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Abstract

The aim of this paper is to study the existence and multiplicity of nonnegative

solutions for the following critical Kirchhoff equation involving the fractional p-Laplace

operator (−∆)sp. More precisely, we considerM
(∫∫

R2N

|u(x)−u(y)|p
|x−y|N+ps dxdy

)
(−∆)spu = λf(x)|u|q−2u+K(x)|u|p∗

s−2u, in Ω,

u = 0, in RN \ Ω,

where Ω ⊂ RN is an open bounded domain with Lipschitz boundary ∂Ω, M(t) = a+

btm−1 with m > 1, a > 0, b > 0, dimension N > sp, p∗s = Np
N−ps is the fractional critical

Sobolev exponent, and the parameters λ > 0, 0 < s < 1 < q < p < ∞. Applying

Nehari manifold, fibering maps and Krasnoselskii genus theory, we investigate the

existence and multiplicity of nonnegative solutions.
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1 Introduction and statement of results

The aim of this paper is to study the existence and multiplicity of nonnegative solutions for the

following critical Kirchhoff equation involving the fractional p-Laplace operator (−∆)spM
(∫∫

R2N
|u(x)−u(y)|p
|x−y|N+ps dxdy

)
(−∆)spu = λf(x)|u|q−2u+K(x)|u|p∗s−2u, in Ω,

u = 0, in RN \ Ω,
(1.1)

where Ω ⊂ RN is an open bounded domain with Lipschitz boundary ∂Ω, M(t) = a + btm−1 with

m > 1, a, b > 0, dimension N > sp, p∗s = Np
N−ps is the fractional critical Sobolev exponent, and the
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parameters λ > 0, 0 < s < 1 < q < p < ∞. Here, the fractional p-Laplace operator (−∆)sp, up to

normalization factors, is defined for every function u ∈ C∞0 (RN ) as

(−∆)spu(x) = 2 lim
ε→0+

∫
RN\Bε(x)

|u(x)− u(y)|p−2(u(x)− u(y))

|x− y|N+ps
dy, (x ∈ RN ),

where Bε(x) denotes the open ball in RN with center x and radius ε.

The weight functions f and K are continuous on Ω̄ satisfying f± 6≡ 0,where f = f+ − f− with

f± = max{±f, 0}; Furthermore, we impose the following assumption on K:

(K) There exists a constant 0 < ρ < N
p−1 such that K(z) −K(x) = O(|x − z|ρ) as x → z uniformly for

z ∈ Π = {z ∈ Ω̄|K(z) = maxx∈Ω̄K(x) ≡ 1};
Remark 1.1. Let Πδ = {x ∈ RN |dist(x,Π) ≤ δ} for some δ > 0. It follows from [39] that there exist

three positive constants η0, r0 and σ0 such that

K(x) ≥ η0 for all x ∈ Πr0 ⊂ Ω

and

K(z)−K(x) ≤ σ0|x− z|ρ for all x ∈ Br0(z)

uniformly for z ∈ Π.

When M(s) = 1, s = 1, p = 2, the study on the semilinear critical elliptic problem began from Brezis

and Nirenberg [20]. Henceforth, much attention has been given to all kinds of elliptic equations with

critical growth in the bounded domain or in the whole space, see [21, 22, 23, 24, 25, 26]. Recently, many

authors have been working on the solvability or multiplicity of Kirchhoff type equation with critical

exponent, for example [3, 6, 14, 19, 21, 22, 23, 24, 25, 26, 28, 29, 30].

In [33], the authors first considered the following related problem in the bounded domain:
−∆u = λuq + up, x ∈ Ω,

u > 0, x ∈ Ω,

u = 0, x ∈ ∂Ω

(1.2)

where 1 < q < 2 < p ≤ 2∗(2∗ = 2N
N−2 if N ≥ 3, 2∗ = ∞ if N = 1, 2). By using the sub-supersolution

method, they showed the existence and nonexistence results depending on a sharp constant λ0.

In [31], Xie and Chen generalized (1.2) to the following Kirchhoff type equation:−M(
∫

Ω |∇u|
2dx)∆u = Qλ(x)|u|q−2 +K(x)|u|2∗−2u, x ∈ Ω,

u = 0, x ∈ ∂Ω,
(1.3)

where Ω is a smooth bounded domain in RN (N ≥ 3), 1 < q < 2, M(s) = a + bsβ with a > 0, b > 0

and β > 0. The weight functions Qλ(x)and K are continuous and changing-sign. Using the Nehari

manifold, fibering maps and Ljusternik-Schnirelmann category, they proved that at least two positive

solutions for (1.3) exist provided that β = 1 and 2∗ ≥ 4. Furthermore, by the mountain pass theorem

and Ekeland’s variational principle, it was shown that (1.3) possessed at least three positive solutions

whenever β > 2
N−2 , including the case that β = 1 and 2∗ < 4.
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In the last decade, a lot of attention has been focused on the fractional Laplacian operator and non-

local operator. In [32], the authors studied the Brezis-Nirenberg type results for the following elliptic

equation involving the fractional Laplacian (−∆)s(0 < s < 1) in bounded domain:(−∆)su = λu+ |u|2∗s−2u, x ∈ Ω,

u = 0, x ∈ ∂Ω,
(1.4)

where λ > 0, s ∈ (0, 1) is fixed, 2∗s = 2N
N−2s , Ω ⊂ RN (N > 2s), is open, bounded and with Lipschitz

boundary, (−∆)s is the fractional Laplace operator. The authors extended the classical Brezis-Nirenberg

result to the case of non-local fractional operators through variational techniques. Soon afterwords,

Mosconi et al. [35] obtained nontrivial solutions to the Brezis-Nirenberg problem for the fractional

p-Laplacian operator, extending some results in the literature for the fractional Laplacian.

Inspired by the above papers, we consider the multiplicity of nonnegative solutions for (1.1) with the

concave and convex nonlinearities. In particular, Mishra and Sreenadh [19], investigated the following

fractional p-Kirchhoff equationM(
∫
R2N

|u(x)−u(y)|p
|x−y|N+ps dxdy)(−∆)spu = λf(x)|u|q−2u+ g(x)|u|r−2u, x ∈ Ω,

u = 0, x ∈ ∂Ω,
(1.5)

where M(t) = a + bt, a, b > 0, p ≥ 2, 1 < q < p < r ≤ p∗s, ps < N < 2ps with s ∈ (0, 1), λ > 0, Ω ⊂ RN ,

is an open, bounded domain with Lipschitz boundary, and f, g are possibly sign changing on Ω̄. They

examined the existence of multiple solutions for (1.5) by using Nehari manifold and fibering maps in the

following three cases:(i) 2p < r, (ii) 2p = r, (iii) 2p > r when b and λ belongs to specific intervals.

