome Biol . 16: 93.
Bradshaw, A.D. (1965) Evolutionary Significance of Phenotypic Plasticity in Plants. Adv Genet . 13: 115–155.
Broman, K.W., Gatti, D.M., Simecek, P., Furlotte, N.A., Prins, P., Sen, Ś., et al. (2019) R/qtl2: Software for Mapping Quantitative Trait Loci with High-Dimensional Data and Multiparent Populations. Genetics . 211: 495–502.
Causse, M., Desplat, N., Pascual, L., Le Paslier, M.-C., Sauvage, C., Bauchet, G., et al. (2013) Whole genome resequencing in tomato reveals variation associated with introgression and breeding events. BMC Genomics . 14: 791.
Costa, J.M., Ortuño, M.F., and Chaves, M.M. (2007) Deficit Irrigation as a Strategy to Save Water: Physiology and Potential Application to Horticulture. J Integr Plant Biol . 49: 1421–1434.
Diouf, I.A., Derivot, L., Bitton, F., Pascual, L., and Causse, M. (2018) Water Deficit and Salinity Stress Reveal Many Specific QTL for Plant Growth and Fruit Quality Traits in Tomato. Front Plant Sci . 9: 279.
Driedonks, N., Wolters-Arts, M., Huber, H., de Boer, G.-J., Vriezen, W., Mariani, C., et al. (2018) Exploring the natural variation for reproductive thermotolerance in wild tomato species. Euphytica . 214: 67.
El-Soda, M., Malosetti, M., Zwaan, B.J., Koornneef, M., and Aarts, M.G.M. (2014) . Trends Plant Sci.
Estañ, M.T., Villalta, I., Bolarín, M.C., Carbonell, E.A., and Asins, M.J. (2009) Identification of fruit yield loci controlling the salt tolerance conferred by solanum rootstocks. Theor Appl Genet . 118: 305–312.
Finlay, B.K.W., and Wilkinson, G.N. (1963) THE ANALYSIS OF ADAPTATION IN A PLANT-BREEDING PROGRAMME The ability of some crop varieties to perform well over a wide range of environ ­ mental conditions has lcng been appreciated by the agronomist and plant breeder . In the cereal belts of southern Au. .
Foolad, M.R. (2007) Genome mapping and molecular breeding of tomato.Int J Plant Genomics . 2007: 64358.
Gage, J.L., Jarquin, D., Romay, C., Lorenz, A., Buckler, E.S., Kaeppler, S., et al. (2017) The effect of artificial selection on phenotypic plasticity in maize. Nat Commun . 8: 1348.
Gillespie, J.H., and Turelli, M. (1989) Genotype-environment interactions and the maintenance of polygenic variation.Genetics . 121.
Giraud, H., Bauland, C., Falque, M., Madur, D., Combes, V., Jamin, P., et al. (2017) Reciprocal Genetics: Identifying QTL for General and Specific Combining Abilities in Hybrids Between Multiparental Populations from Two Maize (Zea mays L.) Heterotic Groups.Genetics . 207: 1167–1180.
Grandillo, S., Termolino, P., and van der Knaap, E. (2013) Molecular Mapping of Complex Traits in Tomato. In Genetics, Genomics, and Breeding of Tomato . pp. 150–227 Science Publishers.
Grilli, G., Trevizan Braz, L., Gertrudes, E., and Lemos, M. (2007) QTL identification for tolerance to fruit set in tomatoby fAFLP markers.Crop Breed Appl Biotechnol . 7: 234–241.
Herath, V. (2019) The architecture of the GhD7 promoter reveals the roles of GhD7 in growth, development and the abiotic stress response in rice. Comput Biol Chem . 82: 1–8.
Huang, B.E., and George, A.W. (2011) R/mpMap: A computational platform for the genetic analysis of multiparent recombinant inbred lines.Bioinformatics . 27: 727–729.
Huang, B.E., George, A.W., Forrest, K.L., Kilian, A., Hayden, M.J., Morell, M.K., et al. (2012) A multiparent advanced generation inter-cross population for genetic analysis in wheat. Plant Biotechnol J . 10: 826–839.
Huang, H., Gehan, M.A., Huss, S.E., Alvarez, S., Lizarraga, C., Gruebbling, E.L., et al. (2017) Cross-species complementation reveals conserved functions for EARLY FLOWERING 3 between monocots and dicots.Plant Direct . 1: e00018.
Kover, P.X., Valdar, W., Trakalo, J., Scarcelli, N., Ehrenreich, I.M., Purugganan, M.D., et al. (2009) A multiparent advanced generation inter-cross to fine-map quantitative traits in Arabidopsis thaliana.PLoS Genet . 5: e1000551.
Kusmec, A., Srinivasan, S., Nettleton, D., and Schnable, P.S. (2017) Distinct genetic architectures for phenotype means and plasticities in Zea mays. Nat Plants . 3: 715–723.
Lacaze, X., Hayes, P.M., and Korol, A. (2009) Genetics of phenotypic plasticity: QTL analysis in barley, Hordeum vulgare. Heredity (Edinb) . 102: 163–173.
Laitinen, R.A.E., and Nikoloski, Z. (2019) Genetic basis of plasticity in plants. J Exp Bot . 70: 739–745.
Lê, S., Josse, J., and Husson, F. (2008) FactoMineR: An R package for multivariate analysis. J Stat Softw . 25: 1–18.
