FUNDING INFORMATION
This study was financially supported by the Natural Science Foundation of China (U1906221; U1806215), the National Key Research & Development Program of China (2016YFC0501300, 2016YFD0200303), the Innovation project of the Institute of Soil Science, Chinese Academy of Science (CAS) (ISSASIP1633) and the Key Research and Development Program of Jiangsu Province (BE2017337-3).
References
Ahmed, V., Verma, M.K., Gupta, S., Mandhan, V., & Chauhan, N.S. (2018). Metagenomic profiling of soil microbes to mine salt stress tolerance genes. Front Microbiol 9: 159. https://doi.org/10.3389/fmicb.2018.00159 Baumann, K., & Marschner, P. (2013). Effects of salinity on microbial tolerance to drying and rewetting. Biogeochemistry 112: 71-80. https://doi.org/10.1007/s10533-011-9672-1 Bello-López, J.M., Domínguez-Mendoza, C.A., de León-Lorenzana, A.S., Delgado-Balbuena, L., Navarro-Noya, Y.E., Gómez-Acata, S., Rodríguez-Valentín, A., Ruíz-Valdiviezo, V.M., Luna-Guido, M., Verhulst, N., Govaerts, B., & Dendooven, L. (2014). Bacterial colonization of a fumigated alkaline saline soil. Extremophiles 18: 733-743. https://doi.org/10.1007/s00792-014-0653-x Berendse, F. (1990). Organic matter accumulation and nitrogen mineralization during secondary succession in heathland ecosystems. J Eco 78: 413-427. https://doi.org/ 10.2307/2261121 Bouyoucos, G.J. (1951). A recalibration of the hydrometer method for making mechanical analysis of soils. Agron J 43: 434-438. https://doi.org/10.2134/agronj1951.00021962004300090005x Bremner, J.M. (1960). Determination of nitrogen in soil by the Kjeldahl method. J Agr Sci 55: 11-33. https://doi.org/10.1017/S0021859600021572 Brookes, P.C., Landman, A., Pruden, G., & Jenkinson, D.S. (1985). Chloroform fumigation and the release of soil nitrogen: a rapid extraction method to measure microbial biomass nitrogen in Soil. Soil Biol Biochem 17: 837-842. https://doi.org/10.1016/0038-0717(85)90144-0 Canfora, L., Bacci, G., Pinzari, F., Lo Papa, G., Dazzi, C., & Benedetti, A. (2014). Salinity and bacterial diversity: to what extent does the concentration of salt affect the bacterial community in a saline soil? PLoS ONE 9 (9): e106662. https://doi.org/10.1371/journal.pone.0106662 Caporaso, J.G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F., Costello, E., Fierer, N., Pena, A.G., Goodrich, J.K., Gordon, J.I., Huttley, G.A., Kelley, S.T., Knights, D., Koenig, J.E., Ley, R.E., Lozupone, C.A., McDonald, D., Muegge, B.D., Pirrung, M., Reeder, J., Sevinsky, J.R., Tumbaugh, P.J., Walters, W.A., Widmann, J., Yatsunenko, T., Zaneveld, J., & Knight, R. (2010). QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7: 335-336. https://doi.org/10.1038/nmeth.f.303 Chambers, L.G., Guevara, R., Boyer, J.N., Troxler, T.G., & Davis, S.E. (2016). Effects of salinity and inundation on microbial community structure and function in a Mangrove peat soil. Wetlands 36 (2): 361-371. https://doi.org/10.1007/s13157-016-0745-8 Chen, L.J., Feng, Q., Wei, Y.P., Li, C.S., Zhao, Y., Li, H.Y., & Zhang, B.G. (2017). Effects of saline water irrigation and fertilization regimes on soil microbial metabolic activity. J Soils Sediments 17: 376-383. https://doi.org/10.1007/s11368-016-1551-x Cong, M.Y., Cao, D., Sun, J.K., & Shi, F.C. (2014). Soil microbial community structure evolution along halophyte succession in Bohai Bay wetland. J Chem 2014: 491347. https://doi.org/10.1155/2014/491347 Cornforth, I.S., & Walmsley, D. (1971). Methods of measuring available nutrients in West Indian soils: 1. Nitrogen. Plant Soil 35: 389-399. https://doi.org/10.1007/BF01372670 