Now, a natural question is whether the existence and multiplicity of solutions for the p-Kirchhoff

equations in [19] can be generalized to the critical case?

Motivted by the above works, here we shall solve the above probelm. The goal of this paper is to

consider the question related to the existence and multiplicity of nonnegative solutions for (1.1) in the

following two cases:(i) mp < p∗s, (ii) mp = p∗s. Before stating our main results, we introduce some nota-

tions.

Notations and definitions. Throughout the article we assume that maxx∈Ω̄K(x) ≡ 1, q∗ = p∗s
p∗s−q

,

without further mentioning. The problem (1.1) has a variational structure and the natural space to look

for solutions. It is the fractional Sobolev spaces W s,p
0 (Ω). We firstly recall some notations. The usual

fractional Sobolev space W s,p(Ω) endowed with the form

‖u‖W s,p(Ω) =

(
‖u‖pLp(Ω) +

∫∫
Ω×Ω

|u(x)− u(y)|p

|x− y|N+ps
dxdy

) 1
p

. (1.6)

When Ω = RN , we define Ds,p(RN ) as the closure of C∞0 (RN ) with the norm

[u]ps,p =

∫∫
R2N

|u(x)− u(y)|p

|x− y|N+ps
dxdy.

In [9], new function spaces E which take into account this boundary condition were introduced given as

E =

{
u : RN → R is measurable, u|Ω ∈ Lp(Ω),

(
|u(x)− u(y)|

|x− y|
N
p

+s

)
∈ Lp(Q)

}
,
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where Q = R2N \ (CΩ× CΩ) and CΩ = RN \ Ω. The space E is endowed with the norm defined by

‖u‖E =

(
‖u‖pLp(Ω) +

∫∫
Q

|u(x)− u(y)|p

|x− y|N+ps
dxdy

) 1
p

. (1.7)

The function space E0 denotes the closure of C∞0 (Ω) in E. Subsequently, in [10], authors proved the space

E0 is a uniformly convex Banach space endowed with the norm

‖u‖E0 =

(∫∫
Q

|u(x)− u(y)|p

|x− y|N+ps
dxdy

) 1
p

(1.8)

which is equivalent to the natural one defined in (1.6). Since u = 0 a.e. in RN \ Ω, we note that the

integral in (1.7) and (1.8) can be extended to R2N . The embedding E0 ↪→ Lr(Ω) is continuous for any

r ∈ [1, p∗s] and compact whenever r ∈ [1, p∗s)(see[10,Theorem6.7]). As in [10], let S be the best constant

of the fractional Sobolev embedding Ds,p(RN ) ↪→ Lp
∗
s (RN ) defined by

S = inf
u∈Ds,p(RN )\{0}

∫∫
R2N

|u(x)−u(y)|p
|x−y|N+ps dxdy

(
∫
RN |u|p

∗
sdx)p/p∗s

, (1.9)

which is well defined and strictly positive. For more details and properties on E and E0, please refer

to [10] and the references therein. From now on, we will denote ‖ · ‖E0 and ‖ · ‖Lp(Ω) by ‖ · ‖ and | · |p
respectively.

Next, the energy functional associated to problem (1.1) is given by

Iλ(u) =
a

p
‖u‖p +

b

mp
‖u‖mp − 1

q

∫
Ω
λf(x)|u|qdx− 1

p∗s

∫
Ω
K(x)|u|p∗sdx. (1.10)

We now summarize our main results as follows.

Theorem 1.1. Assume that m < N
N−ps , f± 6≡ 0 and (K) hold. Then there exist 0 < λ∗ ≤ λ0 and b∗ > 0

such that

(i) for any λ ∈ (0, λ0), problem (1.1) admits at least one nonnegative ground state solution uλ with

Iλ(uλ) < 0.

(ii) for any λ ∈ (0, λ∗), b ∈ (0, b∗) problem (1.1) admits at least two nonnegative solutions uλ and uλ,b

satisfying Iλ(uλ) < 0 < Iλ(uλ,b), and uλ is a ground state solution.

Theorem 1.2. Assume that m = N
N−ps , f± 6≡ 0 and (K) hold. Then

(i) for b ≥ S−m and any λ > 0, problem (1.1) admits at least one nonnegative ground state solution;

(ii) for b < S−m, there exist 0 < λ̃∗ ≤ λ0, and b̃∗ > 0 such that

(1) for any λ ∈ (0, λ0), problem (1.1) admits at least one nonnegative solution.

(2) for any λ ∈ (0, λ̃∗) and b ∈ (0, b̃∗), problem (1.1) admits at least two nonnegative solution uλ and

uλ,b satisfying Iλ(uλ) < 0 < Iλ(uλ,b), and uλ is a ground state solution.

Remark 1.2. When m = 2 and K(x) ≡ 1, then by Theorems 1.1-1.2, we get the existence and multiplicity

of nonnegative solutions for the following problem:
(
a+ b

∫∫
R2N

|u(x)−u(y)|p
|x−y|N+ps dxdy

)
(−∆)spu = λf(x)|u|q−2u+ |u|p∗s−2u, in Ω,

u = 0, in RN \ Ω,

where ps < N < 2ps, which respectively generalize Theorem 1.6 of [19] and Theorem 1.1 of [36].
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To prove the above result, we apply the technique of Nehari manifold and fibering maps. The approach

is motivated by [6]. Compared with [6], the main difficulty lies in the lack of compactness due to the

nonlinearity with the critical growth. For this, adapting some calculations performed in [35] and applying

the optimal asymptotic behavior of p-minimizers proved in [16], we are able to prove a compactness result

for the energy functional under a suitable critical threshold. To prove the existence of the first solution,

we obtain a minimizing sequence whose energy functional converge to a negative number, which is less

than some critical level c∗λ such that the (PS) condition holds. Meanwhile, for the second solution, we

extract a minimizing sequence with energy functional converging to a positive mountain pass level, which

also falls into the range of validity of the (PS) condition.

