[2] |
H. Blasius, “Grenzschichten in Flussigkeiten Mit Kleiner
Reibung,” Z. Math. Phys., vol. 56, pp. 1–37,
1908. |
[3] |
B. C. Sakiadis, “Boundary-layer behaviour on continuous solid
surfaces; boundary layer equations for 2-dimensional and axisymmetric
flow,” AIChE J., vol. 7, pp. 26–28, 1961. |
[4] |
B. C. Sakiadis, “Boundary-layer behaviour on continuous solid
surfaces; boundary layer equations for 2-dimensional and axisymmetric
flow,” AIChE J., vol. 7, pp. 221–225, 1961. |
[5] |
R. C. Bataller, “Numerical comparisons of blasius and
sadiakis flows,” Matematika, vol. 26, no. 2, pp. 187-196,
2010. |
[6] |
P. O. Olanrewaju, J. A. Gbadeyan, O. O. Agboola and S. O.
Abah, “Radiation and viscous dissipation effects for the blasius and
sakiadis flows with a convective surface boundary condition,”
International Journal of Advances in Science and Technology, vol.
2, no. 4, pp. 102–115, 2011. |
[7] |
K. Gangadhar, “Radiation, heat generation and viscous
dissipation effects on mhd boundary layer flow for the blasius and
sakiadis flows with a convective surface boundary condition,”
Journal of Applied Fluid Mechanics, vol. 8, no. 3, pp. 559-570,
2015. Available online at www.jafmonline.net, ISSN 1735-3572, EISSN
1735-3645. |
[8] |
F. M. Hady, M. R. Eid, M. R. Abd-Elsalam and M. A. Ahmed,
“The blasius and sakiadis flow in a nanofluid through a porous medium
in the presence of thermal radiation under a convective surface boundary
condition,” International Journal of Engineering and Innovative
Technology, vol. 3, no. 3, pp. 225-234, 2013. |
[9] |
M. Mustafa, J. A. Khan, T. Hayat and A. Alsaedi “Sakiadis
flow of maxwell fluid considering magnetic field and convective boundary
conditions,” AIP Advances, vol. 5(027106), pp. 1-9, 2015. DOI:
10.1063/1.4907927 |
[10] |
P. D. Anjali and P. Suriyakumar, “Effect of magnetic field
on blasius and sakiadis flow of nanofluids past an inclined plates,”
Journal of Taibah University for Science, vol. 11, pp.
1275–1288, 2017 |
[11] |
M. Ch. Krishna, G. V. Reddy, C. S. K. Raju, “Thermal and
diffusion slips on natural convection of mhd blasius and sakiadis flows
with variable properties and non-uniform heat source or sink,”
Journal of Nanofluids, vol. 8, no. 4, pp. 683-693(11), 2019.
DOI:https://doi.org/10.1166/jon.2019.1641 |
[12] |
O. D. Makinde, K. Zimba, O. Bég Anwar, “Numerical study of
chemically-reacting hydromagnetic boundary flow with Soret/Dufour
effects and a convective surface boundary condition,”
International journal of Thermal and Environmental Engineering,
vol. 4, no. 1, pp. 89-98, 2012.
DOI:105383/ijtee.04.01.013 |
[13] |
I. L. Animasaun, A. O. Oyem, “Effect of variable viscosity,
dufour, soret and thermal conductivity on free convective heat and mass
transfer of non-darcian flow past porous flat surface,” American
Journal of Computational Mathematics, vol. 4, pp. 357-365, 2014.
http://dx.doi.org/10.4236/ajcm.2014.44030 |
[14] |
N. F. Dzulkifli, N. Bachok, L. Pop, N. A. Yacob, N. Md.
Arifin, H. Rosali, “Soret and dufour effects on unsteady boundary layer
flow and heat transfer in copper-water nanofluid over a shrinking sheet
with partial slip and stability analysis,” Journal of
Nanofluids, vol. 8, no. 7, pp. 1601-1608(8), 2019.
DOI:https://doi.org/10.1166/jon.2019.1707 |
[15] |
M. S. Swamy, S. Patil, S. P. Pallavi, “Soret and dufour
effect induced double-diffusive reaction-convection in anisotropic
porous layer,” Journal of Nanofluids, vol. 8, no. 6, pp.
1329-1337(9), 2019.
DOI:https://doi.org/10.1166/jon.2019.1688 |
[16] |
T. Hayat, Y. Saeed, A. Alsaedi, S. Asad, “Effects of
convective heat and mass transfer in flow of powell-erying fluid past an
exponentially stretching sheet,” PLoS ONE, vol. 10, no.
9(e0133831), pp. 1-19, 2015.
doi:10.1371/journal.pone.0133831 |
[17] |
GH. R. Kafayati, “Simulation of double diffusive natural
convection and entropy generation of power-law fluids in an inclined
porous cavity with soret and dufour effects (part ii: entropy
generation),” International Journal of Heat and Mass Transfer,
vol. 9, pp. 582-624, 2016.
https://doi.org/10.1016/j.ijheatmasstransfer.2015.11.043 |
[18] |
A. Shojaei, A. J. Amiri, S. S. Ardahaie, Kh. Hosseinzadeh, D.
D. Ganji, “Hydrothermal analysis of non-newtonian second grade fluid
flow on radiative stretching cylinder with soret and dufour,”
Case Studies in Thermal Engineering, vol. 13, pp. 1-14 (100384),
2019. https://doi.org/10.1016/j.csite.2018.100384 |
[19] |
T. Hayat, R. Iqbal, A. Tanver, A. Alsaedi, “Soret and dufour
effects in mhd peristalsis of psuedoplastic nanofluid with chemical
reaction,” Journal of Molecular Liquids, vol. 220, pp. 693-706,
2016. https://doi.org/10.1016/j.molliq.2016.04.123 |
[20] |
R. C. Bataller, “Radiation effects for the blasius and
sakiadis flows with a convective surface boundary condition,”
Applied Mathematics and Computation, vol. 206, no. 2, pp.
832-840, 2008 |
[21] |
A. Aziz, “A similarity solution for laminar thermal boundary
layer over a flat plate with a convective surface boundary condition,”
Commu. Nonlinear Sci. Numerical Simulations, vol. 14, pp.
1064-1068, 2009 |
[22] |
O. D. Makinde, P. O. Olarewaju, “Buoyancy effects on thermal
boundary layer over a vertical plate with a convective surface boundary
condition,” Transactions ASME Journal of Fluids Engineering,
vol. 132, pp. 1-4, 2010 (044502) |