References
Chaiklahan R, Khonsarn N, Chirasuwan N, Ruengjitchatchawalya M, Bunnag
B, Tanticharoen M. 2007. Response of Spirulina platensis C1 to high
temperature and high light intensity. Kasetsart J. - Nat. Sci.41 :123–129.
Chance R, Roessler P. 2019. Production of Biocrude in an Advanced
Photobioreactor-Based Biorefinery. DOE Bioenergy Technol. Off.https://www.energy.gov/sites/prod/files/2019/03/f61/Production of
Biocrude in an Advanced Photobioreactor-Based
Biorefinery_EE0007690.pdf.
Colla LM, Oliveira Reinehr C, Reichert C, Costa JAV. 2007. Production of
biomass and nutraceutical compounds by Spirulina platensis under
different temperature and nitrogen regimes. Bioresour. Technol.98 :1489–1493.
https://www.sciencedirect.com/science/article/pii/S0960852405004761.
Falkowski PG, Raven JA. 2007. Aquatic photosynthesis. Princeton
University Press.
Jahnke J, Mahlmann DM, Jacobs P, Priefer UB. 2011. The influence of
growth conditions on the cell dry weight per unit biovolume of
Klebsormidium flaccidum (Charophyta), a typical ubiquitous soil alga.J. Appl. Phycol. 23 :655–664.
Kirst H, Formighieri C, Melis A. 2014. Maximizing photosynthetic
efficiency and culture productivity in cyanobacteria upon minimizing the
phycobilisome light-harvesting antenna size. Biochim. Biophys.
Acta - Bioenerg. 1837 :1653–1664.
http://www.sciencedirect.com/science/article/pii/S0005272814005362.
Kumar M, Kulshreshtha J, Singh GP. 2011. Growth and biopigment
accumulation of cyanobacterium spirulina platensis at different light
intensities and temperature. Brazilian J. Microbiol.42 :1128–1135.
Lea-Smith DJ, Bombelli P, Dennis JS, Scott SA, Smith AG, Howe CJ. 2014.
Phycobilisome-Deficient Strains of Synechocystis sp. PCC 6803 Have
Reduced Size and Require Carbon-Limiting Conditions to Exhibit Enhanced
Productivity. Plant Physiol. 165 :705–714.
Legere E. 2017. Algenol Integrated Pilot-Scale Biorefinery. DOE
Final Proj. Rep. https://www.osti.gov/servlets/purl/1360777.
Marsac DT, Houmard J. 1988. Complementary chromatic adaptation:
Physiological conditions and action spectra. Methods Enzymol.167 :318–328.
Panyakampol J, Cheevadhanarak S, Senachak J, Dulsawat S, Siangdung W,
Tanticharoen M, Paithoonrangsarid K. 2016. Different effects of the
combined stress of nitrogen depletion and high temperature than an
individual stress on the synthesis of biochemical compounds in
Arthrospira platensis C1 (PCC 9438). J. Appl. Phycol.28 :2177–2186. https://doi.org/10.1007/s10811-015-0765-4.
Panyakampol J, Cheevadhanarak S, Sutheeworapong S, Chaijaruwanich J,
Senachak J, Siangdung W, Jeamton W, Tanticharoen M, Paithoonrangsarid K.
2015. Physiological and transcriptional responses to high temperature in
arthrospira (Spirulina) platensis C1. Plant Cell Physiol.56 :481–496. http://dx.doi.org/10.1093/pcp/pcu192.
Sánchez‐Luna LD, Bezerra RP, Matsudo MC, Sato S, Converti A, de Carvalho
JC. 2007. Influence of pH, Temperature, and Urea MolarFlowrate
onArthrospira platensisFed-BatchCultivation: A Kinetic and Thermodynamic
Approach. Biotechnol. Bioeng. 96 :702–711.
Torzillo G, Sacchi A, Materassi R. 1991a. Temperature as an important
factor affecting productivity and night biomass loss in Spirulina
platensis grown outdoors in tubular photobioreactors. Bioresour.
Technol. 38 :95–100.
Torzillo G, Sacchi A, Materassi R, Richmond A. 1991b. Effect of
temperature on yield and night biomass loss in Spirulina platensis grown
outdoors in tubular photobioreactors. J. Appl. Phycol.3 :103–109.
Trabelsi L, Ben Ouada H, Bacha H, Ghoul M. 2009. Combined effect of
temperature and light intensity on growth and extracellular polymeric
substance production by the cyanobacterium Arthrospira platensis.J. Appl. Phycol. 21 :405–412.
Vonshak A, Novoplansky N. 2008. Acclimation to low temperature of two
Arthrospira platensis (cyanobacteria) strains involves down-regulation
of PSII and improved resistance to photoinhibition. J. Phycol.44 :1071–1079.
Watras CJ, Morrison KA, Rubsam JL, Hanson PC, Watras AJ, LaLiberte GD,
Milewski P. 2017. A temperature compensation method for chlorophyll and
phycocyanin fluorescence sensors in freshwater. Limnol. Oceanogr.
Methods 15 :642–652.
Yoshikawa N, Belay A. 2008. Single-Laboratory Validation of a Method for
the Determination of c-Phycocyanin and Allophycocyanin in Spirulina
(Arthrospira) Supplements and Raw Materials by Spectrophotometry.J. AOAC Int. 91 :650–655.
Zarrouk C. 1966. Contribution a L’etude D’une Cianophycee: Influence de
Divers Facteurs Physiques Et Chimiques Sur la Croissance Et la
Photosynthese de Spirulina Maxima (Setch. Et Garndner) Geitler. Faculte
des Sciences, Universite de Paris.
https://books.google.com/books?id=Hq5EcgAACAAJ.