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Abstract

The aim of this paper is to study the existence and multiplicity of nonnegative
solutions for the following critical Kirchhoff equation involving the fractional p-Laplace
operator (—A)s. More precisely, we consider

M (ffyon B drdy ) (—A)gu = M (@) |ult 20+ K () [uf?2u, i,
u =0, in RV \ Q,

where Q C RY is an open bounded domain with Lipschitz boundary 99, M(t) = a +
bt™~! with m > 1,a > 0,b > 0, dimension N > sp, p* = N]\?; is the fractional critical

S

Sobolev exponent, and the parameters A > 0,0 < s < 1 < ¢ < p < c0. Applying
Nehari manifold, fibering maps and Krasnoselskii genus theory, we investigate the
existence and multiplicity of nonnegative solutions.
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1 Introduction and statement of results

The aim of this paper is to study the existence and multiplicity of nonnegative solutions for the

following critical Kirchhoff equation involving the fractional p-Laplace operator (—A);

M ([ MO Gy} (—A)gu = Af (@)l =20 + K (@) [ul2u,  in 6,

lw—y|VFPs (1.1)
u=0, in RV \ Q,
where Q@ C RY is an open bounded domain with Lipschitz boundary 0Q, M(t) = a + bt™ ! with

m > 1l,a,b > 0, dimension N > sp, pi = NJ\Z’) - is the fractional critical Sobolev exponent, and the

*Corresponding author.
E-mail: dafeyang@163.com (J. Yang), math_chb@163.com (H. Chen), jasonliu0615@163.com(S. Liu).



parameters A > 0,0 < s < 1 < ¢ < p < oo. Here, the fractional p-Laplace operator (—A);, up to

normalization factors, is defined for every function u € C3°(R") as

CAYuls) — 2 lim Ju(z) — u(y)[P~*(u(z) — u(y)) e RV
(FA)pulz) =2 lim, RN\ B, (z) |z — y|NFes # (@R,

where Bc(r) denotes the open ball in RY with center z and radius e.

The weight functions f and K are continuous on ) satisfying fi # O,where f = f, — f_ with
f+ = max{+f,0}; Furthermore, we impose the following assumption on K:
(K) There exists a constant 0 < p < }% such that K(z) — K(x) = O(|z — z|?) as ¢ — z uniformly for
zell ={z € QK (z) =max,cq K(z) =1};
Remark 1.1. Let II; = {x € RV |dist(x,II) < 6} for some & > 0. It follows from [39] that there exist

three positive constants ng,ro and oo such that
K(z)>mny forall zell,, CQ

and
K(z) — K(z) < og|lz — z|° for all z € By (z)

uniformly for z € II.

When M(s) =1,s =1,p = 2, the study on the semilinear critical elliptic problem began from Brezis
and Nirenberg [20]. Henceforth, much attention has been given to all kinds of elliptic equations with
critical growth in the bounded domain or in the whole space, see [21, 22, 23, 24, 25, 26]. Recently, many
authors have been working on the solvability or multiplicity of Kirchhoff type equation with critical
exponent, for example [3, 6, 14, 19, 21, 22, 23, 24, 25, 26, 28, 29, 30].

In [33], the authors first considered the following related problem in the bounded domain:

—Au = Au? + uP, T € €,
u >0, T € 9, (1.2)
u =0, x € 0f)

where 1 < ¢ <2 < p < 2%(2* = % if N >3, 2* =00 if N =1,2). By using the sub-supersolution
method, they showed the existence and nonexistence results depending on a sharp constant \g.

In [31], Xie and Chen generalized (1.2) to the following Kirchhoff type equation:

—M([q [Vul?d) Au = Qx(x)[ul?? + K(2)[ul* ?u, z€Q,

(1.3)
u =0, x € 01,

where Q is a smooth bounded domain in RN(N > 3),1 < ¢ < 2, M(s) = a + bs® with a > 0,b > 0
and 8 > 0. The weight functions @,(z)and K are continuous and changing-sign. Using the Nehari
manifold, fibering maps and Ljusternik-Schnirelmann category, they proved that at least two positive
solutions for (1.3) exist provided that 5 = 1 and 2* > 4. Furthermore, by the mountain pass theorem
and Ekeland’s variational principle, it was shown that (1.3) possessed at least three positive solutions
whenever 5 > ﬁ, including the case that 8 =1 and 2* < 4.



In the last decade, a lot of attention has been focused on the fractional Laplacian operator and non-
local operator. In [32], the authors studied the Brezis-Nirenberg type results for the following elliptic
equation involving the fractional Laplacian (—A)*(0 < s < 1) in bounded domain:

(=A)u = Au+ [u%2u, x€Q,

(1.4)
u =0, x € 010,

where A > 0,s € (0,1) is fixed, 2% = N2N2 , Q c RY(N > 2s), is open, bounded and with Lipschitz
boundary, (—A)? is the fractional Laplace operator. The authors extended the classical Brezis-Nirenberg
result to the case of non-local fractional operators through variational techniques. Soon afterwords,
Mosconi et al. [35] obtained nontrivial solutions to the Brezis-Nirenberg problem for the fractional
p-Laplacian operator, extending some results in the literature for the fractional Laplacian.

Inspired by the above papers, we consider the multiplicity of nonnegative solutions for (1.1) with the
concave and convex nonlinearities. In particular, Mishra and Sreenadh [19], investigated the following

fractional p-Kirchhoff equation

M(fpan " dady) (= A)ju = M @)l 2u + g(@)|ul 2,z €2, ws)
u =0, x € 011,

where M(t) = a+ bt,a,b>0,p>2,1<qg<p<r <pips< N <2pswith s € (0,1), A >0, Q C RV,
is an open, bounded domain with Lipschitz boundary, and f, ¢ are possibly sign changing on Q. They
examined the existence of multiple solutions for (1.5) by using Nehari manifold and fibering maps in the
following three cases:(i) 2p < r, (ii) 2p = r, (iii) 2p > r when b and X belongs to specific intervals.

Now, a natural question is whether the existence and multiplicity of solutions for the p-Kirchhoff
equations in [19] can be generalized to the critical case?