Cui, J.T., Li, Y.N., Wang, C.Y., Kim, K.S., Wang, T.Y., & Liu, S.X. (2018). Characteristics of the rhizosphere bacterial community across different cultivation years in saline–alkaline paddy soils of Songnen Plain of China. Can J Microbiol 64: 925-936. https://doi.org/10.1139/cjm-2017-0752 Daims, H., & Wagner, M. (2018). Nitrospira. Trends Microbiol 26 (5): 462-463. https://doi.org/10.1016/j.tim.2018.02.001 de León-Lorenzana, A.S., Delgado-Balbuena, L., Domínguez-Mendoza, C., Navarro-Noya, Y.E., Luna-Guido, M., & Dendooven, L. (2017). Reducing salinity by flooding an extremely alkaline and saline soil changes the bacterial community but its effect on the archaeal community is limited. Front Microbiol 8: 466. https://doi.org/10.3389/fmicb.2017.00466 Delgado-Baquerizo, M., Reith, F., Dennis, P.G., Hamonts, K., Powell, G., Young, A.G., Singh, B., & Bissett, A. (2018). Ecological drivers of soil microbial diversity and soil biological networks in the Southern Hemisphere. Ecology 99 (3): 583-596. https://doi.org/10.1002/ecy.2137 Dong, W.Y., Zhang, X.Y., Liu, X.Y., Fu, X.L., Chen, F.S., Wang, H.M., Sun, X.M., & Wen, X.F. (2015). Responses of soil microbial communities and enzyme activities to nitrogen and phosphorus additions in Chinese fir plantations of subtropical China. Biogeosciences 12: 5537-5546. https://doi.org/10.5194/bg-12-5537-2015 Edgar, R.C. (2010). Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26: 2460-2461. https://doi.org/10.1093/bioinformatics/btq461 Elmajdoub, B., & Marschner, P. (2015). Response of microbial activity and biomass to soil salinity when supplied with glucose and cellulose. J Soil Sci Plant Nut 15 (4): 816-832. https://doi.org/10.4067/s0718-95162015005000056 Evans, S., Martiny, J.B., & Allison, S.D. (2017). Effects of dispersal and selection on stochastic assembly in microbial communities. ISME J 11: 176-185. https://doi.org/10.1038/ismej.2016.96 Fuerst, J.A., & Sagulenko, E. (2013). Nested bacterial boxes: nuclear and other intracellular compartments in Planctomycetes. J Mol Microb Biotech 23 (1-2): 95-103. https://doi.org/10.1159/000346544 Gad, A.H. (2014). Bacterial diversity at the great salt plains of Oklahoma. The University of Tulsa, ProQuest Dissertations Publishing, 2014. 3683374. Gao, Y.C., Wang, J.N., Guo, S.H., Hu, Y.L., Li, T.T., Mao, R., & Zeng, D.H. (2015). Effects of salinization and crude oil contamination on soil bacterial community structure in the Yellow River Delta region, China. Appl Soil Ecol 86: 165-173. https://doi.org/10.1016/j.apsoil.2014.10.011 Guo, W., Qi, X.B., Xiao, Y.T., Li, P., Andersen, M.N., Zhang. Y., & Zhao, Z.J. (2018). Effects of reclaimed water irrigation on microbial diversity and composition of soil with reducing nitrogen fertilization. Water 10: 365. https://doi.org/10.3390/w10040365 Hagemann, M. (2011). Molecular biology of cyanobacterial salt acclimation. FEMS Microbiol Rev 35: 7e123. https://doi.org/10.1111/j.1574-6976.2010.00234.x Hollister, E.B., Engledow, A.S., Hammett, A.J.M., Provin, T.L., Wilkinson, H.H., & Gentry, T.J. (2010). Shifts in microbial community structure along an ecological gradient of hypersaline soils and sediments. ISME J 4: 829-838. https://doi.org/10.1038/ismej.2010.3 Holtzclaw, K.M., Rible, J.M., & Pratt, P.F. (1975). Bulk density sampler for deep soil profiles. Soil Sci Soc Am J 39 (6): 1220-1223. https://doi.org/10.2136/sssaj1975.03615995003900060050x Ikeda, S., Suzuki, K., Kawahara, M., Noshiro, M., & Takahashi, N. (2014). An assessment of urea-formaldehyde fertilizer on the diversity of bacterial communities in onion and sugar beet. Microbes