Since we deal with the multiplicity of solutions to (1.1), we use the idea borrowed from [17] to show

negative values of an associated energy functional via genus. Moreover, we require that f− ≡ 0. We point

out that as far as we know, there appear only few papers on fractional p Laplacian probelms [6, 9, 19],

but no results on the multiplicity of solutions for problem (1.1) are available. So the aim of this work is

to give a first result in this direction.

Theorem 1.3. Assume that m ≤ N
N−ps and f− ≡ 0 hold. Then there exists λ3 > 0 such that for any

λ ∈ (0, λ3), problem (1.1) possesses infinitely many nontrivial solutions.

The rest of this paper is organized as follows. In section 2, we introduce the Nehari manifold and

fibering maps analysis for problem (1.1). In section 3, we prove the Theorems 1.1 and 1.2. The section

4 is devoted to the infinitely many solutions of problem (1.1).

2 The Nehari manifold and fibering maps analysis

The lemma below will be very useful in our work.

Lemma 2.1. If {un} is a bounded sequence in E0, then

‖un − u‖p = ‖un‖p − ‖u‖p + on(1).

Proof. The proof of this result is obtained following the argument developed by Brezis and Lieb, see for

example [13, Lemma 2.7]. �

We have that Iλ is of class C1 in E0 and for any v ∈ E0

〈I ′λ(u), v〉 = M(‖u‖p)
∫∫

Q

|u(x)− u(y)|p−2(u(x)− u(y))(v(x)− v(y))

|x− y|N+ps
dxdy

−
∫

Ω
λf(x)|u|q−2uvdx−

∫
Ω
K(x)|u|p∗s−2uvdx.

Thus, we can define the Nehari manifold as

Nλ = {u ∈ E0 \ {0} : 〈I ′λ(u), u〉 = 0}. (2.1)

The Nehari manifold is closely linked to the behavior of the fiber map φu : t ∈ R+ → Iλ(tu), which is

introduced in [11] and discussed in [12]. Therefore, we have

φ
′
u(t) = atp−1‖u‖p + btmp−1‖u‖mp − tq−1

∫
Ω
λf(x)|u|qdx− tp∗s−1

∫
Ω
K(x)|u|p∗sdx.
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Then u ∈ Nλ if and only if φ
′
u(1) = 0 holds. Furthermore, for u ∈ Nλ, we get

φ
′′
u(1) = a(p− q)‖u‖p + b(mp− q)‖u‖mp − (p∗s − q)

∫
Ω
K(x)|u|p∗sdx, (2.2)

or

φ
′′
u(1) = a(p− p∗s)‖u‖p + b(mp− p∗s)‖u‖mp − (q − p∗s)

∫
Ω
λf(x)|u|qdx. (2.3)

Like [12], we split Nλ into three components as

N±λ = {u ∈ Nλ|φ
′′
u(1) ≷ 0} and N0

λ = {u ∈ Nλ|φ
′′
u(1) = 0}.

Finally, we define

H+ = {u ∈ E0|
∫

Ω
f(x)|u|qdx > 0}, H− = {u ∈ E0|

∫
Ω
f(x)|u|qdx ≤ 0},

G+ = {u ∈ E0|
∫

Ω
K(x)|u|p∗sdx > 0}, G− = {u ∈ E0|

∫
Ω
K(x)|u|p∗sdx ≤ 0},

According to mp ≤ p∗s, we have the following Lemmas.

Lemma 2.2. For any λ > 0, the functional Iλ is coercive and bounded below on Nλ.

Proof. For any u ∈ Nλ, using (1.9) and Hölder inequality, we deduce that

Iλ(u) = Iλ(u)− 1

p∗s
〈I ′λ(u), u〉

= (
1

p
− 1

p∗s
)a‖u‖p + (

1

mp
− 1

p∗s
)b‖u‖mp − (

1

q
− 1

p∗s
)

∫
Ω
λf(x)|u|qdx

≥ (
1

p
− 1

p∗s
)a‖u‖p − (

1

q
− 1

p∗s
)λ|f+|q∗S−

q
p ‖u‖q.

(2.4)

Thus Iλ is coercive and bounded below on Nλ due to 1 < q < p. �

Lemma 2.3. If u is a minimizer for Iλ on Nλ such that u ∈ N0
λ, then I

′
λ(u) = 0 in E−1

0 .

Proof. The details of the proof can be found in [12, Theorem 2.3]. �

Let

λ1 =

[
a(p− q)
p∗s − q

] p−q
p∗s−p a(p∗s − p)S

p∗s−q
p∗s−p

(p∗s − q)|f+|q∗
. (2.5)

Then we have the following result.

Lemma 2.4. For any λ ∈ (0, λ1), there exists λ1 > 0 such that N0
λ = ∅.

Proof. Suppose by contradiction that u ∈ N0
λ for all λ ∈ (0, λ1). Then by (2.2) and (2.3), we have

a(p− q)‖u‖p + b(mp− q)‖u‖mp − (p∗s − q)
∫

Ω
K(x)|u|p∗sdx = 0; (2.6)

a(p− p∗s)‖u‖p + b(mp− p∗s)‖u‖mp − (q − p∗s)
∫

Ω
λf(x)|u|qdx = 0; (2.7)

6



Hence, from (2.6) and (1.9), we get

‖u‖p ≤ p∗s − q
a(p− q)

|u|p
∗
s
p∗s
≤ p∗s − q
a(p− q)

S
− p
∗
s
p ‖u‖p∗s .

On the other hand, from (2.7), Hölder inequality and (1.9), we obtain that

‖u‖p ≤ p∗s − q
a(p∗s − p)

λ

∫
Ω
f+|u|qdx ≤

p∗s − q
a(p∗s − p)

λ|f+|q∗S−
q
p ‖u‖q.

These yield that [
a(p− q)
p∗s − q

S
p∗s
p

] 1
p∗s−p

≤ ‖u‖ ≤

[
(p∗s − q)λ|f+|q∗S−

q
p

a(p∗s − p)

] 1
p−q

.

Therefore,

λ ≥
[
a(p− q)
p∗s − q

] p−q
p∗s−p a(p∗s − p)S

p∗s−q
p∗s−p

(p∗s − q)|f+|q∗
= λ1,

which gives the contradiction because λ < λ1. �

3 Proofs of Theorems 1.1-1.2

In this section, we give the proof of the existence and multiplicity results for the case mp ≤ p∗s. We

have the following Lemmas. Firstly, we show the component sets N+
λ and N−λ are nonempty. Now, we

define

λ2 =

λ1, m < N
N−ps(

1
1−bSm

) p−q
p∗s−p λ1, m = N

N−ps

. (3.1)

Hence, we obtain the following lemmas.

