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Summary

In the present paper we provide the conditions guaranteeing the generalization of
so-called diauxic behaviour of solutions of ODEs. This behaviour was described by
Monod in 1949 in the context of bacterial growth. Then a similar behaviour was
observed and described referring to dynamic of CDK1 protein during cell cycle.1

The diauxic behaviour is described in terms of inflection points.
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1 INTRODUCTION

Monod described bacterial growth in a batch culture containing a mixture of two carbon sources.2 This growth, called diauxic
(or rarely diauxie) growth, is characterized by the appearance of two seperated logistic growth phases. This phenomenon is
caused by sequentially metabolizing two sugars present on a culture growth media. Consumption of the first one is followed by
lag phase, while the cellular machinery starts to metabolize the second sugar. The typical example of diauxic growth is growth
of Escherichia coli on a mixture of glucose and lactose. The order in which carbon sources are metabolized is controlled by
carbon catabolite repression (CCR).
A number of mathematical models have been proposed to describe and understand diauxic growth. For instance, some have

used ordinary differential equation to model the process of the growth of bacteria.3,4,5 Some authors considered the model of
gene regulation in diauxic growth.6 Kremling et al. described many variants of models: flux balance models, kinetic models with
growth dilution, kinetic models with regulation and resource allocation models, all showing diauxic behaviour of the solution.7
Authors understood and defined diauxic growth in the intuitive sense i.e. as two seperated growth phases.
In regression modeling the double logistic curve or double sigmoid curve has diauxic behaviour. Logistic functions are used

in many applied research like nonlinear regressions, neural networking.8,9 There are problems for which describing by a dou-
ble sigmoid function is more adequate. For instance, such function were considered in describing enzyme kinetics10, fatigue
profiling11 and score normalization12 in biometrics systems.
In the previous work, we observed that the dynamic of CDK1 protein during cell cycle has diauxic behaviour.1 This type of

growth is caused by inhibitor protein CDC6. We proposed a mathematical model which provides a possible explanation for the
experimental data. Consideration the protein CDC6 as inhibitor of CDK1 was the first attempt in the literature to explain double
growth CDK1 activation curve.
In mathematical terms, we define the diauxic behaviour of the function as the existence of more than one inflection points of

the function. Proposed definition is generalization of diauxic behaviour described byMonod, because of lack of upper limitation
on number of inflection points. For instance, the number of inflection points on the curve described by Monod is three2 and the
number of inflection points on curve defining the dynamics of CDK1 is three or four depending on initial data1. The latter paper
was the first approach proposing the description of diauxic growth in terms of number of inflection points.
The appearance of diauxic behaviour in various biological systems inspired our subsequent research on the conditions

guaranteeing the diauxic behaviour of the solution of the ordinary differential equations.
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The present paper, to the knowledge of the author, is the first approach giving a general mathematical basis for description of
diauxic phenomena. In contrast to1 we refer here to the biological phenomena at two different time scales.13
The structure of the paper is as follows. In Section 2 we provide the conditions in the autonomic system of one dimensional

equation to obtain the diauxic behaviour of the solutions. In section 3 we introduce the small parameter in the system of two
differential equation and then using the Tikhonov and Vasil’eva theorem we compare the solution to solution of one dimensional
case.13. Section 4 provides conclusions and directions for further research.

2 ONE–DIMENSIONAL CASE

Let f ∶ [0, 1]→ ℝ be a continuous function such that

f (0) = f (1) = 0 , (1)

and
f (x) > 0 ∀ x ∈ (0, 1) , (2)

and
∀ a, b ∶ 0 ⩽ a < b ⩽ 1 f (x) ≠ const on (a, b) (3)

Additionally we assume that f ∈ C2
(

[0, 1]
)

with the meaning that f ′(0), f ′(1), f ′′(0), f ′′(1) are one–sided derivatives.
Analogously we undestand Ck([0, 1]

)

, for any k ∈ ℕ.
We consider the following Cauchy Problem

ẋ = f (x),
x(0) = x0,

(4)

where ẋ = d x
d t

and x0 ∈ (0, 1).
We refer here only to global (time) solution of the Cauchy Problem, but the generalization to finite time intervals is obvious.