Motivted by the above works, here we shall solve the above probelm. The goal of this paper is to
consider the question related to the existence and multiplicity of nonnegative solutions for (1.1) in the
following two cases:(i) mp < p, (ii) mp = p%. Before stating our main results, we introduce some nota-

tions.

p3
Ps—q’
without further mentioning. The problem (1.1) has a variational structure and the natural space to look

Notations and definitions. Throughout the article we assume that max,.q K(z) = 1, ¢* =

for solutions. It is the fractional Sobolev spaces W, (2). We firstly recall some notations. The usual
fractional Sobolev space W*P(§2) endowed with the form

1
p P
falbwesioy = (Wil + [ D=0 nay ) (16)

When Q = RY, we define D$P(R") as the closure of CSO(RN ) with the norm

u(y)|P
) = ADT gady.
o //R?N \:v—y!N“’S

In [9], new function spaces E which take into account this boundary condition were introduced given as

E = {u : RN — R is measurable, u|q € LP(Q), <W> € LP(Q)} ,
o=yl
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where Q = R2V \ (CQ x CQ) and € = RN \ Q. The space E is endowed with the norm defined by

1
ju(a ;
Jullp = (uun 2 e + // )=S0 dody) " (1.7

The function space Ey denotes the closure of C§°(£2) in E. Subsequently, in [10], authors proved the space
FEjy is a uniformly convex Banach space endowed with the norm

fulles = ( [ i dedy)’l’ (1.5)

which is equivalent to the natural one defined in (1.6). Since u = 0 a.e. in RY \ Q, we note that the
integral in (1.7) and (1.8) can be extended to R?N. The embedding Ey — L"(f2) is continuous for any
r € [1,p%] and compact whenever r € [1,p})(see[10, Theorem6.7]). As in [10], let S be the best constant
of the fractional Sobolev embedding D*P(R) « LPs (RV) defined by

o B 4y

S =
weD=(ENN(0)  (Jgw [ulP da)P/P:

, (1.9)

which is well defined and strictly positive. For more details and properties on E and Ey, please refer
to [10] and the references therein. From now on, we will denote || - ||z, and || - ||z»(q) by [/ - || and |-,
respectively.

Next, the energy functional associated to problem (1.1) is given by

b
D) = Sl + ol =< [ @ - [ K@)l (1.10)

We now summarize our main results as follows.

Theorem 1.1. Assume that m < %m’ f+ Z0 and (K) hold. Then there exist 0 < Ax < Ao and by, >0
such that

(i) for any XA € (0,Xg), problem (1.1) admits at least one nonnegative ground state solution wuy with
I(uy) <O.

(it) for any XA € (0,A),b € (0,by) problem (1.1) admits at least two nonnegative solutions uy and uyyp
satisfying In(uy) < 0 < Ix(urp), and uy is a ground state solution.

Theorem 1.2. Assume that m = N%pg, fr Z0 and (K) hold. Then
(i) for b > S™™ and any X > 0, problem (1.1) admits at least one nonnegative ground state solution;
(ii) for b < S™™, there exist 0 < A < Ao, and b, > 0 such that

(1) for any X\ € (0, \g), problem (1.1) admits at least one nonnegative solution.

(2) for any X € (0, \,) and b € (0,b,), problem (1.1) admits at least two nonnegative solution uy and
uxy satisfying In(uy) < 0 < Ix(urp), and uy is a ground state solution.

Remark 1.2. Whenm = 2 and K(x) = 1, then by Theorems 1.1-1.2, we get the existence and multiplicity
of momnegative solutions for the following problem.:

(a4 b ffpaw AL dwdy) (~A)pu = A (@)l + [u 20, in O,
u=0, in RN\ Q,

where ps < N < 2ps, which respectively generalize Theorem 1.6 of [19] and Theorem 1.1 of [36].
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To prove the above result, we apply the technique of Nehari manifold and fibering maps. The approach
is motivated by [6]. Compared with [6], the main difficulty lies in the lack of compactness due to the
nonlinearity with the critical growth. For this, adapting some calculations performed in [35] and applying
the optimal asymptotic behavior of p-minimizers proved in [16], we are able to prove a compactness result
for the energy functional under a suitable critical threshold. To prove the existence of the first solution,
we obtain a minimizing sequence whose energy functional converge to a negative number, which is less
than some critical level ¢} such that the (PS) condition holds. Meanwhile, for the second solution, we
extract a minimizing sequence with energy functional converging to a positive mountain pass level, which
also falls into the range of validity of the (PS) condition.

Since we deal with the multiplicity of solutions to (1.1), we use the idea borrowed from [17] to show
negative values of an associated energy functional via genus. Moreover, we require that f— = 0. We point
out that as far as we know, there appear only few papers on fractional p Laplacian probelms [6, 9, 19],
but no results on the multiplicity of solutions for problem (1.1) are available. So the aim of this work is
to give a first result in this direction.

Theorem 1.3. Assume that m < N]jps and f— = 0 hold. Then there exists A3 > 0 such that for any

A € (0,A3), problem (1.1) possesses infinitely many nontrivial solutions.

The rest of this paper is organized as follows. In section 2, we introduce the Nehari manifold and
fibering maps analysis for problem (1.1). In section 3, we prove the Theorems 1.1 and 1.2. The section
4 is devoted to the infinitely many solutions of problem (1.1).

2 The Nehari manifold and fibering maps analysis

The lemma below will be very useful in our work.

Lemma 2.1. If {u,} is a bounded sequence in Ey, then
[un = wl[” = [lun][” = [[u]]” + 0n(1).

Proof. The proof of this result is obtained following the argument developed by Brezis and Lieb, see for
example [13, Lemma 2.7]. O

We have that Iy is of class C' in Ey and for any v € Ey

w(z) —u(y) P2 (u(z) —u v(r) —v
<I;(U),v>=M(IIUHp)//Q| (@) — u(y)[P*(u(z) — u(y))(v(z) (y))dmdy

|ZL‘ _ y|N+ps

— / M () |u|7 2uvdx — / K (2)|ulP*2uvdz.
Q Q
Thus, we can define the Nehari manifold as
Ny = {u € Ey\ {0} : (I\(u),u) = 0}. (2.1)

The Nehari manifold is closely linked to the behavior of the fiber map ¢, : t € RT™ — I,(tu), which is
introduced in [11] and discussed in [12]. Therefore, we have

bu(t) = atP~Hul|P + bt |l — a7 / A (@)|u|tda — 77" / K (2)|ul" d.
Q Q



Then u € N, if and only if gb;(l) = 0 holds. Furthermore, for u € N, we get

"

¢u (1) = alp = @)lull” + b(mp — g)[[u|™ — (p5 — q) /Q K () |ul** dz, (2.2)

or
"

¢u(1) = alp = p;)|[ull” + b(mp — ps) [ul|™ — (¢ = p5) /Q A (@) |ulda. (2.3)
Like [12], we split Ny into three components as
N} ={u€ M6, (1) 20} and N} ={ue Ny, (1) =0}

Finally, we define

H+:{u€E0]/f(x)|u|qu>0}, H_:{ueEo/f(x)]u|qu§O},
Q Q

Gt ={uc E0|/ K(z)ulPrdz >0}, G~ ={uc E0|/ K (z)|ulPsdz < 0},
Q Q
According to mp < p¥, we have the following Lemmas.
Lemma 2.2. For any A > 0, the functional Iy is coercive and bounded below on Ny.