Lemma 3.1. Let m < N
N−ps . Then

(i) for any u ∈ H+ ∩ G+, λ ∈ (0, λ2), there exist 0 < t+ = t+(u) < tmax = tmax(u) < t− = t−(u), such

that t+u ∈ N+
λ , t

−u ∈ N−λ , and

Iλ(t+u) = min
0≤t≤t−

Iλ(tu), Iλ(t−u) = max
t≥tmax

Iλ(tu).

(ii) for any u ∈ H+ ∩G−, λ > 0, there exists a unique t+ > 0 such that t+u ∈ N+
λ and

Iλ(t+u) = min
t≥0

Iλ(tu).

Proof. For a given u ∈ E0\{0}, define ψu(t) : R+ → R as

ψu(t) = atp−q‖u‖p + btmp−q‖u‖mp − tp∗s−q
∫

Ω
K(x)|u|p∗sdx. (3.2)

We note that tu ∈ Nλ if and only if ψu(t) =
∫

Ω λf(x)|u|qdx.
(i)Let u ∈ H+ ∩G+, by (3.2), it is easy to see ψu(0) = 0, ψu(t)→ −∞ as t→∞. Moreover, since

ψ
′
u(t) = a(p− q)tp−q−1‖u‖p + (mp− q)btmp−q−1‖u‖mp − (p∗s − q)tp

∗
s−q−1

∫
Ω
K(x)|u|p∗sdx (3.3)
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it is obvious that limt→0+ ψ
′
u(t) > 0 and limt→∞ ψ

′
u(t) < 0. Let ψ

′
u(t) = tp−q−1hu(t), where

hu(t) = a(p− q)‖u‖p + (mp− q)btmp−p‖u‖mp − (p∗s − q)tp
∗
s−p

∫
Ω
K(x)|u|p∗sdx.

Then it is easy to see that there exists a unique t0 > 0 such that h
′
u(t0) = 0. Indeed,

t0 =

(
(mp− q)(mp− p)b‖u‖mp

(p∗s − q)(p∗s − p)
∫

ΩK(x)|u|p∗sdx

) 1
p∗s−mp

.

Moreover, since mp < p∗s, we have hu(0) = 0, lim
t→∞

hu(t) = −∞, which indicates that there is a unique

tmax > t0 such that hu(tmax) = 0. Hence, we obtain tmax as a unique critical point of ψu(t) such that

ψu(t) achieves its maximum at tmax. Namely, ψu(t) is increasing on (0, tmax), decreasing on (tmax,∞)

and ψ
′
u(tmax) = 0.

Furthermore, ψu(tmax) = max
t>0

ψu(t) ≥ max
t>0

ψ̄u(t), where ψ̄u(t) = atp−q‖u‖p − tp∗s−q
∫

ΩK(x)|u|p∗sdx.
Then, by (1.9), we have

max
t>0

ψ̄u(t) = ‖u‖q a(p∗s − p)
p∗s − q

(
(p− q)a‖u‖p∗s

(p∗s − q)
∫

ΩK(x)|u|p∗sdx

) p−q
p∗s−p

≥ ‖u‖q a(p∗s − p)
p∗s − q

(p− q)aS
p∗s
p

(p∗s − q)


p−q
p∗s−p

.

For u ∈ H+,

ψu(0) = 0 <

∫
Ω
λf(x)|u|qdx ≤ λ

∫
Ω
f+|u|qdx ≤ λ|f+|q∗S−

q
p ‖u‖q.

Therefore, if

λ < λ1 =
a(p∗s − p)S

q
p

(p∗s − q)|f+|q∗

(p− q)aS
p∗s
p

(p∗s − q)


p−q
p∗s−p

,

then there exist unique t+ = t+(u) < tmax and t− = t−(u) > tmax such that

ψu(t+) =

∫
Ω
λf(x)|u|qdx = ψu(t−), ψ

′
u(t+) > 0, ψ

′
u(t−) < 0,

which implies that t+u, t−u ∈ Nλ. Meanwhile, we can conclude that t+u ∈ N+
λ and t−u ∈ N−λ , noting

the relation φ
′′
tu(1) = tq+1ψ

′
u(t). Moreover, because φ

′
u(t) = tq−1(ψu(t)−

∫
Ω λf(x)|u|qdx), we obtain that

φ
′
u(t) < 0 for all t ∈ [0, t+) and φ

′
u(t) > 0 for all t ∈ (t+, t−). Thus Iλ(t+u) = min

0≤t≤t−
Iλ(tu). Similarly,

φ
′
u(t) > 0 for all t ∈ (t+, t−) and φ

′
u(t) < 0 for all t ∈ (t−,∞) yield that Iλ(t−u) = max

t≥tmax
Iλ(tu).

(ii) For u ∈ H+ ∩G−. From (3.2), we conclude that ψu(t) → ∞ as t → ∞, and ψ
′
u(t) > 0 for all t > 0.

Therefore, for all λ > 0 there exists t+ > 0 such that t+u ∈ N+
λ and Iλ(t+u) = min

t≥0
Iλ(tu). �

Lemma 3.2. Let m = N
N−ps , and b ≥ 1/Sm, then there exists a unique 0 < t+ < tmax such that

t+u ∈ Nλ, when u ∈ H+. Also, Iλ(t+u) = mint≥0 Iλ(tu).

Proof. For m = N
N−ps , using equation (3.2) and (3.3), we get

ψu(t) = atp−q‖u‖p + tmp−q(b‖u‖mp −
∫

Ω
K(x)|u|p∗sdx), (3.4)
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ψ
′
u(t) = a(p− q)tp−q−1‖u‖p + (mp− q)tmp−q−1(b‖u‖mp −

∫
Ω
K(x)|u|p∗sdx). (3.5)

Since b ≥ 1/Sm, one has ψu(t) > 0, ψ
′
u(t) > 0 for all t > 0. One can easily see that N+

λ = Nλ.

Furthermore, for u ∈ H+, there exists a unique t+(u) > 0 such that t+u ∈ Nλ = N+
λ . Hence, Iλ(t+u) =

mint≥0 Iλ(tu). This completes the proof. �

Remark 3.1. If m = N
N−ps , and b ≥ 1/Sm, then N+

λ = Nλ for any λ > 0.