We propose the following definition of diauxic behaviour.

Definition 1. We say that a solution of the Cauchy Problem Eq. (4) has the diauxic behaviour, if the solution, for t > 0, is
non-decreasing and has n inflection points, where n > 1.

Let
W1 = {x ∈ [0, 1] ∶ f ′(x) = 0},

where f ′ = d f
d x

.

Assumption 1. The function f is such that |f ′(x)| + |f ′′(x)| > 0 for any x ∈ [0, 1].

Proposition 1. Let Assumption 1 be satisfied. Then |W1| is finite, where | ⋅ | denotes the number of elements.

Proof. Assume that |W1| is infinite. Because W1 is compact, there exists a convergent sequence (ank)k∈ℕ and a corresponding
limit point a∞ inW1. By f ∈ C2

(

[0, 1]
)

we can calculate

f ′′(a∞) = lim
k→∞

f ′(ank) − f
′(a∞)

ank − a∞
= lim

k→∞

0
ank − a∞

= 0.

By Assumption 1 this contradicts f ′(a∞) = 0 and a∞ ∈ W1. It means thatW1 is a finite set.

Let
W = {x ∈ (0, 1) ∶ ∃ " > 0 ∀ �1, �2 ∈ (0, ") f ′(x − �1) ⋅ f ′(x + �2) < 0}.

An obvious observation is thatW ⊆ W1 and from Proposition 1 we obtain that |W| is finite.
The setW containts the points belonging to (0, 1), in which the derivative of function f changes sign. We denote

W = {x1, x2,… , xn}, (5)

where 0 < x1 ⩽ x2 ⩽… ⩽ xn < 1.

Proposition 2. Assume that Assumption 1 is satisfied. Then n, define above, is an odd number.
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Proof. From Eqs. (1) and (2) we obtain that there exists " > 0 such that f ′(x) > 0 for x ∈ (0, ") and f ′(x) < 0 for x ∈ (1−", 1).
It means that there exist x∗ ∈ (0, 1) such that f ′(x∗) = 0. It means that setW is nonempty. Assume that n = 2m, where m ∈ ℕ.
Then f ′(x) > 0 for x ∈ (0, x1) ∪ (x2, x3) ∪…∪ (x2m, 1) and f ′(x) < 0 for x ∈ (x1, x2) ∪ (x3, x4) ∪…∪ (x2m−1, x2m). Therefore
f ′(x) > 0 for x ∈ (x2m, 1). This contradicts f ′(x) < 0 for x ∈ (1 − ", 1). It means that n is an odd number.

Corollary 1. The number of inflection points of the solution x = x(t) of Eq. (4) is equal

• n if x0 ∈ (0, x1),

• n − k if x0 ∈ [xk, xk+1), where k ∈ {1,… , n − 1},

• 0 if x0 ∈ [xn, 1).

Proof. From Eqs. (1) and (2) the unique solution x = x(t) is an increasing function for t ⩾ 0, such that lim
t→∞

x(t) = 1. We obtain

• if x0 ∈ (0, x1), then there exists tl > 0 such that x(tl) = xl for any l ∈ {1, 2,… , n},

• if x0 ∈ [xk, xk+1), where k ∈ {1, 2,… , n−1}, then there exists tl > t0 such that x(tl) = xl for any l ∈ {k+1, k+2,… , n},

• if x0 ∈ [xn, 1), then ∀ x ∈ (xn, 1) f ′(x) < 0.

From Corollary 1 we obtain the following remark.

Remark 1. The following two cases are possible:

• x(t) is convex in the neighbourhood of t = 0 if x0 ∈ (0, x1) ∪ (x2, x3) ∪ … ∪ (x2m, x2m+1)— see Figure 1 ,

• x(t) is concave in the neighbourhood of t = 0 if x0 ∈ (x1, x2) ∪ (x3, x4) ∪ … ∪ (x2m+1, 1)— see Figure 2 .

FIGURE 1 Convex function x(t) in the neighbourhood of t = 0.

Example 1. Consider f (x) = x(1 − x)((x − �)2 + !), where � ∈ (0, 1) and 0 < ! ≪ 1. Then solution x = x(t) of Eq. (4) with
initial data x(0) ∈ (0, x1) has three inflection points — see Figure 3 .