Proof. For any u € Ny, using (1.9) and Hoélder inequality, we deduce that

1

I(u) = D) = (13 (u),u)

1 1 1 1 1 1

:—aup—l——bump——/)\f:cuqdﬂs 2.4
(p p;‘) [ (mp pz) [[ul (q pif) ; (@)|ul (2.4)
1 1 1 1 q

> (= — —=)a||ullP — (= = =) f+]g=S Plul|?.
(p pz) I (q pz) [flgS™ 7 [lul

Thus I, is coercive and bounded below on Ny due to 1 < ¢ < p. O

Lemma 2.3. If u is a minimizer for Iy on Ny such that u € NY, then I, (u) =0 in Ej*.

Proof. The details of the proof can be found in [12, Theorem 2.3]. O
Let
(0 - )5 a(w; - p)SH>
— Ps—P — Ps—Pp
M:[af q] ot . (2.5)
Pi—4q (P = D) f+ler
Then we have the following result.
Lemma 2.4. For any A € (0, A1), there exists Ay > 0 such that NY = 0.
Proof. Suppose by contradiction that u € NY for all A € (0,A1). Then by (2.2) and (2.3), we have
oo = )l + bl = )l = (03 = 0) | K(@)lul o =0 (2.6
a(p — po)llull” + b(mp — pO)llul™ — (q — ) /Q Af (@) uldz = 0; (2.7)



Hence, from (2.6) and (1.9), we get
Ps—4q | pi_ Ds—4
JullP < Z—<|uly: < Z=— S_7IIUHPS-
a(p —q) a(p —q)

On the other hand, from (2.7), Hélder inequality and (1.9), we obtain that

Jul < P [ Flultds < Ly 5l

(ps p)
These yield that

1 —
_ 5 =p x -5 | P—a
[a(f Q)S’;] ) < |9 : STt
pi—q a(ps —p)
Therefore,
p—q p}:;q
a(p—q)|»ir alps —p)S¥=r
S A A
Ps—4q @5 — D)l f+lg*
which gives the contradiction because A < Aq. d

3 Proofs of Theorems 1.1-1.2

In this section, we give the proof of the existence and multiplicity results for the case mp < pi. We

have the following Lemmas. Firstly, we show the component sets N ;r and N, are nonempty. Now, we
define

A1, m < N—ps

Ay = ) p=q N
Ps—P _
(17b5m) )\1’ m = N—ps

(3.1)

Hence, we obtain the following lemmas.

Lemma 3.1. Let m < %ps' Then

(i) for any u € Ht NGT, X\ € (0, \), there exist 0 < tT =t (u) < tmazr = tmaz(u) <t~ =t~ (u), such
that tTu € Ny ,t7u € Ny, and

o) — i - —
I(t u)—oglgr;_ Iy(tu), I\(t u)—tgile,\(tu).

(ii) for any uw € HT NG~, X\ > 0, there exists a unique t+ > 0 such that tTu € N; and
I(tTu) = min I, (tu).
At u) min A(tu)
Proof. For a given u € Ey\{0}, define 9,(¢) : Rt — R as
U () = atP™ | u||P + bt"™P ™9 ||u||™P — tp:q/ K (z)|ulPsdz. (3.2)
Q

We note that tu € N if and only if 1, () = [, AMf(z)|u|dx.
(i)Let u € Ht NG™, by (3.2), it is easy to see 1,(0) = 0,1, (t) — —oc as t — oo. Moreover, since

/

Uy (t) = alp — QP ul|P + (mp — g)bt™P= T |u||"P — (pi — q)tPs T4 /Q K (z)|ul* dz (3.3)



it is obvious that lim, o+ ., (t) > 0 and limy_,o 1., () < 0. Let v, (t) = t?=9" hy (t), where
ha(t) = a(p — @) |ull? + (mp — @)bt™ P [[u| ™ — (p; — @)t 7 /Q K (x)[ul?* dz.

Then it is easy to see that there exists a unique ¢y > 0 such that h;(to) = 0. Indeed,

t0:<( (mP—Q)(mp p)bHuHmP >p1mp

ps - C_[ fQ ’u|psd;c

Moreover, since mp < p%, we have h,(0) = O,tlipoao hy(t) = —oo, which indicates that there is a unique
tmaz > to such that hy(tmae:) = 0. Hence, we obtain ¢,,4, as a unique critical point of 1, (t) such that
1y, (t) achieves its maximum at t,,q,. Namely, 1, (t) is increasing on (0, t4s), decreasing on (¢a4, 00)
and 1, (tmag) = 0.

Furthermore, ¥y (tmaz) = max Py (t) > r?;igm/)u(t), where ¥, (t) = atP~||u||P — P77 [, K ()|u[P> da.
Then, by (1.9), we have

N p—q
— a(pt —p) (p— Q)GIIUH”S P3P
max iy (1) = [lul|!—=" >
>0 pi—q \(0—q) [o K(x)|ulPrdx

r—q

pE—p

ok
a(p; —p) [ (p—q)aS>
pE—q (Pt —q)

> ull

Foru e HT,
0ul0) =0 < [ A@)lultds < [ Flultde <A fely 57l
Q Q
Therefore, if

p—gq
pE—p

a(p: —p)S* [ (p—q)aS+
Pz — O\ f+lqr (rs —q)

A< A\ =

i

then there exist unique t* = ¢t (u) < tnae and t~ =t~ (u) > tynae such that

/7

u(th) = /Q/\f(:n)|u\qu =u(t7), P(tT) >0, ¥,(t7) <0,

which implies that tTu,t"u € N). Meanwhile, we can conclude that ¢tTu € Ny Fandt-ueN \ » hoting

the relation ¢y, (1) = t9+14, (t). Moreover, because ¢,,(t) = t9(1hu(t) — [, \f(2)|u|?dz), we obtain that

¢ (t) < 0 for all t € [0,¢) and ¢, (t) > 0 for all t € (t+,¢7). Thus I (t7u) = min Iy(tu). Similarly,
0<t<t—

¢, (t) >0 for all t € (t*,¢t7) and ¢,,(t) < 0 for all t € (t~, 00) yield that Iy(t~u) = max I (tu).

mazx

(ii) For w € H* N G~. From (3.2), we conclude that v, (t) — oo as t — oo, and 1, (t) > 0 for all t > 0.
Therefore, for all A > 0 there exists t* > 0 such that tTu € N} and I)(tTu) = rtn>161 I (tu). O

Lemma 3.2. Let m = N%ps, and b > 1/8™, then there exists a unique 0 < tT < tpae such that
t*u € Ny, when u € HT. Also, I\(tTu) = ming>q I)(tu).

Proof. For m = %;w using equation (3.2) and (3.3), we get

Pu(t) = at”ul[” + "P7(b]|ul™ = / K (x)[ul’"dz), (3.4)
Q
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Yu(t) = a(p — )"~ ul|? + (mp — @)t~ (bl ™ — /QK(UC)\Ulp;d@“)- (3.5)
Since b > 1/S™, one has ¥, (t) > 0,9,(t) > 0 for all £ > 0. One can easily see that Ny = N,.
Furthermore, for u € H™, there exists a unique ¢*(u) > 0 such that t*u € Ny = Ny. Hence, I, (tTu) =
ming>o Iy (tw). This completes the proof. O

Remark 3.1. If m = %, and b>1/S™, then N;r = N, for any A > 0.