Lemma 3.3. Let m = N
N−ps , b < 1/Sm hold, then there exists a unique tmax(u) > 0 such that

(i) for u ∈ H+ with
∫

ΩK(x)|u|p∗sdx− b‖u‖mp > 0 and λ ∈ (0, λ2), there exist unique t±, t+(u) < tmax <

t−(u), such that t±u ∈ N±λ , and

Iλ(t+u) = min
0≤t≤t−

Iλ(tu), Iλ(t−u) = max
t≥tmax

Iλ(tu).

(ii) for any u ∈ H− with
∫

ΩK(x)|u|p∗sdx− b‖u‖mp > 0 and λ > 0, there exists a unique t− > 0 such that

t−u ∈ N−λ and

Iλ(t−u) = max
t≥0

Iλ(tu).

Proof. For each u ∈ E0\{0} with
∫

ΩK(x)|u|p∗sdx − b‖u‖p∗s > 0, from b < 1/Sm, (3.4) and (3.5), we can

easily see that there exists tmax > 0 satisfying

tmax =

(
a(p− q)‖u‖p

(p∗s − q)(
∫

ΩK(x)|u|p∗sdx− b‖u‖p∗s )

) 1
p∗s−p

such that

ψu(tmax) ≥ a(p∗s − p)
p∗s − q

(
a(p− q)Sm

(p∗s − q)(1− bSm)

) p−q
p∗s−p
‖u‖q.

Therefore, if

λ < λ2 =
a(p∗s − p)S

q
p

(p∗s − q)|f+|q∗

(
a(p− q)Sm

(p∗s − q)(1− bSm)

) p−q
p∗s−p

,

there exist unique t+ = t+(u) < tmax and t− = t−(u) > tmax such that

ψu(t+) =

∫
Ω
λf(x)|u|qdx = ψu(t−), ψ

′
u(t+) > 0, ψ

′
u(t−) < 0.

Then, arguing similarly as in Lemma 3.1, we complete the proof. �

Remark 3.2. From Lemmas 2.4, 3.1 and 3.3, it is immediate to see that if m < N
N−ps or m = N

N−ps ,

b < 1/Sm and λ ∈ (0, λ1) hold, then Nλ = N+
λ ∪N

−
λ .

Lemma 3.4. Let λ ∈ (0, λ1), then there exists a gap structure in Nλ such that

‖v‖ > B0 > Bλ > ‖u‖ for any u ∈ N+
λ , v ∈ N

−
λ .

Proof. If u ∈ N+
λ ⊂ Nλ, from (2.3), Hölder inequality and (1.9), we get

a(p∗s − p)‖u‖p < (p∗s − q)
∫

Ω
λf(x)|u|qdx ≤ (p∗s − q)λS

− q
p |f+|q∗‖u‖q.
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Therefore,

‖u‖ <

(
(p∗s − q)λS

− q
p |f+|q∗

a(p∗s − p)

) 1
p−q

= Bλ.

Similarly, if v ∈ N−λ ⊂ Nλ, then from (2.2), we have

a(p− q)‖v‖2 < (p∗s − q)
∫

Ω
K(x)|v|p∗sdx ≤ (p∗s − q)S−p

∗
s/2‖v‖p∗s .

Hence,

‖v‖ >

a(p− q)S
p∗s
p

(p∗s − q)


1

p∗s−p

= B0.

After direct calculations, it is easy to see that B0 > Bλ for λ ∈ (0, λ1), where λ1 is given in (2.5). This

ends the proof. �

Now, we are ready to study the infimum of Iλ on the N±λ . Let us define c±λ = infu∈N±λ
Iλ(u) and

λ̃ = q
pλ1.

Lemma 3.5. Let m < N
N−ps or m = N

N−ps , b < 1/Sm. Then

(i) For any λ ∈ (0, λ1), we have c+
λ = infu∈N+

λ
Iλ(u) < 0.

(ii) c−λ ≥ α0 > 0 for any λ ∈ (0, λ̃). In particular, if λ ∈ (0, λ̃), then

c+
λ = inf

u∈Nλ
Iλ(u).

Proof. (i) For u ∈ N+
λ , together with (2.3), we observe that∫

Ω
λf(x)|u|qdx ≥

(
p∗s − p
p∗s − q

)
a‖u‖p +

(
p∗s −mp
p∗s − q

)
b‖u‖mp. (3.6)

Hence, it follows from (2.4) and (3.6) that

c+
λ ≤ Iλ(u) = (

1

p
− 1

p∗s
)a‖u‖p + (

1

mp
− 1

p∗s
)b‖u‖mp − (

1

q
− 1

p∗s
)

∫
Ω
λf(x)|u|qdx

≤ −
(

1

q
− 1

p

)(
1− p

p∗s

)
a‖u‖p −

(
1

q
− 1

mp

)(
1− mp

p∗s

)
b‖u‖mp < 0.

(ii) For m < N
N−ps or m = N

N−ps , b < 1/Sm and u ∈ N−λ , in view of Lemma 3.4 and λ ∈ (0, λ̃), we

conclude that

Iλ(u) = (
1

p
− 1

p∗s
)a‖u‖p + (

1

mp
− 1

p∗s
)b‖u‖mp − (

1

q
− 1

p∗s
)

∫
Ω
λf(x)|u|qdx

≥ ‖u‖q
[

(
1

p
− 1

p∗s
)a

(
a(p− q)
p∗s − q

S
p∗s
p

) p−q
p∗s−p

− λ(
1

q
− 1

p∗s
)|f+|q∗S−

q
p

]

≥ (p∗s − q)|f+|q∗‖u‖q

qp∗sS
q
p

(λ̃− λ) ≥ α0 > 0.

This completes the proof. �

The following technical lemma is necessary for studying the compactness of Iλ.
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Lemma 3.6. For a given u ∈ N+
λ and λ ∈ (0, λ1), there is a number ε and a differentiable function

ζ : B(0, ε) ⊆ E → R+ such that ζ(0) = 1, the function ζ(v)(u+ v) ∈ N+
λ and

〈ζ ′(0), v〉 =
pa〈u, v〉+mpb‖u‖(m−1)p〈u, v〉 − q

∫
Ω λf(x)|u|q−2uvdx− p∗s

∫
ΩK(x)|u|p∗s−2uvdx

(p− q)a‖u‖p + (mp− q)b‖u‖mp − (p∗s − q)
∫

ΩK(x)|u|p∗sdx
(3.7)

or

〈ζ ′(0), v〉 =
pa〈u, v〉+mpb‖u‖(m−1)p〈u, v〉 − q

∫
Ω λf(x)|u|q−2uvdx− p∗s

∫
ΩK(x)|u|p∗s−2uvdx

a(p− p∗s)‖u‖p + b(mp− p∗s)‖u‖mp − (q − p∗s)
∫

Ω λf(x)|u|qdx
(3.8)

where

〈u, v〉 =

∫∫
R2N

|u(x)− u(y)|p−2(u(x)− u(y))(v(x)− v(y))

|x− y|N+ps
dxdy

for all v ∈ Bε(0) = {v ∈ E0 : ‖v‖ ≤ ε}.