Example 2. Consider f (x) = x(1 − x)((x− �)2(x− �)2 +!), where 0 < � < � < 1 and 0 < ! ≪ 1. Then solution x = x(t) of
Eq. (4) with initial data x(0) ∈ (0, x1) has five inflection points — see Figure 4 .

Examples 1 and 2 are particular cases of the replicator equations for the multiplayer games. Example 1 is the replicator
equation for the three players game, and Example 2 – five players game.14
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FIGURE 2 Concave function x(t) in the neighbourhood of t = 0.

FIGURE 3 Function x(t) with three inflection points.

FIGURE 4 Function x(t) with five inflection points.



Mateusz Dębowski 5

3 TWO–DIMENSIONAL CASE

Consider the following systems of ODEs
ẋ = f (x, y), x(0) = x0,
ẏ = g(x, y), y(0) = y0,

(6)

where
f (0, 0) = g(0, 0) = 0 . (7)

Following the Definition 1 we propose the definition of diauxic behavior for two-dimensional case.

Definition 2. We say that a solution (x, y) = (x(t), y(t)) of the Cauchy Problem Eq. (6) has the diauxic behaviour with respect
to the first variable x, if x = x(t), for t > 0, is non-decreasing and has n inflection points, where n > 1.

In the sequel, for simplicity, we omit "with respect to the first variable" assuming it everywhere.

Assumption 2. Assume that functions f and g:

f ∶  ×  → ℝ
g ∶  ×  → ℝ

are

• continuous with respect to all variables,

• three times continuously differentiable with respect to the variables x, y in  ×  , k ⩾ 1,

where  is a compact set in ℝ and  is a bounded open set in ℝ.

We consider two dimensional system with two different time scales.13 We are interested in diauxic behaviour of the variable
with time scale O(1). We may apply the method of small parameter13 and consider the following system

ẋ = f (x, y) ,
ẏ = 1

"
g(x, y) , (8)

where " is a (small) positive number.
We consider the corresponding degenerate system of the system Eq. (8)

̇̄x = f (x̄, ȳ), x̄(0) = x0,
0 = g(x̄, ȳ).

(9)

Assumption 3. Assume that there exists a solution ȳ = �(x̄) ∈  of the second equation of the system Eq. (9), for x̄ ∈  . The
solution is continuous in  and there exists � > 0 such that

g(x, y) ≠ 0 for 0 < |y − �(x)| < �, x ∈  .

The system Eq. (9) leads to the following reduced equation

̇̄x = f (x̄, �(x̄)) , x̄(0) = x0. (10)

Assumption 4. Assume that function x̄ → f (x̄, �(x̄)) satisfies the Lipschitz condition with respect to x̄ in  for t ∈ [0, T ].
Assume moreover that there exists a unique solution x̄(t) of Eq. (10) on [0, T ] such that

x̄(t) ∈ Int , ∀t ∈ (0, T ).

According to theory of small parameter13, we consider the following equation
dŷ
dτ
= g(x0, ŷ), ŷ(0) = y0. (11)

Assumption 5. Assume that the solution ŷ = ŷ(�) of Eq. (11) satisfies

lim
�→∞

ŷ(�) = �(x0),

and ŷ(�) ∈  for all � ≥ 0.

Assumption 6. Assume that )g
)y
(x, �(x)) < 0, for x ∈  .
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We are interested in the diauxic growth (say to Eqs. (1) and (2)), so we assume additionally

Assumption 7. Assume that f (1, �(1)) = 0 and f (x, �(x)) > 0 for x ∈ (0, 1).

We want to compare number of inflection points of each of two solutions: solution x = x(t) of the system Eq. (8) and solution
x = x(t) of the equation Eq. (4). We compare the second derivatives and provide the following theorem

Theorem 3. Let Assumptions 2, 3, 4, 5, 6 be satisfied. There exists "0 > 0 and a positive constant c such that for any " ∈ (0, "0]
there exists a unique solution (x(t), y(t)) of the system Eq. (8) on [0, T ] and

|ẍ(t) − ̈̄x(t)| < c" for t ∈ [�, T ], � > 0.

