[1] M. Eslamian, “Advances in thermodiffusion and thermophoresis (Soret Effect) in liquid mixtures,” Frontiers in heat and mass transfer, vol. 2, pp. 1-20, 2011. DOI: 10.5098/hmt.v2.4.3001
[2] H. Blasius, “Grenzschichten in Flussigkeiten Mit Kleiner Reibung,” Z. Math. Phys., vol. 56, pp. 1–37, 1908.
[3] B. C. Sakiadis, “Boundary-layer behaviour on continuous solid surfaces; boundary layer equations for 2-dimensional and axisymmetric flow,” AIChE J., vol. 7, pp. 26–28, 1961.
[4] B. C. Sakiadis, “Boundary-layer behaviour on continuous solid surfaces; boundary layer equations for 2-dimensional and axisymmetric flow,” AIChE J., vol. 7, pp. 221–225, 1961.
[5] R. C. Bataller, “Numerical comparisons of blasius and sadiakis flows,” Matematika, vol. 26, no. 2, pp. 187-196, 2010.
[6] P. O. Olanrewaju, J. A. Gbadeyan, O. O. Agboola and S. O. Abah, “Radiation and viscous dissipation effects for the blasius and sakiadis flows with a convective surface boundary condition,” International Journal of Advances in Science and Technology, vol. 2, no. 4, pp. 102–115, 2011.
[7] K. Gangadhar, “Radiation, heat generation and viscous dissipation effects on mhd boundary layer flow for the blasius and sakiadis flows with a convective surface boundary condition,” Journal of Applied Fluid Mechanics, vol. 8, no. 3, pp. 559-570, 2015. Available online at www.jafmonline.net, ISSN 1735-3572, EISSN 1735-3645.
[8] F. M. Hady, M. R. Eid, M. R. Abd-Elsalam and M. A. Ahmed, “The blasius and sakiadis flow in a nanofluid through a porous medium in the presence of thermal radiation under a convective surface boundary condition,” International Journal of Engineering and Innovative Technology, vol. 3, no. 3, pp. 225-234, 2013.
[9] M. Mustafa, J. A. Khan, T. Hayat and A. Alsaedi “Sakiadis flow of maxwell fluid considering magnetic field and convective boundary conditions,” AIP Advances, vol. 5(027106), pp. 1-9, 2015. DOI: 10.1063/1.4907927
[10] P. D. Anjali and P. Suriyakumar, “Effect of magnetic field on blasius and sakiadis flow of nanofluids past an inclined plates,” Journal of Taibah University for Science, vol. 11, pp. 1275–1288, 2017
[11] M. Ch. Krishna, G. V. Reddy, C. S. K. Raju, “Thermal and diffusion slips on natural convection of mhd blasius and sakiadis flows with variable properties and non-uniform heat source or sink,” Journal of Nanofluids, vol. 8, no. 4, pp. 683-693(11), 2019. DOI:https://doi.org/10.1166/jon.2019.1641
[12] O. D. Makinde, K. Zimba, O. Bég Anwar, “Numerical study of chemically-reacting hydromagnetic boundary flow with Soret/Dufour effects and a convective surface boundary condition,” International journal of Thermal and Environmental Engineering, vol. 4, no. 1, pp. 89-98, 2012. DOI:105383/ijtee.04.01.013
[13] I. L. Animasaun, A. O. Oyem, “Effect of variable viscosity, dufour, soret and thermal conductivity on free convective heat and mass transfer of non-darcian flow past porous flat surface,” American Journal of Computational Mathematics, vol. 4, pp. 357-365, 2014. http://dx.doi.org/10.4236/ajcm.2014.44030
[14] N. F. Dzulkifli, N. Bachok, L. Pop, N. A. Yacob, N. Md. Arifin, H. Rosali, “Soret and dufour effects on unsteady boundary layer flow and heat transfer in copper-water nanofluid over a shrinking sheet with partial slip and stability analysis,” Journal of Nanofluids, vol. 8, no. 7, pp. 1601-1608(8), 2019. DOI:https://doi.org/10.1166/jon.2019.1707
[15] M. S. Swamy, S. Patil, S. P. Pallavi, “Soret and dufour effect induced double-diffusive reaction-convection in anisotropic porous layer,” Journal of Nanofluids, vol. 8, no. 6, pp. 1329-1337(9), 2019. DOI:https://doi.org/10.1166/jon.2019.1688
[16] T. Hayat, Y. Saeed, A. Alsaedi, S. Asad, “Effects of convective heat and mass transfer in flow of powell-erying fluid past an exponentially stretching sheet,” PLoS ONE, vol. 10, no. 9(e0133831), pp. 1-19, 2015. doi:10.1371/journal.pone.0133831
[17] GH. R. Kafayati, “Simulation of double diffusive natural convection and entropy generation of power-law fluids in an inclined porous cavity with soret and dufour effects (part ii: entropy generation),” International Journal of Heat and Mass Transfer, vol. 9, pp. 582-624, 2016. https://doi.org/10.1016/j.ijheatmasstransfer.2015.11.043
[18] A. Shojaei, A. J. Amiri, S. S. Ardahaie, Kh. Hosseinzadeh, D. D. Ganji, “Hydrothermal analysis of non-newtonian second grade fluid flow on radiative stretching cylinder with soret and dufour,” Case Studies in Thermal Engineering, vol. 13, pp. 1-14 (100384), 2019. https://doi.org/10.1016/j.csite.2018.100384
[19] T. Hayat, R. Iqbal, A. Tanver, A. Alsaedi, “Soret and dufour effects in mhd peristalsis of psuedoplastic nanofluid with chemical reaction,” Journal of Molecular Liquids, vol. 220, pp. 693-706, 2016. https://doi.org/10.1016/j.molliq.2016.04.123
[20] R. C. Bataller, “Radiation effects for the blasius and sakiadis flows with a convective surface boundary condition,” Applied Mathematics and Computation, vol. 206, no. 2, pp. 832-840, 2008
[21] A. Aziz, “A similarity solution for laminar thermal boundary layer over a flat plate with a convective surface boundary condition,” Commu. Nonlinear Sci. Numerical Simulations, vol. 14, pp. 1064-1068, 2009
[22] O. D. Makinde, P. O. Olarewaju, “Buoyancy effects on thermal boundary layer over a vertical plate with a convective surface boundary condition,” Transactions ASME Journal of Fluids Engineering, vol. 132, pp. 1-4, 2010 (044502)