Environ 29 (2): 231-234. https://doi.org/10.1264/jsme2.me13157 Iwaoka, C., Imada, S., Taniguchi, T., Du, S., Yamanaka, N., & Tateno, R. (2018). The impacts of soil fertility and salinity on soil nitrogen dynamics mediated by the soil microbial community beneath the halophytic shrub tamarisk. Microb Ecol 75: 985-996. https://doi.org/10.1007/s00248-017-1090-z Kirchman, D., Dittel, A., Findlay, S., & Fischer, D. (2004). Changes in bacterial activity and community structure in response to dissolved organic matter in the Hudson River, New York. Aquat Microb Ecol 35 (3): 243-257. https://doi.org/10.3354/ame035243 Kozich, J.J., Westcott, S.L., Baxter, N.T., Highlander, S.K., & Schloss, P.D. (2013). Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the miseq illumina sequencing platform. Appl Environ Microbiol 79: 5112-5120. https://doi.org/10.1128/AEM.01043-13 Lau, J.A., & Lennon, J.T. (2012). Rapid responses of soil microorganisms improve plant fitness in novel environments. Proc Natl Acad Sci USA 109 (35): 14058-14062. https://doi.org/10.1073/pnas.1202319109 Li, J.G., Pu, L.J., Han, M.F., Zhu, M., Zhang, R.S., & Xiang, Y.Z. (2014). Soil salinization research in China: Advances and prospects. J Geogr Sci 24(5): 943-960. https://doi.org/10.1007/s11442-014-1130-2 Li, J.G., Shen, M.C., Hou, J.F., Li, L., Wu, J.X., & Dong, Y.H. (2016). Effect of different levels of nitrogen on rhizosphere bacterial community structure in intensive monoculture of greenhouse lettuce. Sci Rep 6: 25305. https://doi.org/10.1038/srep25305 Li, M., Jiang, L.L., Sun, Z.J., Wang, J.Z., Rui, Y.C., Zhong, L., Wang, Y.F., & Kardol, P. (2012). Effects of flue gas desulfurization gypsum by-products on microbial biomass and community structure in alkaline–saline soils. J Soils Sediments 12: 1040-1053. https://doi.org/10.1007/s11368-012-0531-z Liang, B.C., & MacKenzie, A.F. (1996). Effect of fertilization on organic and microbial biomass nitrogen using 15N under corn (Zea mays L.) in two Quebec soils. Fertil Res 44: 143-149. https://doi.org/10.1007/BF00750804 Liu, L., Yu, X.J., Tang, H.G., & Xin, P. (2019). Effect of reclamation on the annual and seasonal characteristics of Spartina alterniflora population in Tiaozini coastal wetland. J Agr Res Environ 36 (3): 376-384. https://doi.org/10.13254/j.jare.2019.0070 Long, X.H., Liu, L.P., Shao, T.Y., Shao, H.B., & Liu, Z.P. (2016). Developing and sustainably utilize the coastal mudflat areas in China. Sci Total Environ 569: 1077-1086. https://doi.org/10.1016/j.scitotenv.2016.06.170 Lozupone, C.A., & Knight, R. (2007). Global patterns in bacterial diversity. Proc Natl Acad Sci USA 104: 11436-11440. https://doi.org/10.1073/pnas.0611525104 Lu, H.F., Lashari, M.S., Liu, X.Y., Ji, H.S., Li, L.Q., Zheng, J.F., Kibue, G.W., Joseph, S., & Pan, G.X. (2015). Changes in soil microbial community structure and enzyme activity with amendment of biochar-manure compost and pyroligneous solution in a saline soil from Central China. Eur J Soil Biol 70: 67-76. https://doi.org/10.1016/j.ejsobi.2015.07.005 Luo, X.X., Liu, G.C., Xia, Y., Chen, L., Jiang, Z.X., Zheng, H., & Wang, Z.Y. (2017). Use of biochar-compost to improve properties and productivity of the degraded coastal soil in the Yellow River Delta, China. J Soils Sediments 17 (3): 780-789. https://doi.org/10.1007/s11368-016-1361-1 Ma, B., & Gong, J. (2013). A meta-analysis of the publicly available bacterial and archaeal sequence diversity in saline soils. World J Microb Biot 29: 2325-2334. https://doi.org/10.1007/s11274-013-1399-9 Magurran, A.E. (2013). Open questions: some unresolved issues in