References
Chaiklahan R, Khonsarn N, Chirasuwan N, Ruengjitchatchawalya M, Bunnag B, Tanticharoen M. 2007. Response of Spirulina platensis C1 to high temperature and high light intensity. Kasetsart J. - Nat. Sci.41 :123–129.
Chance R, Roessler P. 2019. Production of Biocrude in an Advanced Photobioreactor-Based Biorefinery. DOE Bioenergy Technol. Off.https://www.energy.gov/sites/prod/files/2019/03/f61/Production of Biocrude in an Advanced Photobioreactor-Based Biorefinery_EE0007690.pdf.
Colla LM, Oliveira Reinehr C, Reichert C, Costa JAV. 2007. Production of biomass and nutraceutical compounds by Spirulina platensis under different temperature and nitrogen regimes. Bioresour. Technol.98 :1489–1493. https://www.sciencedirect.com/science/article/pii/S0960852405004761.
Falkowski PG, Raven JA. 2007. Aquatic photosynthesis. Princeton University Press.
Jahnke J, Mahlmann DM, Jacobs P, Priefer UB. 2011. The influence of growth conditions on the cell dry weight per unit biovolume of Klebsormidium flaccidum (Charophyta), a typical ubiquitous soil alga.J. Appl. Phycol. 23 :655–664.
Kirst H, Formighieri C, Melis A. 2014. Maximizing photosynthetic efficiency and culture productivity in cyanobacteria upon minimizing the phycobilisome light-harvesting antenna size. Biochim. Biophys. Acta - Bioenerg. 1837 :1653–1664. http://www.sciencedirect.com/science/article/pii/S0005272814005362.
Kumar M, Kulshreshtha J, Singh GP. 2011. Growth and biopigment accumulation of cyanobacterium spirulina platensis at different light intensities and temperature. Brazilian J. Microbiol.42 :1128–1135.
Lea-Smith DJ, Bombelli P, Dennis JS, Scott SA, Smith AG, Howe CJ. 2014. Phycobilisome-Deficient Strains of Synechocystis sp. PCC 6803 Have Reduced Size and Require Carbon-Limiting Conditions to Exhibit Enhanced Productivity. Plant Physiol. 165 :705–714.
Legere E. 2017. Algenol Integrated Pilot-Scale Biorefinery. DOE Final Proj. Rep. https://www.osti.gov/servlets/purl/1360777.
Marsac DT, Houmard J. 1988. Complementary chromatic adaptation: Physiological conditions and action spectra. Methods Enzymol.167 :318–328.
Panyakampol J, Cheevadhanarak S, Senachak J, Dulsawat S, Siangdung W, Tanticharoen M, Paithoonrangsarid K. 2016. Different effects of the combined stress of nitrogen depletion and high temperature than an individual stress on the synthesis of biochemical compounds in Arthrospira platensis C1 (PCC 9438). J. Appl. Phycol.28 :2177–2186. https://doi.org/10.1007/s10811-015-0765-4.
Panyakampol J, Cheevadhanarak S, Sutheeworapong S, Chaijaruwanich J, Senachak J, Siangdung W, Jeamton W, Tanticharoen M, Paithoonrangsarid K. 2015. Physiological and transcriptional responses to high temperature in arthrospira (Spirulina) platensis C1. Plant Cell Physiol.56 :481–496. http://dx.doi.org/10.1093/pcp/pcu192.
Sánchez‐Luna LD, Bezerra RP, Matsudo MC, Sato S, Converti A, de Carvalho JC. 2007. Influence of pH, Temperature, and Urea MolarFlowrate onArthrospira platensisFed-BatchCultivation: A Kinetic and Thermodynamic Approach. Biotechnol. Bioeng. 96 :702–711.
Torzillo G, Sacchi A, Materassi R. 1991a. Temperature as an important factor affecting productivity and night biomass loss in Spirulina platensis grown outdoors in tubular photobioreactors. Bioresour. Technol. 38 :95–100.
Torzillo G, Sacchi A, Materassi R, Richmond A. 1991b. Effect of temperature on yield and night biomass loss in Spirulina platensis grown outdoors in tubular photobioreactors. J. Appl. Phycol.3 :103–109.
Trabelsi L, Ben Ouada H, Bacha H, Ghoul M. 2009. Combined effect of temperature and light intensity on growth and extracellular polymeric substance production by the cyanobacterium Arthrospira platensis.J. Appl. Phycol. 21 :405–412.
Vonshak A, Novoplansky N. 2008. Acclimation to low temperature of two Arthrospira platensis (cyanobacteria) strains involves down-regulation of PSII and improved resistance to photoinhibition. J. Phycol.44 :1071–1079.
Watras CJ, Morrison KA, Rubsam JL, Hanson PC, Watras AJ, LaLiberte GD, Milewski P. 2017. A temperature compensation method for chlorophyll and phycocyanin fluorescence sensors in freshwater. Limnol. Oceanogr. Methods 15 :642–652.
Yoshikawa N, Belay A. 2008. Single-Laboratory Validation of a Method for the Determination of c-Phycocyanin and Allophycocyanin in Spirulina (Arthrospira) Supplements and Raw Materials by Spectrophotometry.J. AOAC Int. 91 :650–655.
Zarrouk C. 1966. Contribution a L’etude D’une Cianophycee: Influence de Divers Facteurs Physiques Et Chimiques Sur la Croissance Et la Photosynthese de Spirulina Maxima (Setch. Et Garndner) Geitler. Faculte des Sciences, Universite de Paris. https://books.google.com/books?id=Hq5EcgAACAAJ.