Lemma 3.3. Let m = = ps, b < 1/S™ hold, then there exists a unique tpyqz(u) > 0 such that
(i) for u € HY with [, K(z)|ulPsdz — bl|lul|™ >0 and X € (0, \2), there exist unique t*, t7(u) < tmee <
t=(u), such that t*u € Nf, and
L(tTu) = min I(t I(t7u) = In(tu).
MtTu) = min Ii(tu),  I\(t7u) = max T(tu)
(ii) for any w € H~ with [, K(z)|u[P*dx — bl|u|™ > 0 and X > 0, there exists a unique t~ > 0 such that

t"u € Ny and
I(t = Iy (tu).
A7) max A(tu)

Proof. For each u € Eg\{0} with [, K(2)|ulP>dz — b||u||Ps > 0, from b < 1/S™, (3.4) and (3.5), we can
easily see that there exists ty,qr > 0 satlsfymg
1
= ol )™
maxr —
(pz — @) (Jo K (@) |ulPsdz — blju[P+)

such that

P—q

a(pt
Yultmaz) > ;_ :

- p) a(p — q)S™ v |2
(ps —q)(1 —bS™) '
Therefore, if

q

:a(pﬁ—p)55< a(p—q)S™ >pp—p
A= e\ o0 5™

there exist unique t* =t (u) < tjer and t7 =t~ (u) > tymae such that

’

Yu(th) = /Q/\f(fv)IU\qu = Gu(t7), Y, (t) >0, (1) <0
Then, arguing similarly as in Lemma 3.1, we complete the proof. 0

Remark 3.2. From Lemmas 2.4, 3.1 and 3.3, it is immediate to see that if m < %m orm = g,
b<1/S™ and A € (0, A1) hold, then Ny = Ny” UN, .

Lemma 3.4. Let A € (0, A1), then there exists a gap structure in Ny such that
|v]| > By > By > |lul| for any u € Ny,v e Ny .

Proof. Ifu € N; C N,, from (2.3), Holder inequality and (1.9), we get

a(ps —p)l[ull” < (ps - Q)/Qkf(w)\Uqufr < (ps = DAS 7| flg [Jull?



Therefore,
1

HUH < ((ps _Q)ES p|f+‘q*> :B/\.

a(pi —p)

Similarly, if v € Ny C Ny, then from (2.2), we have
a@—QWﬂ2<@i—@l?ﬂ@@?gwéﬂi—ﬂsﬂyﬂﬂﬁ-

Hence,

—aS7P
o > (=057 ) _ g
P —q)
After direct calculations, it is easy to see that By > B) for A € (0, A1), where A; is given in (2.5). This

ends the proof. O

Now, we are ready to study the infimum of I, on the Nit. Let us define cf = il’lfueN;\c I\(u) and
A=1x.

Lemma 3.5. Let m < N]jps orm = - ps, b<1/S™. Then

(i) For any X € (0, A1), we have ¢ = 1nfu€N;- Iy(u) < 0.
(ii) ¢, > ag > 0 for any X € (0,X). In particular, if X € (0,)), then

= inf [
C>\ UIEDN)\ A( )

Proof. (i) For u € N;r, together with (2.3), we observe that
Jas@luras = (=2 aup + (B0 o 39
Q ps —q ps q
Hence, it follows from (2.4) and (3.6) that

11 11 1
QSAWF4*—7MMW+F*—:MWWP(*—*) V(WWW
p P mp p q P

1 1 1 1
< - < = > (1 - 3‘1) allulP — < - ) (1 - mf) bl|ul|™® < 0.
q p Ps q mp bs

(i) For m < 2~ or m = b < 1/S™ and v € Ny, in view of Lemma 3.4 and A € (0, \), we

ps N—ps ps’
conclude that
1 1 1 1 1
Iy(u) = (= — =)al|ul|P + (— — —)bl|u||™ — —/)\f u|ldx
(u) % pQH!\ %w pQHH (q m) ()|ul
1 1 a(p — ) ) 1
> JJul|? —a( - A=——)|f .S7v
] [(p p:) s (q ps)laiq
_ q _
L @0l el 5y s s
*Sp
This completes the proof. O

The following technical lemma is necessary for studying the compactness of I.
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Lemma 3.6. For a given u € N;r and X\ € (0,A1), there is a number € and a differentiable function
(:B(0,e) C E — RT such that ((0) = 1, the function ((v)(u+v) € Ny and

<<—/(0) > pa<u7 U> + mpb”uH m_l)p<u U - qu )\f |U/|q_2'U/de pS fQ |u|p‘S ’U/wa (3 7)
V) = .
(p = @)allullP + (mp — @)bllul|™ = (ps — q) Jo K \U\psdl‘
or
, patu, o) + mpbllul) VP (u, ) — g fo M (@) [ul?uvdz — p; fo K (@) 0P~ 2uvda
(¢'(0),v) = N T T p (3.8)
a(p = p2)l|ullP + b(mp — po)llull™ — (¢ — pt) Jo Af( \UI da
where o
o) = [ 1P 0) ) 0) 0l o
R2N |z — y|VFes
for allv € B(0) ={v € Ey : ||v]| < €}.
Proof. For a given u € N, define F : Rt x Ey — R as follows
F(t,v) = tPallu + v||P + t"Pb||u + v||"P — t? / M (z)|u + v|%da — tP= / K (x)|u 4 v|Psdz.
Q Q
Hence,
F(1,0) = alull + bjul™ = [ Af(@ul'do ~ [ K(@lupidz =0,
Q Q
Moreover, we have
oF "
G 0 = pallll? + mpbll™? g [ Af@)fultds ;[ K(@lado > o (39)

Using the implicit function theorem at (1,0), we obtain that there exists € > 0 and a differentialable
function ¢ : B¢(0) € Ey — R such that ¢(0) =1, (3.7), (3.8) hold and F({(v),v) = 0 for all v € Be(0).
Therefore, we get

aIIC(v)(u+v)llp+bHC(v)(U+v)Ilmp—/Q/\f(w)lé(v)(wrv)lqdlf—/S)K(w)lé(v)(uﬂLv)p:dw:O

that is, {(v)(u + v) € N) for any v € Ey with ||v|| < €& By (3.9), we can choose 0 < € < € such that for
any v € Ey with ||v]| < €, we get %—f(((v),v} > 0 which implies that

pall¢(v)(u+v)||” + mpb[|¢(v)(u + v)[™ — ¢ /Q Af()I€(0) (u + )|z — pj /Q K (2)[¢(v)(u + v)[Pdz > 0,
that is ((v)(u +v) € Ny for all v € B.(0). O
Lemma 3.7. If A € (0, A1), then there exists a minimizing sequence {ur} C Ny such that