Proof. Under Assumptions 2, 3, 4, 5, 6 the Tikhonov–Vasil’eva theorem holds.13 It follows that there exists "0 > 0 and a
constant d such that for any " ∈ (0, "0] there exists a unique solution (x(t), y(t)) of the system Eq. (8) on [0, T ] and

|x(t) − x̄(t) − "x̄1(t)| ⩽ d"2,
|y(t) − ȳ(t) − "ȳ1(t)| ⩽ d"2,

(12)

for all t ∈ [�, T ], � > 0, where (x̄(t), ȳ(t)) is a solution of the degenerate system Eq. (9) and (x̄1(t), ȳ1(t)) satisfies the following
equations

̇̄x1 = x̄1fx(x̄, ȳ) + ȳ1fy(x̄, ȳ),
̇̄y = x̄1gx(x̄, ȳ) + ȳ1gy(x̄, ȳ).

(13)

We want to estimate |ẍ(t) − ̈̄x(t)|. We have

|ẍ(t) − ̈̄x(t)| = |fx(x, y)ẋ(t) + fy(x, y)ẏ(t) − fx(x̄, ȳ) ̇̄x(t) − fy(x̄, ȳ) ̇̄y(t)| ⩽

⩽ |

|

|

fx(x, y)f (x, y) − fx(x̄, ȳ)f (x̄, ȳ)
|

|

|

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
∶=J1

+ |

|

|

1
"
fy(x, y)g(x, y) − fy(x̄, ȳ) ̇̄y(t)

|

|

|

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
∶=J2

Now we estimate J1 and J2 separately. We begin with J1.

J1 = |fx(x, y)f (x, y) − fx(x, y)f (x̄, ȳ) + fx(x, y)f (x̄, ȳ) − fx(x̄, ȳ)f (x̄, ȳ)| ⩽
⩽ |fx(x, y)| ⋅ |f (x, y) − f (x̄, ȳ)| + |f (x̄, ȳ)| ⋅ |fx(x, y) − fx(x̄, ȳ)|

Under Assumption 2 we obtain that |fx(x, y)| ⩽M1, |f (x̄, ȳ)| ⩽M2, |f (x, y) −f (x̄, ȳ)| ⩽ L1(|x− x̄|+ |y− ȳ|) and |fx(x, y) −
fx(x̄, ȳ)| ⩽ L2(|x − x̄| + |y − ȳ|) whereM1, M2 are positive constants and L1, L2 are Lipschitz constants. We have

J1 ⩽ (M1L1 +M2L2)(|x − x̄| + |y − ȳ|)

By Eq. (12) it follows that
x(t) = x̄(t) + "x̄1(t) + "2r1(t, "),
y(t) = ȳ(t) + "ȳ1(t) + "2r2(t, "),

(14)

where r1(t, "), r2(t, ") are bounded functions for any t ∈ [�, T ] and " ∈ (0, "0]. Thus, there exist positive constatsN1, N2 such
that |r1(t, ")| ⩽ N1 and |r2(t, ")| ⩽ N2 or any t ∈ [�, T ] and " ∈ (0, "0]. Then we have

|x(t) − x̄(t)| = |"x̄1(t) + "2r1(t, ")| ⩽ K1",
|y(t) − ȳ(t)| = |"ȳ1(t) + "2r2(t, ")| ⩽ K2",

where K1 and K2 are positive constants. Finally, we estimate J1

J1 ⩽ (M1L1 +M2L2)(K1 +K2)"

Now we estimate J2.

J2 =
|

|

|

1
"
fy(x, y) − fy(x, y) ̇̄y(t) + fy(x, y) ̇̄y(t) − fy(x̄, ȳ) ̇̄y(t)

|

|

|

⩽

⩽ |fy(x, y)| ⋅
|

|

|

1
"
g(x, y) − ̇̄y(t)||

|

+ |
̇̄y(t)| ⋅ |fy(x, y) − fy(x̄, ȳ)|



Mateusz Dębowski 7

By Assumption (6), there exists � > 0 such that gy(x̄, ȳ) < −� for ȳ = �(x̄) and x̄ ∈  . Using this and chain rule applied to
second equation of degenerate system Eq. (9) it follow that

d
dt
g(x̄, ȳ) = 0,

gx(x̄, ȳ) ⋅ ̇̄x(t) + gy(x̄, ȳ) ̇̄y(t) = 0,

̇̄y = −
gx(x̄, ȳ)f (x̄, ȳ)

gy(x̄, ȳ)
,

|
̇̄y(t)| ⩽

|gx(x̄, ȳ)||f (x̄, ȳ)|
�

, for t ∈ [�, T ].