Proof. For a given u ∈ N+
λ , define F : R+ × E0 → R as follows

F (t, v) = tpa‖u+ v‖p + tmpb‖u+ v‖mp − tq
∫

Ω
λf(x)|u+ v|qdx− tp∗s

∫
Ω
K(x)|u+ v|p∗sdx.

Hence,

F (1, 0) = a‖u‖p + b‖u‖mp −
∫

Ω
λf(x)|u|qdx−

∫
Ω
K(x)|u|p∗sdx = 0.

Moreover, we have

∂F

∂t
(1, 0) = pa‖u‖p +mpb‖u‖mp − q

∫
Ω
λf(x)|u|qdx− p∗s

∫
Ω
K(x)|u|p∗sdx > 0. (3.9)

Using the implicit function theorem at (1, 0), we obtain that there exists ε̃ > 0 and a differentialable

function ζ : Bε̃(0) ⊆ E0 → R such that ζ(0) = 1, (3.7), (3.8) hold and F (ζ(v), v) = 0 for all v ∈ Bε̃(0).

Therefore, we get

a‖ζ(v)(u+ v)‖p + b‖ζ(v)(u+ v)‖mp −
∫

Ω
λf(x)|ζ(v)(u+ v)|qdx−

∫
Ω
K(x)|ζ(v)(u+ v)|p∗sdx = 0

that is, ζ(v)(u + v) ∈ Nλ for any v ∈ E0 with ‖v‖ < ε̃. By (3.9), we can choose 0 < ε < ε̃ such that for

any v ∈ E0 with ‖v‖ < ε, we get ∂F
∂t (ζ(v), v) > 0 which implies that

pa‖ζ(v)(u+ v)‖p +mpb‖ζ(v)(u+ v)‖mp − q
∫

Ω
λf(x)|ζ(v)(u+ v)|qdx− p∗s

∫
Ω
K(x)|ζ(v)(u+ v)|p∗sdx > 0,

that is ζ(v)(u+ v) ∈ N+
λ for all v ∈ Bε(0). �

Lemma 3.7. If λ ∈ (0, λ1), then there exists a minimizing sequence {uk} ⊂ Nλ such that

Iλ(uk) = cλ + ok(1), and I
′
λ(uk) = ok(1),

with cλ = infu∈Nλ Iλ(u).
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Proof. Since by Lemma 2.2 and Ekeland’s variational principle [15], there exists a minimizing sequence

{uk} ⊂ Nλ for Iλ such that

cλ < Iλ(uk) < cλ +
1

k
, (3.10)

and also

Iλ(uk) < Iλ(u) +
1

k
‖u− uk‖, for any u ∈ Nλ. (3.11)

From (3.10) and Lemma 2.2, we get supk ‖uk‖ < ∞. Next, we want to show ‖I ′λ(uk)‖ → 0 as k → ∞.

By Lemma 3.6, we obtain the differentiable functions ζk : Bεk(0) → R for some εk > 0 such that

ζk(v)(uk − v) ∈ Nλ for all v ∈ Bεk(0). For fixed k, choose 0 < % < εk and define v% = %u/‖u‖ with

u ∈ E0, u 6≡ 0. We set ω% = ζk(v%)(uk − v%). Then it is clear that ω% ∈ Nλ. From (3.11), we observe that

Iλ(ω%)− Iλ(uk) ≥ −
1

k
‖ω% − uk‖.

Applying the mean value theorem, we have

〈I ′λ(uk), ω% − uk〉+ ok(‖ω% − uk‖) ≥ −
1

k
‖ω% − uk‖.

Therefore,

−〈I ′λ(uk), v%〉+ (ζk(v%)− 1)〈I ′λ(uk), uk − v%〉 ≥ −
1

k
‖ω% − uk‖+ ok(‖ω% − uk‖)

Considering 〈I ′λ(ω%), uk − v%〉 = 0, we get

−%〈I ′λ(uk),
u

‖u‖
〉+ (ζk(v%)− 1)〈I ′λ(uk)− I

′
λ(ω%), uk − v%〉 ≥ −

1

k
‖ω% − uk‖+ ok(‖ω% − uk‖).

Hence

〈I ′λ(uk),
u

‖u‖
〉 ≤ 1

k%
‖ω% − uk‖+

ok(‖ω% − uk‖)
%

+
(ζk(v%)− 1)

%
〈I ′λ(uk)− I

′
λ(ω%), uk − v%〉. (3.12)

Since ‖ω% − uk‖ ≤ ρ|ζk(v%)|+ |ζk(v%)− 1|‖uk‖ and

lim
%→0

|ζk(v%)− 1|
%

≤ ‖ζ ′k(0)‖,

passing to the limit %→ 0+ in (3.12), we obtain

〈I ′λ(uk),
u

‖u‖
〉 ≤ C

k
(1 + ‖ζ ′k(0)‖)

for some C > 0 independent of u. Now, we have to show that ‖ζ ′k(0)‖ is bounded. Arguing by contra-

diction, we assume that 〈ζ ′(0), v〉 =∞. From (3.7 ) and Hölder inequality, we observe that

〈ζ ′k(0), v〉 =
C‖v‖

(p− q)a‖uk‖p + (mp− q)b‖uk‖mp − (p∗s − q)
∫

ΩK(x)|uk|p∗sdx

for some C > 0, which implies that there exists a subsequence {uk} such that

(p− q)a‖uk‖p + (mp− q)b‖uk‖mp − (p∗s − q)
∫

Ω
K(x)|uk|p

∗
sdx = ok(1). (3.13)

In a similar way, from (3.8) and Hölder inequality we can also prove that

a(p− p∗s)‖uk‖p + b(mp− p∗s)‖uk‖mp − (q − p∗s)
∫

Ω
λf(x)|uk|qdx = ok(1). (3.14)

Then using (3.13) and (3.14), following the proof of Lemma 2.4, we can see that λ ≥ λ1, which contradicts

the assumption λ < λ1. This ends the proof. �
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Thanks to Lemma 3.7, we can get a (PS) sequence for Iλ. Now we are ready to show the following

compactness result, which is crucial for the existence of solution for problem (1.1). For this, define

c∗λ :=
s

N
(aS)

N
ps −Dλ

p
p−q , (3.15)

where D =
(p−q)(p∗s−q)|f+|

p
p−q
q∗

pqp∗s

(
p∗s−q

(p∗s−p)S

) q
p−q

.