Ii(ug) = ey + op(1), and Iy(uz) = ox(1),

with ¢y = infyen, I\(u).
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Proof. Since by Lemma 2.2 and Ekeland’s variational principle [15], there exists a minimizing sequence
{ur} C Ny for I such that

ey < I)\(uk) <cy+ (310)

Eu
and also )
I (ug) <I,\(u)+E||u—ukH, for any u € Nj. (3.11)

From (3.10) and Lemma 2.2, we get supy, |lux|| < co. Next, we want to show |1 (ug)|| — 0 as k — oo.
By Lemma 3.6, we obtain the differentiable functions (; : B, (0) — R for some €; > 0 such that
Ck(v)(ur, —v) € Ny for all v € B, (0). For fixed k, choose 0 < ¢ < ¢ and define v, = pu/||u| with
u € Ep,u# 0. We set wy = ((v,)(ur — v,). Then it is clear that w, € Ny. From (3.11), we observe that

1
In(we) = In(ur) 2 = llwp — uall.
Applying the mean value theorem, we have
/ 1
(a(un), wo = uk) + ok(llwe — ukll) 2 = llwe — uall.
Therefore,
! / 1
= (U (un), vo) + (Gelve) — D{Ix(un), uk — vg) 2 = llwe — urll + ok(llwe — uxl])

Considering (I} (w,), ux — vy) = 0, we get

=0T 10, ) (G(00) = DU k) = o) = ve) = =l = el + o = sl
Hence
(I (), L — g 4+ 2l =usl) (G0 = 1) gy ) —vp). (312)

oy <
Jull” = ko 0 0
Since [, — upl] < plGh(v)| + [G(vg) — Ulun] and

o 166(00) = 1]

< ’
tiy =2 < ),
passing to the limit o — 0T in (3.12), we obtain
/ u C ’

1 —) < —(1 0

(). o) < O+ 16O
for some C' > 0 independent of u. Now, we have to show that ||, (0) is bounded. Arguing by contra-
diction, we assume that (¢’(0),v) = oo. From (3.7 ) and Hélder inequality, we observe that

Cllvll
<C’/<,‘(O)7 > P b mp p d
(p — @)alluk[? + (mp — Qbllur|™ — (p% — @) Jo K (@) ug [P dx
for some C' > 0, which implies that there exists a subsequence {u} such that
(p — @allug|?” + (mp — Q)blluk ™ — (ps — @) /Q K (@) ug [P dx = ox(1). (3.13)

In a similar way, from (3.8) and Hélder inequality we can also prove that

a(p — pi)llugl[” + b(mp — pi) lur||™ — (¢ — py) /Q Af (@) |ug|Tdz = ox(1). (3.14)
Then using (3.13) and (3.14), following the proof of Lemma 2.4, we can see that A > A, which contradicts
the assumption A < Aq. This ends the proof. ]
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Thanks to Lemma 3.7, we can get a (PS) sequence for Iy. Now we are ready to show the following
compactness result, which is crucial for the existence of solution for problem (1.1). For this, define

% S N _P_
ey = N(aS)PS — DAp—q, (3.15)

_p
(=) (P3—a)|F1 |2 ( pi—q )T
S

where D =
Pgp; (pt—p)

Lemma 3.8. I, satisfies the (PS) condition at level c) < ¢y, where c} is given in (3.15).

Proof. Let {u,} be a (PS)., sequence for Iy with c) < c}, i.e.

A

I(un) = ¢y and H[’A(un)”Eal - 0. (3.16)
By (2.4), {uy} is bounded in Ey. Hence, up to a subsequence, there exists u € Ej such that

Up — U, a. e. in §, lunl — 5,
Uy — U, weakly in Fj, (3.17)
Up —> U, strongly in L"(Q),1 < r < pi.

Meanwhile, there exists g € LP(Q2) such that |u,(x)| < g(z) a.e. in Q. Denote v, = u,, — u, then we can
assume that lim, o ||v,]| = d1 > 0. Otherwise, the conclusion follows. By Lemma 2.1 and (3.17) we

obtain
[unll? = {Jun — ul|” + [Jull” + 0, (1),

/K(x)yunypédx:/K(xﬂun—uyﬁdH/K(a;)\uypl‘dx+on(1)
Q Q Q

as n — oo. Therefore, we deduce from (3.17)-(3.18) that

(3.18)

on(1) = (I/A(un)aumIM(IIUnHP)IIunIIp/QAf(SC)IUI"dﬂf/QK(x)IUI”:dw/QK(iv)lvnlpzdwa (3.19)

on(1) = (I (un), ) =M(Ilun\lp)HUHp—/QAf(ﬂﬂ)IUquﬂ?—/QK(ﬂc)IUIp;dﬂ% (3.20)
which imply
M(Ilun\lp)anHp—/S)K(x)lvnlp;dﬂf=0n(1)-

Let us denote lim,,—oo fQ K (z)|v,|Psdz = dy. Then we have the following key formula
(a4 bpMm=VIP)dE = dy. (3.21)
Therefore, from (3.21), it is clear that do > 0. Additionally, by the definition of S in (1.9), we get
d? > Sdb/Ps. (3.22)

From (3.21)-(3.22), we get that
N—ps N
d} >a v Svs (3.23)
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Now, using the Holder inequality, we have

e = Jim_ (i) = (B (). )

n—oo s
. 1 1 1 1 1 1
~ lim {( = allunlP+ (= ™ = - flunlqdw}
n—0o0 p Ds mp Ds q Ds Q
1 1 1 1 1 1 _aq
> (= — —)adl + (= = =)aljul|? = (= = )N f+|g=S 7 |lul|?.
(= ad + (= alulP = (2 = =N Fole 5™l

Therefore, let us set
5

1 1 1 1
Fy\(t) = (]; - E)atp - (5 - 2;))\|f+

By a direct computation, F)(t) attains its minimum

(p—q)(p:—q><A|f+r>p’iq< vi—q )pqq__ >
(pt —p)S = A

in F\(t) = —
= A() Pap;

q

_p
(p—a) (s =) S| * ( pi—q

where D = T ) S) P71 Hence, we get
S S ( S)ﬂ D)\L %
c —(aS)rs — P—q = C
A Z N A
which contradicts the hypothesis ¢y < ¢}. This ends the proof. O

Proposition 3.9. Assume that m < N]fps orm = %m,b < S™™. Then for X € (0,)), I\ has a
minimizer uy in Ny, which is a nonnegative solution of (1.1) with Iy(uy) = ¢ and [Juy|| = 0 as A — 0.

Proof. Let us fix A < A\g = min{ A, A o, A3}, where Aq, X and Ao given respectively in (2.5), Lemma 3.5
and (3.1). Meanwhile, we set
N _
g = (%(as)ﬁ/p)%. (3.24)

For 0 < A < Ag, putting together the definition of ¢} and Lemma 3.5, we have
¢y <0<y

As a consequence of Ekeland’s varational principle [15], we can find a (PS) sequence {u,} C Ny C N,
such that I(u,) — ci as n — oo. From Lemma 3.8, there exists u) € N such that

I;\(U,)\) =0, I)\(U)\) = C;\’— < 0.