Lin, C.S., Binns, M.R., and Lefkovitch, L.P. (1986) Stability Analysis: Where Do We Stand?1. Crop Sci . 26: 894.
Lin, T., Zhu, G., Zhang, J., Xu, X., Yu, Q., Zheng, Z., et al. (2014) Genomic analyses provide insights into the history of tomato breeding.Nat Genet . 46: 1220–1226.
Luo, X., Gao, Z., Wang, Y., Chen, Z., Zhang, W., Huang, J., et al. (2018) The NUCLEAR FACTOR‐CONSTANS complex antagonizes Polycomb repression to de‐repress FLOWERING LOCUS T expression in response to inductive long days in Arabidopsis. Plant J . 95: 17–29.
Malosetti, M., Ribaut, J.-M., and van Eeuwijk, F.A. (2013) The statistical analysis of multi-environment data: modeling genotype-by-environment interaction and its genetic basis. Front Physiol . 4: 44.
Mangin, B., Casadebaig, P., Cadic, E., Blanchet, N., Boniface, M.-C., Carrère, S., et al. (2017) Genetic control of plasticity of oil yield for combined abiotic stresses using a joint approach of crop modelling and genome-wide association. Plant Cell Environ . 40: 2276–2291.
Mitchell, J., Shennan, C., and Grattan, S. (1991) Developmental-Changes in Tomato Fruit Composition in Response To Water Deficit and Salinity.Physiol Plant . 83: 177–185.
Munns, R., and Gilliham, M. (2015) Salinity tolerance of crops - what is the cost? New Phytol . 208: 668–673.
Pascual, L., Desplat, N., Huang, B.E., Desgroux, A., Bruguier, L., Bouchet, J.-P.P., et al. (2015) Potential of a tomato MAGIC population to decipher the genetic control of quantitative traits and detect causal variants in the resequencing era. Plant Biotechnol J . 13: 565–577.
Ripoll, J., Urban, L., Staudt, M., Lopez-Lauri, F., Bidel, L.P.R., and Bertin, N. (2014) Water shortage and quality of fleshy fruits—making the most of the unavoidable. J Exp Bot . 65: 4097–4117.
Rothan, C., Diouf, I., and Causse, M. (2019) Trait discovery and editing in tomato. Plant J . 97: 73–90.
Scheiner, S.M. (1993) Genetics and Evolution of Phenotypic Plasticity.Annu Rev Ecol Syst . 24: 35–68.
Septiani, P., Lanubile, A., Stagnati, L., Busconi, M., Nelissen, H., Pè, M.E., et al. (2019) Unravelling the genetic basis of fusarium seedling rot resistance in the MAGIC maize population: Novel targets for breeding. Sci Rep . 9: 4–13.
Ungerer, M.C., Halldorsdottir, S.S., Purugganan, M.D., and Mackay, T.F.C. (2003) Genotype-environment interactions at quantitative trait loci affecting inflorescence development in Arabidopsis thaliana.Genetics . 165: 353–365.
Valladares, F., Sanchez-Gomez, D., and Zavala, M.A. (2006) Quantitative estimation of phenotypic plasticity: bridging the gap between the evolutionary concept and its ecological applications. J Ecol . 94: 1103–1116.
Verbyla, A.P., Cavanagh, C.R., and Verbyla, K.L. (2014) Whole-Genome Analysis of Multienvironment or Multitrait QTL in MAGIC. G3 Genes, Genomes, Genet . 4.
Via, S., Gomulkiewicz, R., De Jong, G., Scheiner, S.M., Schlichting, C.D., and Van Tienderen, P.H. (1995) Adaptive phenotypic plasticity: consensus and controversy. Trends Ecol Evol . 10: 212–7.
Villalta, I., Bernet, G.P., Carbonell, E.A., and Asins, M.J. (2007) Comparative QTL analysis of salinity tolerance in terms of fruit yield using two solanum populations of F7 lines. Theor Appl Genet . 114: 1001–1017.
Xavier, A., Jarquin, D., Howard, R., Ramasubramanian, V., Specht, J.E., Graef, G.L., et al. (2018) Genome-Wide Analysis of Grain Yield Stability and Environmental Interactions in a Multiparental Soybean Population.G3 (Bethesda) . 8: 519–529.
Xu, J., Driedonks, N., Rutten, M.J.M., Vriezen, W.H., de Boer, G.-J., and Rieu, I. (2017a) Mapping quantitative trait loci for heat tolerance of reproductive traits in tomato (Solanum lycopersicum). Mol Breed . 37: 58.
Xu, J., Wolters-Arts, M., Mariani, C., Huber, H., and Rieu, I. (2017b) Heat stress affects vegetative and reproductive performance and trait correlations in tomato (Solanum lycopersicum). Euphytica . 213: 156.
Yan, W., Kang, M.S., Ma, B., Woods, S., and Cornelius, P.L. (2007) GGE Biplot vs. AMMI Analysis of Genotype-by-Environment Data. Crop Sci . 47: 643.
Zhao, C., Liu, B., Piao, S., Wang, X., Lobell, D.B., Huang, Y., et al. (2017) Temperature increase reduces global yields of major crops in four independent estimates. Proc Natl Acad Sci . 114: 9326–9331.
Zhu, G., Wang, S., Huang, Z., Zhang, S., Liao, Q., Zhang, C., et al. (2018) Rewiring of the Fruit Metabolome in Tomato Breeding. Cell . 172: 249-261.e12.