Lemma 3.8. Iλ satisfies the (PS) condition at level cλ < c∗λ, where c∗λ is given in (3.15).

Proof. Let {un} be a (PS)cλ sequence for Iλ with cλ < c∗λ, i.e.

Iλ(un)→ cλ and ‖I ′λ(un)‖E−1
0
→ 0. (3.16)

By (2.4), {un} is bounded in E0. Hence, up to a subsequence, there exists u ∈ E0 such that

un → u, a. e. in Ω, ‖un‖ → β,

un ⇀ u, weakly in E0, (3.17)

un → u, strongly in Lr(Ω), 1 ≤ r < p∗s.

Meanwhile, there exists ḡ ∈ Lp(Ω) such that |un(x)| ≤ ḡ(x) a.e. in Ω. Denote vn = un − u, then we can

assume that limn→∞ ‖vn‖ = d1 > 0. Otherwise, the conclusion follows. By Lemma 2.1 and (3.17) we

obtain
‖un‖p = ‖un − u‖p + ‖u‖p + on(1),∫

Ω
K(x)|un|p

∗
sdx =

∫
Ω
K(x)|un − u|p

∗
sdx+

∫
Ω
K(x)|u|p∗sdx+ on(1)

(3.18)

as n→∞. Therefore, we deduce from (3.17)-(3.18) that

on(1) = 〈I ′λ(un), un〉 = M(‖un‖p)‖un‖p −
∫

Ω
λf(x)|u|qdx−

∫
Ω
K(x)|u|p∗sdx−

∫
Ω
K(x)|vn|p

∗
sdx, (3.19)

on(1) = 〈I ′λ(un), u〉 = M(‖un‖p)‖u‖p −
∫

Ω
λf(x)|u|qdx−

∫
Ω
K(x)|u|p∗sdx, (3.20)

which imply

M(‖un‖p)‖vn‖p −
∫

Ω
K(x)|vn|p

∗
sdx = on(1).

Let us denote limn→∞
∫

ΩK(x)|vn|p
∗
sdx = d2. Then we have the following key formula

(a+ bβ(m−1)p)dp1 = d2. (3.21)

Therefore, from (3.21), it is clear that d2 > 0. Additionally, by the definition of S in (1.9), we get

dp1 ≥ Sd
p/p∗s
2 . (3.22)

From (3.21)-(3.22), we get that

dp1 ≥ a
N−ps
ps S

N
ps (3.23)
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Now, using the Hölder inequality, we have

cλ = lim
n→∞

(
Iλ(un)− 1

p∗s
〈I ′λ(un), un〉

)
= lim

n→∞

{
(
1

p
− 1

p∗s
)a‖un‖p + (

1

mp
− 1

p∗s
)b‖un‖mp − (

1

q
− 1

p∗s
)λ

∫
Ω
f |un|qdx

}
≥ (

1

p
− 1

p∗s
)adp1 + (

1

p
− 1

p∗s
)a‖u‖p − (

1

q
− 1

p∗s
)λ|f+|q∗S−

q
p ‖u‖q.

Therefore, let us set

Fλ(t) = (
1

p
− 1

p∗s
)atp − (

1

q
− 1

p∗s
)λ|f+|q∗S−

q
p tq.

By a direct computation, Fλ(t) attains its minimum

min
t≥0

Fλ(t) = −(p− q)(p∗s − q)(λ|f+|)
p
p−q

pqp∗s

(
p∗s − q

(p∗s − p)S

) q
p−q

= −Dλ
p
p−q ,

where D =
(p−q)(p∗s−q)|f+|

p
p−q
q∗

pqp∗s

(
p∗s−q

(p∗s−p)S

) q
p−q

. Hence, we get

cλ ≥
s

N
(aS)

N
ps −Dλ

p
p−q = c∗λ

which contradicts the hypothesis cλ < c∗λ. This ends the proof. �

Proposition 3.9. Assume that m < N
N−ps or m = N

N−ps , b < S−m. Then for λ ∈ (0, λ0), Iλ has a

minimizer uλ in Nλ, which is a nonnegative solution of (1.1) with Iλ(uλ) = c+
λ and ‖uλ‖ → 0 as λ→ 0.

Proof. Let us fix λ < λ0 = min{λ1, λ̃, λ2, λ3}, where λ1, λ̃ and λ2 given respectively in (2.5), Lemma 3.5

and (3.1). Meanwhile, we set

λ3 := (
s

N
(aS)

N
ps /D)

p−q
p . (3.24)

For 0 < λ < λ0, putting together the definition of c∗λ and Lemma 3.5, we have

c+
λ < 0 < c∗λ.

As a consequence of Ekeland’s varational principle [15], we can find a (PS) sequence {un} ⊂ N+
λ ⊂ Nλ

such that Iλ(un)→ c+
λ as n→∞. From Lemma 3.8, there exists uλ ∈ Nλ such that

I
′
λ(uλ) = 0, Iλ(uλ) = c+

λ < 0.

Now we claim that uλ ∈ N+
λ . We discuss the proof only for the case m < N

N−ps , while the case

m = N
N−ps , b < S−m follows similarly. If not, then uλ ∈ N−λ because of the Remark 3.2. Together with

(2.2), we get uλ ∈ G+. Also from uλ ∈ Nλ and Iλ(uλ) = c+
λ < 0, we can see that uλ ∈ H+. Therefore,

from Lemma 3.1, we obtain there exist t−(uλ) > t+(uλ) > 0 such that t−uλ ∈ N−λ and t+uλ ∈ N+
λ . This

implies t− = 1 and t+ < 1. Hence, we can find t̃ ∈ (t+, t−) such that

Iλ(t+uλ) = min
0≤t≤t−

Iλ(tuλ) < Iλ(t̃uλ) < Iλ(t−uλ) = Iλ(uλ) = c+
λ ,

which gives the desired contradiction. Thus uλ ∈ N+
λ .
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We point out that Iλ(u) 6= Iλ(|u|), since ‖u‖ 6= ‖|u|‖ in E0. To achieve our aim, we study the positive

part of the problem (1.1) by defining

I+
λ (u) =

a

p
‖u‖p +

b

mp
‖u‖mp − 1

q

∫
Ω
λf(x)|u+|qdx− 1

p∗s

∫
Ω
K(x)|u+|p∗sdx.