Now we claim that uy € N;r . We discuss the proof only for the case m < %m’ while the case
m = N%ps, b < S follows similarly. If not, then u) € N, because of the Remark 3.2. Together with
(2.2), we get uy € G*. Also from uy € Ny and I)(uy) = C;\r < 0, we can see that uy € HT. Therefore,
from Lemma 3.1, we obtain there exist ¢~ (uy) > t7(uy) > 0 such that tuy € Ny and ttuy € N,'. This
implies ¢t~ = 1 and ¢+ < 1. Hence, we can find t € (t7,¢7) such that

I,\(t+u)\) = Ogtlig;* I)\(tu,\) < I)\(qu> < I)\(t_U)\) = I)\(’U,)\) = Cj\_,

which gives the desired contradiction. Thus uy € N ;r .
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We point out that I(u) # Ix(|u]), since ||u|| # |||u||| in Ep. To achieve our aim, we study the positive
part of the problem (1.1) by defining
@ = el + -l =+ [ M@t tde = [ K@t P,
p mp qJo Ps Ja

Then arguing similarly as above, it is readily to show that there exists a critical point uy € N ;r for I)‘\*'.
That is, for any v € Ey,

wiw) /| ua(@) = ()P s (@) — (@) (0(z) —v(w)

— q|N+ps
[z =yl (3.25)
= / M (@) |uf ]| tode — / K(x)|u;\r|p:_1vdx
Q Q
Then, from (3.25) with test function v = u, , we get
ur(@) — un ()P (ur(@) — ua(y)) (uy (2)) — uy (y))
P
M) [ /Q Al ddy = o(1)
From the last equation, together with the facts
Juy () = uy ()P < Juy (@) = uy ()P (ur(z) = ua () (uy (2) = uy (v))
and
juy (2) — uy (y)] < ur(z) —ua(y)],
we obtain | P
m—1)p uy () —uy(y
(a + bljuy || // \a:—y‘N‘f‘PS dzdy = o(1).
Moreover, by a,b > 0, we get |lu,| = 0, which implies that wu, is a nonnegative solution of (1.1).

Furthermore, from lemma 3.5, we deduce that u) is a ground state solution of (1.1).

Now, we shall show that the solution w) is a local minimizer of Iy in Ej. It follows from Lemmas 3.1
and 3.3 that t7(uy) = 1 < tmas(uy), noting that uy € N;“. Therefore, from continuity of u +— t4. (),
for fixed e > 0, there exists 61 = d1(€) > 0 such that t,q0(uy —u) > 1+ € for all ||ul| < J;. On the other
hand, by Lemma 3.12, it is easy to verify that for a given 3 > 0, there is a C! map ¢ : Bs,(0) — R*
such that ((u)(uy —u) € Ny and ¢(0) = 1. Thus, considering 0 < § = min{d1,d>} and uniqueness of
zeros of fibering map, we conclude ¢ (uy — u) = ((u) < 14 € < tymaa(uyr — u) for all ||ul] < 6. From
tmaz(ux —u) > 1, we get ITy(uy) < Dy(tF (un —u)(uy —u)) < In(uy —u). It follows immediately that wy
is a local minimizer of I in Fy. Finally using Lemma 3.4, the proof is completed. U

Lemma 3.10. There exists Ay > 0 and r > 0 such that for any X € (0, A1)

inf  Iy(u) =a>0.
ueEO?HUHZT

In particular, when X\ = 0, there exists 11 > r such that Ip(u) > 0, for all u € By, \{0}.

Proof. For u € Ey, we have

b 1 1 «
D) = 2P + el =3 [ Af@lultde - o [ K@)lupde
> Ajullp — 2L e — ol
p qu p psSps p
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From (3.26) we obtain

a pg  Alftler 1 .
> Lyglra — T _ Pi—aq q
R i A L L
Denote
g(t) = Gp—a _ iSfpfé/ptpzfq’
p P

for all t > 0. In view of p < p¥, for each u € Ey with

Jul| =7 := ,

a5 rp—q)]
p(Pt —q)

we obtain max;>q §(t) = g(r) > 0. Therefore, taking

g(r)q
A<= —"F",
S_q/p’f+|q*
we can conclude that !f -
~ 1J+1g* .
1) 2 (5(r) - AT =0 >0

The first part of proof is finished.
When A = 0, Using (3.26), there exists 71 = [(pt — q)/(p — ¢)]"/®*~P)r > 7, such that Iy(u) > 0, for
all u € B, \{0}. O

Lemma 3.11. Let r be as in Lemma 3.10. Then
(i) for m < N%ps,a > 0,b > 0, there exists e € Ey with ||e|| > r such that I\(e) < 0;
(ii) for m = %m’a > 0,0 <b<1/S™, there exists e € Ey with |le|| > r such that I)(e) < 0.

Proof. (i) For m < N ~55:@ > 0,b > 0. For a given u € Ep\{0} with Jo K(2)|ulPsdz > 0, by Fatou’s
Lemma, we can deduce that
Iy(t p b mp A uqd:):
g 200 @l b ™ o Ja M (@)|u|'de / K () |ufP da
t—oo  tPs p t—oo tPs—P mp t—oo tPs—MP q taoo tPs—4
< 0.
Clearly, there exists 7' > 0 large enough such that ||e|| = ||Tu|| > r and I)(e) < 0
(ii) For m = x= ps,a > 0,0 <b<1/5™. For a given u € Ey \ {0} with [, K ()|u[P*dz — b|ju||™ > 0,

by Fatou’s Lemma, we can deduce that

I P A dr 1
lim 20 @ ”“” Ly Jo M @lultdr 1 <b||u||m7’ / K(m)|u|mpd:c> <0
mp Q

t—oo tPs p t—oo tPs— q t—00 tPs—4q

The rest proof is the same as that in (i). O

In Lemma 3.10 and 3.11, we show that I satisfies the mountain pass geometry. Therefore, there
exists a (PS). sequence with

TRy o)

where

D= {y € C([0,1], Eo) : 7(0) = 0,7(1) = e}.
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In order to estimate the mountain pass level ¢, we recall some facts. The authors in [16] observed

that the following critical fractional p-Laplacian problem:

(—A)su = SlufPs~2u, zeRY,

u € D3P(RN).
admitted a positive radially symmetric decreasing solution U = U (r) satisfying

N—sp
lim |z| »=1 U(z) = Usx € R\ {0}.

|z| =00

For any € > 0, define
r—y
Uﬁ,y('x) = N—ps U( ’ | )

€ P €

Moreover, the following estimates hold:

Lemma 3.12. [16] There exist constants c1,ca > 0 and 6 > 1 such that for all r > 1,

and

N

U(r) = 2

(3.27)

(3.28)

(3.29)

(3.30)

Let 6 be the universal constant in Lemma 3.12 that depends only on N, p and s. For ¢,§ > 0, let

Uey(9)
Uey(0) = Uey (06)°

Me,y,6 =

0, if 0<t<U.,(69),

Gewo(t) = {mf 5(t — Uey(60)), if Uey(05) <t <Uey(0),

t+ Uey(0)(mP 5 = 1), if £ > Uey(6),

and
0, if 0 <t < Ucy(69),

t
Geys(t) = / (Gey,s(T)) 7T = § meys(t = Ue(69)), if Uey(00) <t < Uey(9),
0

t, if t > Ul (6).