biodiversity. BMC Biology 11 (1): 118-118. https://doi.org/10.1186/1741-7007-11-118 Masella, A.P., Bartram, A.K., Truszkowski, J.M., Brown, D.G., & Neufeld, J.D. (2012). PANDAseq: PAired-eND Assembler for Illumina sequences. BMC Bioinformatics 13, 31. https://doi.org/10.1186/1471-2105-13-31 Meena, M.D., Joshi, P.K., Jat, H.S., Chinchmalatpure, A.R., Narjary, B., Sheoran, P., & Sharma, D.K. (2016). Changes in biological and chemical properties of saline soil amended with municipal solid waste compost and chemical fertilizers in a mustard–pearl millet cropping system. Catena 140: 1-8. https://doi.org/10.1016/j.catena.2016.01.009 Naz, N., Hameed, M., Sajid, A.A.M., Ashraf, M., & Arshad, M. (2010). Is soil salinity one of the major determinants of community structure under arid environments? Community Ecol 11 (1): 84-90. https://doi.org/10.1556/comec.11.2010.1.12 Nelson, D.W., & Sommer, L.E. (1982). Total carbon, organic carbon, and organic matter. In: Page, A.L. (Ed.), Methods of Soil Analysis. Am Soc Agron. Madison, WI, pp. 539-579. Nguyen, L.T.T., Osanai, Y., Lai, K., Anderson, I.C., Bange, M.P., Tissue, D.T., & Singh, B.K. (2018). Responses of the soil microbial community to nitrogen fertilizer regimes and historical exposure to extreme weather events: Flooding or prolonged-drought. Soil Biol Biochem 118: 227-236. https://doi.org/10.1016/j.soilbio.2017.12.016 Olsen, S.R., & Sommers, L.E. (1982). Phosphorous. P. 403-430. In Page AL (ed.) Methods of soil analysis. Part 2. 2nd ed. ASA and SSSA, Madison, WI. Pitman, M.G., & Läuchli, A. (2004). Global Impact of Salinity and Agricultural Ecosystems. Salinity: Environment-Plants-Molecules. Springer Netherlands. Powlson, D.S., Jenkinson, D.S. (1976). The effects of biocidal treatments on metabolism in soil-II. Gamma irradiation, autoclaving, air-drying and fumigation. Soil Biol Biochem 8 (3): 179-188. https://doi.org/10.1016/0038-0717(76)90002-X Radhakrishnan, R., & Baek, K.H. (2017). Physiological and biochemical perspectives of non-salt tolerant plants during bacterial interaction against soil salinity. Plant Physiol Biochem 116: 116-126. https://doi.org/10.1016/j.plaphy.2017.05.009 Rath, K.M., Fierer, N., Murphy, D.V., Rousk, J. (2019). Linking bacterial community composition to soil salinity along environmental gradients. The ISME J 13: 836-846. https://doi.org/10.1038/s41396-018-0313-8 Rayment, G.E., & Higginson, F.R. (1992). Australian laboratory handbook of soil and water chemical methods. Inkata Press, Melbourne. Ren, M., Zhang, Z.F., Wang, X.L., Zhou, Z.W., Chen, D., Zeng, H., Zhao, S.M., Chen, L.L., Hu, Y.L., Zhang, C.Y., Liang, Y.X., She, Q.X., Zhang, Y., & Peng, N. (2018). Diversity and contributions to nitrogen cycling and carbon fixation of soil salinity shaped microbial communities in Tarim Basin. Front Microbiol 9: 431. https://doi.org/10.3389/fmicb.2018.00431 Rey, A., Pegoraro, E., & Jarvis, .PG. (2008). Carbon mineralization rates at different soil depths across a network of European forest sites (FORCAST). Eur J Soil Sci 59: 1049-1062. https://doi.org/10.1111/j.1365-2389.2008.01065.x Rhoades, J.D. (1982). Cation exchange capacity. In: Page, A.L. (Ed.). Methods of Soil analysis. Part 2. Chemical and microbiological properties (2nd ed.), vol. 9, Agronomy 149-157. Rousk, J., Elyaagubi, F.K., Jones, D.L., & Godbold, D.L. (2011). Bacterial salt tolerance is unrelated to soil salinity across an arid agroecosystem salinity gradient. Soil Biol Biochem 43(9): 1881-1887. https://doi.org/10.1016/j.soilbio.2011.05.007 Shahid, S.A., Zaman, M., & Heng, L. (2018). Soil salinity: Historical perspectives