By Assumption (2) we obtain that |fy(x̄, ȳ)| ⩽M3, |gx(x̄, ȳ)| ⩽M4, |gy(x̄, ȳ)| ⩽M5 and |fy(x, y) −fy(x̄, ȳ)| ⩽ L3(|x− x̄|+
|y − ȳ|), whereM3, M4, M5 are positive constant and L3 is Lipschitz constant. We have

2 ⩽M3
|

|

|

1
"
g(x, y) − ̇̄y(t)||

|

+
M4M2L3

�
(|x − x̄| + |y − ȳ|)

By Assumption (2) and Eq. (14) we provide the following Taylor series for g(x, y) at (x̄, ȳ)

g(x, y) = g(x̄ + "x̄1 + "2r1(t, "), ȳ + "ȳ1 + "2r2(t, ")) =
= g(x̄, ȳ) + ("x̄1 + "2r1(t, "))gx(x̄, ȳ) + ("ȳ1 + "2r2(t, "))gy(x̄, ȳ) + R(t, ") =
= "(x̄1gx(x̄, ȳ) + ȳ1gy(x̄, ȳ)) + "2(r1(t, ")gx(x̄, ȳ) + r2(t, ")gy(x̄, ȳ)) + R(t, ").

where |R(t, ")| ⩽ K"2, K > 0. Then, using the second equation of Eq. (13)
|

|

|

1
"
g(x, y) − ̇̄y(t)||

|

= |

|

|

x̄1gx(x̄, ȳ) + ȳ1gy(x̄, ȳ) + "(r1(t, ")gx(x̄, ȳ) + r2(t, ")gy(x̄, ȳ)) +
R(t, ")
"

− ̇̄y(t)||
|

⩽

⩽ "
(

|r1(t, ")||gx(x̄, ȳ)| + |r2(t, ")||gy(x̄, ȳ)|
)

+K" ⩽ "(N1M4 +N2M5 +K).

Finally, we get the following inequality

J2 ⩽M3(N1M4 +N2M5 +K)" +
M4M2

�
L3(K1 +K2)".

We conclude that

|ẍ(t) − ̈̄x(t)| ⩽ 1 + 2 ⩽ "
(

(M1L1 +M2L2)(K1 +K2) +M3(N1M4 +N2M5 +K +
M4M2

�
L3(K1 +K2)

)

= c"

valid for t ∈ [�, T ].

By Theorem 3 we obtain the diauxic behaviour of the first variable x = x(t) of the system Eq. (8) provided the corresponding
reduced equation Eq. (10) leads to the solution that behaves in diauxic way. In fact

Corollary 2. Under assumptions of Theorem 3 and Assumption 7, if x̄ = x̄(t) is a solution of Eq. (10) and the corresponding
number of inflection points n > 1, for t > 0, then the solution (x, y) of the system Eq. (8) has diauxic behaviour provided " is
sufficiently small.

4 CONCLUSIONS

In the present paper we provided the conditions ensuring the diauxic behaviour at various time scales. We considered one-
dimensional ordinary differential equation and system of two ordinary differential equations. In the latter system we introduced
the small parameter and we compared the solution of reduced equation Eq. (10) with the first variable of solution of Eq. (8).
The interesting novelty of the present paper is in the precise mathematical description of diauxic behaviour. The interesting
generalization of diauxic growth for description at microscopic and macroscopic level is still an open problem. Consideration
multiple timescales is also an open problem. The interesting possibilities of description of diauxic-type behaviour come from
recent result by Banasiak, who provided a new proof of the Tikhonov theorem for the infinite time interval.15 We intend to study
it in the future.
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