We conclude that g, s and G, s are nondecreasing and absolutely continuous functions. For any z € II,

let
Ue,z,6 = Ge,z,tS(Ue,Z(T))'

By the definition of G . 5, we get

Ue(r), if r <3,
0, if > 60,

Ue . 5(T) =

As in [35, Lemma 2.7], the following asymptotic estimations hold:

17
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Lemma 3.13. There exists C = C(N,p,s) > 0 such that for any e < g the following estimates hold

N €. N-—ps
| e IP< S7 + C((5) 7 ),
|Ue 2.5 Z§ > She — C((g)p%)‘

Moreover, in view of the definition of u. . s, the following result also holds. From now on, we assume
that § = 3 and let ue = uc ;1 /2-

Lemma 3.14. Let (K) hold, then there exists C' = C(N,p,s) > 0 such that for any e < g,

/ (1 — K)|uclPsdx < CeP.
i

70

Proof. Using Remark 1.1, a change of variable, Lemma 3.12 and the fact that ¢ < g, we get

/‘ (1—Kﬁm4ﬁdrgag/i ngaxMx:(%p/‘ P UP da
B5(0) B5(0) Bs (0

[
:C’epr_l/ rp+N_1Up5(7“)dr
1

) (3.32)
< Cepr_l /6 TP+N717P]\£Z)1 dr
1
(p—1)Ce €N _,
= LT (S| < o
N—(p—l)p[ (5)1) }_06
Since U, . is radially nonincreasing, taking 6 = 9,60 = 2, then for § <r < 6§ = g, we see
Ue.(r) — Uc »(00)
0 <me(Uer(r) — Uc2(06)) = Ue .(0) = : < Uc,(9).
< mUes(r) = Ues(9)) = Ues0) 55— < Vsl
Together with the definition of U, ., g > 2 and Lemma 3.12, we get
/ (1 — K)|uelPrdx < / e |P= dz
Bry (0)\Bs(0) By (0)\B5(0)
= / [me(Ue () — U€7Z(95))]p;da:
Bry (0)\Bs(0)
. (3.33)
< / UPs(0)dx
Bry (0)\B5(0)
= |Ue,2(8)[P*| B, (0) \ Bs(0)]
_Np N N
< C§ rTer—1 < (Cer—T.
Using (3.32) and (3.33), we deduce that
/(LJm%@m</‘(LJowﬁm+/ (1= K)|uc" de
Iy, B;(0) By (0)\Bs(0)
< Cef + C’ep%j1 < Ce’,
because of 0 < p < %. O
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Lemma 3.15. Let m < N]Xps orm = %mvb < 1/8™, and (K) hold, then there exists s € (0, Ag),bsx >0
such that for any X € (0, \),b € (0,bs) the inequality

¢ <sup)(tue) < i(aS)% — D\ia
>0 N

holds.

Proof. To estimate ¢, we define the functions,
s(t) == In(tuc) = Hu 17+ i ael|™ = tq/ Af (@) |uc|*d tp:/ K () |uc|P* dx
— LA e) — » € mp € q Ju. € »* €
and
5(t) = Huer—/ K () |ucP* da

for all ¢t > 0. Then for m < NLpS or m= - ps,b < 1/Sm, we can easily check that there exists t. > 0
such that §'(t¢) = 0 and max;>o s(t) = s(te). It is clear that there exists 7' > 0 such that

0<te<T for e sufficiently small, (3.34)
where T' is given in Lemma 3.11. Gathering the estimates in Lemma 3.13 and Lemma 3.14, we get

N 1 * S N
3() < (@) + — | (1= K)|Tuf’tde < (a8) +O(c))

Ds Iy,

z| =

_b
for some €y > 0. Let A5 < min{)\g, A4} such that %(QS)PES — DA™ > 0. Since

A
lim (aSsp + 2 5% ) — 0,
t—0+t \ P mp

which implies that there exists t; € (0,%¢) such that for each A € (0, A5) we get

7531; Ssp

max s(t) < max
p mp

atP N bt"™P  Nm
0<t<t — 0<t<t;

< 5 (aS)% — DA < 2 (aS)% — DA

_N(a)p— 5 <N(a)p— p-a,
Clearly, there exist two positive numbers b, > 0 and A\, € (0, A5] such that for any X € (0, \,),b € (0, by)
we get

td »
AL f(@)|ue|%dx > DAr'a 4+ Ch+ Cep.
M,

Thus for all A € (0, As) and b € (0, b,), we can conclude that

¢ < sup I)(tue) = sup s(t) < i(aS)% — D/\ﬁ7
t>0 >0 N

which completes the proof. O

Proof of Theorem 1.1. (i)The proof of (i) follows immediately by the Proposition 3.9.

(ii) By Lemma 3.10 and Lemma 3.11, it is easy to see I has a mountain pass geometry. Thus there
exists a bounded (PS) sequence {v,}. Then from Lemmas 3.15 and 3.8, up to a subsequence, we get
there exists uy, € Ey such that v, — uyp, a nontrivial and nonnegative solution of (1.1). Finally, since
I(uy) <0 < Ix(upp), uy and uyp are distinct. This ends the proof. O
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Proof of Theorem 1.2. (i) By Remark 3.1, we see N;r = N, and define ¢y = inf ey, Iy(u). It is clear
that ¢y < 0. As done similarly in Proposition 3.9, there exists a (PS)., sequence {u,} C N;r for I,. It
follows from Lemma 2.2 {u,} is bounded in Ey. Hence, up to a subsequence, there exists u € Ey verifying
(3.17). Denote v, = uy, — u, for b > S™™, we get

/ K (2)|vn|Psdz — b||v,||™ < 0.
Q
Then combining this and (3.19)-(3.20), we get
alloall” < aljvallP + bllw] D[P + bl o] — / K () |on [P da = 0,,(1),
Q

which implies that u, — u in Ey. Following the argument used in Proposition 3.9, we get u is a
nonnegative solution of (1.1).
(ii) The proof is similar to that of Theorem 1.1. O

4  Proof of Theorem 1.3

In this section, we will show you the proof of the last result by applying the Krasnoselskii genus
theory. First of all, recall that in [2], let X be a real Banach space. Set

Z ={A cC X\ {0} : A is compact and A = —A}.
Definition 4.1. Let A € 3" and X = R¥. The genus 7(A) of A is defined by
v(A) = min{k > 1 : there exists an odd continuous mapping ¢ : A — R¥\ {0}}.