and a world overview of the problem. In: Zaman, M., Shahid, S.A., & Heng, L. (Eds). Guideline for Salinity Assessment, Mitigation and Adaptation Using Nuclear and Related Techniques. Springer International Publishing, Cham, pp. 43-53. Sharma, A., Singh, P., Kumar, S., Kashyap, P.L., Srivastava, A.K., Chakdar, H., Singh, R.N., Kaushik, R., Saxena, A.K., & Sharma, A.K. (2015). Deciphering diversity of salt-tolerant bacilli from saline soils of eastern Indo-gangetic Plains of India. Geomicrobiol J 32 (2): 170-180. https://doi.org/10.1080/01490451.2014.938205 Shi, C.F., Liang, C.Z., Leng, X.Y., Wang, Y.M., & Wang, Z.Y. (2018). Effect of biogas residue on saline soil microbial community structure based on high-throughput 16S rRNA metagenomics analyses. Int J Agric Biol 20: 1861-1867. https://doi.org/10.17957/IJAB/15.0742 Siles, J.A., Rachid, C.T.C.C., Sampedro, I., García-Romera, I., & Tiedje, J.M. (2014). Microbial diversity of a Mediterranean soil and its changes after biotransformed dry olive residue amendment. PLoS One 9: e103035. https://doi.org/10.1371/journal.pone.0103035 Smolders, E., Brans, K., Coppens, F., & Merckx, R. (2001). Potential nitrification rate as a tool for screening toxicity in metal-contaminated soils. Environ Toxicol Chem 20 (11): 2469-2474. https://doi.org/10.1002/etc.5620201111 Soil Survey Division Staff (1993). Soil Survey Manual. USDA Handbook No. 18. U.S. Government Printing Office, Washington, DC. Soil Survey Staff (2014). Keys to soil taxonomy, 11th edn. United States Department of Agriculture, Natural Resources Conservation Service, Washington DC. Sun, Y.F., Shen, J.P., Zhang, C.J., Zhang, L.M., Bai, W.M., Fang, Y., & He, J.Z. (2018). Responses of soil microbial community to nitrogen fertilizer and precipitation regimes in a semi-arid steppe. J Soils Sediments 18: 762-774. https://doi.org/10.1007/s11368-017-1846-6 Szymańska, S., Borruso, L., Brusetti, L., Hulisz, P., Furtado, B., & Hrynkiewicz, K. (2018). Bacterial microbiome of root-associated endophytes of Salicornia europaea in correspondence to different levels of salinity. Environ Sci Pollut Res 25 (25): 25420-25431. https://doi.org/10.1007/s11356-018-2530-0 US Salinity Laboratory Staff (1954). Diagnosis and Improvement of Saline and Alkali Soils. U.S. Department of Agriculture, Handbook 60. U.S. Government Printing Office, Washington, DC, USA, pp 160. Valenzuela-Encinas, C., Neria-González, I., Alcántara-Hernández, R.J., Enríquez-Aragón, J.A., Estrada-Alvarado, I., Hernández-Rodríguez, C., Dendooven, L., & Marsch, R. (2008). Phylogenetic analysis of the archaeal community in an alkaline-saline soil of the former lake Texcoco (Mexico). Extremophiles 12 (2): 247-254. https://doi.org/10.1007/s00792-007-0121-y Van Horn, D.J., Okie, J.G., Buelow, H.N., Gooseff, M.N., Barrett, J.E., & Takacs-Vesbach, C.D. (2014). Soil microbial responses to increased moisture and organic resources along a salinity gradient in a polar desert. Appl Environ Microbiol 80: 3034-3043. https://doi.org/10.1128/AEM.03414-13 Wang, M.W., Liu, C., Ding, H.R., Zhu, X.M., Xing, J.C., Zhao, B.Q., Dong, L., & Hong, L.Z. (2016). Coupling effect of salt and fertilizer application on the growth of Portulaca oleracea L. and soil environment in the salt soil of northern Jiangsu coastal mudflat. Jiangsu J Agr Sci 32 (2): 331- 337. https://doi.org/10.3969/j.issn.1000-4440.2016.02.015 Wichern, J.F., Wichern, F., & Joergensen, G.R. (2006). Impact of salinity on soil microbial communities and the decomposition of maize in acidic soils. Geoderma 137: 100-108. https://doi.org/10.1016/j.geoderma.2006.08.001 Wu, Q.L., Zwart, G., Schauer, M., Agterveld, M.P.K., & Bahn, M.W. (2006). Bacterioplankton community composition along a salinity gradient of sixteen high-mountain lakes located on the Tibetan Plateau, China. Appl Environ Microbiol 72: 5478-5485. https://doi.org/10.1128/AEM.00767-06 Yan, N., & Marschner, P. (2013). Microbial activity and biomass recover rapidly after leaching of saline soils. Biol Fert Soils 49 (3): 367-371. https://doi.org/10.1007/s00374-012-0733-y Yang, L., Bian, X.G., Yang, R.P., Zhou, C.L., & Tang, B.P. (2018). Assessment of organic amendments for improving coastal saline soil. Land Degrad Dev 29 (2): 3204-3211. https://doi.org/10.1002/ldr.3027 Yao, R.J., Yang, J.S., Wu, D.H., Xie, W.P., Gao, P., & Wang, X.P. (2016). Characterizing spatial-temporal changes of soil and crop parameters for precision management in a coastal rainfed agroecosystem. Agron J 108: 2462-2477. https://doi.org/10.2134/agronj2016.01.0004 Yao, R.J., Yang, J.S., Zhang, T.J., Gao, P., Yu, S.P., & Wang, X.P. (2013). Short-term effect of cultivation and crop rotation systems on soil quality indicators in a coastal newly reclaimed farming area. J Soils Sediments 13: 1335-1350. https://doi.org/10.1007/s11368-013-0739-6 Yousuf, B., Kumar, R., Mishra, A., & Jha, B. (2014). Differential distribution and abundance of diazotrophic bacterial communities across different soil niches using a gene-targeted clone library approach. FEMS Microbiol Lett 360 (2): 117-125. https://doi.org/10.1111/1574-6968.12593 Zhang, J., Dong, X.C., Zhan, H., Deng, D.L., Luo, C.Y., Zhang, C.H., & Qiu, H.Z. (2019). Effect of long-term nitrogen application on bacterial community structure of potato soil in semi-arid area. J Gansu Agric Univ 54 (1): 30-41. https://doi.org/10.13432/j.cnki.jgsau.2019.01.005 Zhang, J.B., Yang, J.S., Yao, R.J., Yu, S.P., Li, F.R., & Hou, X.J. (2014). The effects of farmyard manure and mulch on soil physical properties in a reclaimed coastal tidal flat salt-affected soil. J Integr Agr 13 (8): 1782-1790. https://doi.org/10.1016/S2095-3119(13)60530-4 Zhang, .KP., Shi, Y., Cui, X.Q., Yue, P., Li, K.H., Liu, X.J., Tripathi, B.M., & Chu, H.Y. (2019). Salinity is a key determinant for soil microbial communities in a desert ecosystem. mSystems 4:e00225-18. https://doi.org/10.1128/mSystems.00225-18 Zhang, Y., Li, Q., Chen, Y.L., Dai, Q.G., & Hu, J. (2019). Dynamic change in enzyme activity and bacterial community with long-term rice cultivation in mudflats. Curr Microbial 76 (3): 361-369. https://doi.org/10.1007/s00284-019-01636-5 Zhao, S., Liu, J.J., Banerjee, S., Zhou, N., Zhao, Z.Y., Zhang. K., & Tian, C.Y. (2018). Soil pH is equally important as salinity in shaping bacterial communities in saline soils under halophytic vegetation. Sci Rep 8 (1): 4550. https://doi.org/10.1038/s41598-018-22788-7 Zhou, G.X., Zhang, J.B., Zhang, C.Z., Feng, Y.Z., Chen, L., Yu, Z.H., Xin, X.L., & Zhao, B.Z. (2016). Effects of changes in straw chemical properties and alkaline soils on bacterial communities engaged in straw decomposition at different temperatures. Sci Rep 6: 22186. https://doi.org/10.1038/srep22186 Zhou, L., Yang, Y., Wang, Z.H., Chen, F., & Zeng, Z.H. (2013). Influence of maize-soybean rotation and N fertilizer on bacterial community composition. Acta Agronomica Sinica 39 (11): 2016-2022. https://doi.org/10.3724/SP.J.1006.2013.02016 Zhou, M.H., Butterbach-Bahl, K., Vereecken, H., & Brüggemann, N. (2017). A meta-analysis of soil salinization effects on nitrogen pools, cycles and fluxes in coastal ecosystems. Global Change Biol 23: 1338-1352. https://doi.org/10.1111/gcb.13430