If such a mapping does not exist for any k > 0, we set y(A) = +o00. Moreover, from definition, v(0)) = 0.

For the functional defined in (1.10), we deduce from Holder inequality and (1.9) that

a b A 1 x «
Li(w) > = |lullP + —[u]™ — Z|f|gS™UP||u||? — — SP/P||y||P5
(u) 2 Zllull” + 2l ;o lull® = 2 ]

S

> Cul[ull? — CoAJul|? — Cs]ful?,

. |f|q*gfq/p

where C = %, Cy 7

,C3 = I%S_p;/p. Define [ : RT™ — R as
1(t) = C1tP — Cotd — CtPs.

It is easy to see that
Ix(u) = I([[ul]). (4.1)

We note that [(¢) achieves its positive maximum. Similar to the argument in the proof of Theorem 1.1,
one can readily show that there exists A3 > 0 as given in (3.24) such that for any A\ € (0, \3), we get
that ¢§ > 0, where ¢} defined in (3.15). Also we can conclude that there are constants 0 < 77 < T, for
t <Th,l(t) <0, fort € (Th,T2), I(t) > 0, and I(t) < 0 for t > Th. Let k € C§°(R™) be nonincreasing such
that 0 <k <1,k =11ift <Tj and k =0 if ¢ > T5. From now on, we set w(u) = x(||u||). We consider the
following truncated functional

a b 1 1 «
J(u :up+ump—/)\fx uqda:—/Km u|Psw(u)dz.
()pHH mpll” qﬂ()\l ng()H (u)
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As (4.1), we obtain that J(u) > I(||u]|), where I(t) = C1t? — ot — C3t?s k(t). It is immediate to see that
I(t) > 1(t) for t > 0, 1(t) =1(@t) ifO <t < Ty, I(t) > I(t) if Ty < t < T, and if t > T, I(t) = C1tP — Cy\t?,
which is strictly increasing. Hence, we immediately get I(¢t) > 0 if ¢ > Ty. Furthermore, [(t) > 0 for
t>T.

From this, we can state the next technical lemma.

Lemma 4.2. (i) J € C1(Ey,R).
(ii) If J(u) < 0, then ||u|| < Ty and J(a@) = Ix(@) for all @ in a small enough neighbourhood of u.
(i1i) There is a A3 > 0 such that if X € (0, A3), then J satisfies the (PS). condition for ¢ < 0.

Proof. (i) Since k € C* and x = 1 for u near 0, J € C'(Ep,R) and completes the proof.

Let us prove (ii) by contradiction. Assume J(u) < 0 and |lul| > T1, then 0 > J(u) > I(Jul]) > 0, a
contradiction. Thus (ii) holds true.

Next, we prove (iii). Let A3 be given in (3.24). If {u,} is a (PS). sequence for J with ¢ < 0, i.e.,

J(up) — ¢ and ||J/(un)”E0—1 —~0asn— oo.

Then it follows from (ii) that ||u| < T1. Hence, Ix(uyn) = J(uy) and I} (u,) = J'(uy). By Lemma 3.8, Iy
satisfies the (PS). condition for ¢ < 0 < ¢§. This indicates that J satisfies the (PS). condition for ¢ < 0.
U

Now, we are ready to state the main result of this section constructing negative critical values of J
via genus, as done similarly in [17].

Lemma 4.3. Let f- =0 and k € N, there ezists an € = e(k) > 0, such that y({u € Ey : J(u) < —€}) >
Proof. Fix k, let us set Ej be a k dimensional subspace of Ey. Let u € Ej be such that ||u|| = 1. For

0 < 6 < 1T, we obtain

) |[ulPsw(0)dx.

I6w) = J(6w) = 207 + O g _ aqq/ﬂ/\f(x)

mp

Obviously, all the norms in Ej are equivalent. It is easy to see that
o = inf{/ |u|dx : u € E, ||lu]| =1} > 0.
Q

Thus

4 mp
J(0u) < aﬁ Lo

P
o ) ulheo(6)do

Then we conclude that for any € > 0 there exists a posmve number # < T3 such that for each u € Ej
with [Jul| = 1, J(6u) < —e. Denote Sy = {u € Ep|||u|| = 8}. Clearly, Sy N Ey, C {u € Ep : J(u) < —¢}.
Applying monotonicity property of genus and the fact that v(Sy N Ex) = k, we get that y({u € Ey :
J(u) < —€}) >~v(Se N Ey) = k. O

Now we will prove the existence of infinitely many solutions for problem (1.1).
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Proof of Theorem 1.3. Set

Zk = {A - Z : ’Y(A) > k}) Cr = ianeZk SUPyea J(“’)? k=1,2,---.
Also, consider the following set

Ke={ueEy:Ju)=c,J(u)=0}, J “={ueckEy:J(u)<—¢}

and assume that 0 < A < Az, with A3 given in Lemma 4.2 (iii). It follows from Lemma 4.3 that for any
k € N, there is a €(k) > 0 such that v(J~¢) > k. Together with the fact that J is continuous and even,
we get that J~¢ € ), and ¢, < —¢(k) < 0. Furthermore, ¢;, > —o0, as J is bounded from below.

Now, we claim that if there exist k,7 € N such that ¢ = ¢y = cgy1 = -+ = gy, then y(K.) > i+ 1.
Arguing by contradiction, we assume that ¢ = ¢ = cg41 = -+ = cxys < 0 and y(K.) < i. Hence, by
Lemma 4.2 (iii), J satisfies the (PS). condition, which implies that K. is compact. Since v(K,.) < ¢,
from [2, Proposition 7.5, there exists a closed and symmetric set V with K. C V and v(V') <. On the
other hand, because ¢ < 0, we can also hypothesize that the closed set V C J°. From [18, Lemma 1.3],
there is an odd homomorphism 7 : Ey — Ej such that

T(JH — V) c e (4.2)
for some 0 < § < —c. Noting that
c=cpi; = inf supJ(u),
* A€ i ueA ( )

there is an A € Y, ., such that sup,cs J(u) < c+6, 1. e. A C JM. Together with (4.2), we get
T(A=V) Cr(J - V) c J?, which implies

sup  J(u) <c—29. (4.3)
ueT(A-V)
On the other hand, by (V) < i, we get that y(7(A—V)) > v(A = V) > v(A) — (V) > k. from this, it
is clearly that 7(A—V) € >, and SUPyer(a—v)J(u) > ¢, = ¢, which contradicts (4.3). Thus the claim
holds true.

Finally, if for all £ € N,>, 1 C >4, < cgy1 < 0 and all ¢ are distinet, then y(K.) > 1. We
observe that there is a sequence of distinct negative critical values of J. If for some ki, there exists a
i > 1 such that ¢ = ¢, = ¢, 41 = -+ = C,+i, then from the claim, it is clear that y(K.) > i + 1, which
implies that K. contains infinitely many distinct elements. Then from Lemma 4.2 (ii), we know that
there exist infinitely many critical points for Iy, concluding the proof. O
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