Then arguing similarly as above, it is readily to show that there exists a critical point uλ ∈ N+
λ for I+

λ .

That is, for any v ∈ E0,

M(‖uλ‖p)
∫∫

Q

|uλ(x)− uλ(y)|p−2(uλ(x)− uλ(y))(v(x)− v(y))

|x− y|N+ps
dxdy

=

∫
Ω
λf(x)|u+

λ |
q−1vdx−

∫
Ω
K(x)|u+

λ |
p∗s−1vdx.

(3.25)

Then, from (3.25) with test function v = u−λ , we get

M(‖uλ‖p)
∫∫

Q

|uλ(x)− uλ(y)|p−2(uλ(x)− uλ(y))(u−λ (x))− u−λ (y))

|x− y|N+ps
dxdy = o(1).

From the last equation, together with the facts

|u−λ (x)− u−λ (y)|p ≤ |u−λ (x)− u−λ (y)|p−2(uλ(x)− uλ(y))(u−λ (x)− u−λ (y))

and

|u−λ (x)− u−λ (y)| ≤ |uλ(x)− uλ(y)|,

we obtain

(a+ b‖u−λ ‖
(m−1)p)

∫∫
Q

|u−λ (x)− u−λ (y)|p

|x− y|N+ps
dxdy = o(1).

Moreover, by a, b > 0, we get ‖u−λ ‖ = 0, which implies that uλ is a nonnegative solution of (1.1).

Furthermore, from lemma 3.5, we deduce that uλ is a ground state solution of (1.1).

Now, we shall show that the solution uλ is a local minimizer of Iλ in E0. It follows from Lemmas 3.1

and 3.3 that t+(uλ) = 1 < tmax(uλ), noting that uλ ∈ N+
λ . Therefore, from continuity of u 7→ tmax(u),

for fixed ε > 0, there exists δ1 = δ1(ε) > 0 such that tmax(uλ − u) > 1 + ε for all ‖u‖ < δ1. On the other

hand, by Lemma 3.12, it is easy to verify that for a given δ2 > 0, there is a C1 map ζ : Bδ2(0) → R+

such that ζ(u)(uλ − u) ∈ N+
λ and ζ(0) = 1. Thus, considering 0 < δ = min{δ1, δ2} and uniqueness of

zeros of fibering map, we conclude t+(uλ − u) = ζ(u) < 1 + ε < tmax(uλ − u) for all ‖u‖ < δ. From

tmax(uλ − u) > 1, we get Iλ(uλ) ≤ Iλ(t+(uλ − u)(uλ − u)) ≤ Iλ(uλ − u). It follows immediately that uλ

is a local minimizer of Iλ in E0. Finally using Lemma 3.4, the proof is completed. �

Lemma 3.10. There exists λ4 > 0 and r > 0 such that for any λ ∈ (0, λ4)

inf
u∈E0,‖u‖=r

Iλ(u) = α > 0.

In particular, when λ = 0, there exists r1 > r such that I0(u) > 0, for all u ∈ Br1\{0}.

Proof. For u ∈ E0, we have

Iλ(u) =
a

p
‖u‖p +

b

mp
‖u‖mp − 1

q

∫
Ω
λf(x)|u|qdx− 1

p∗s

∫
Ω
K(x)|u|p∗sdx

≥ a

p
‖u‖p − λ|f+|q∗

qSq/p
‖u‖q − 1

p∗sS
p∗s/p
‖u‖p∗s .

(3.26)
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From (3.26) we obtain

Iλ(u) ≥
(
a

p
‖u‖p−q − λ|f+|q∗

qSq/p
− 1

p∗sS
p∗s/p
‖u‖p∗s−q

)
‖u‖q.

Denote

g̃(t) =
a

p
tp−q − 1

p∗s
S−p

∗
s/ptp

∗
s−q,

for all t ≥ 0. In view of p < p∗s, for each u ∈ E0 with

‖u‖ = r :=

[
ap∗sS

p∗s/p(p− q)
p(p∗s − q)

]1/(p∗s−p)

,

we obtain maxt≥0 g̃(t) = g̃(r) > 0. Therefore, taking

λ < λ4 =
g̃(r)q

S−q/p|f+|q∗
,

we can conclude that

Iλ(u) ≥ (g̃(r)− λ |f+|q∗
qSp/q

)rq =: α > 0.

The first part of proof is finished.

When λ = 0, Using (3.26), there exists r1 = [(p∗s − q)/(p − q)]1/(p
∗
s−p)r > r, such that I0(u) > 0, for

all u ∈ Br1\{0}. �

Lemma 3.11. Let r be as in Lemma 3.10. Then

(i) for m < N
N−ps , a > 0, b > 0, there exists e ∈ E0 with ‖e‖ > r such that Iλ(e) < 0;

(ii) for m = N
N−ps , a > 0, 0 < b < 1/Sm, there exists e ∈ E0 with ‖e‖ > r such that Iλ(e) < 0.

Proof. (i) For m < N
N−ps , a > 0, b > 0. For a given u ∈ E0\{0} with

∫
ΩK(x)|u|p∗sdx > 0, by Fatou’s

Lemma, we can deduce that

lim
t→∞

Iλ(tu)

tp∗s
=
a

p
lim
t→∞

‖u‖p

tp∗s−p
+

b

mp
lim
t→∞

‖u‖mp

tp∗s−mp
− 1

q
lim
t→∞

∫
Ω λf(x)|u|qdx

tp∗s−q
− 1

p∗s

∫
Ω
K(x)|u|p∗sdx

< 0.

Clearly, there exists T > 0 large enough such that ‖e‖ = ‖Tu‖ ≥ r and Iλ(e) < 0.

(ii) For m = N
N−ps , a > 0, 0 < b < 1/Sm. For a given u ∈ E0 \ {0} with

∫
ΩK(x)|u|p∗sdx− b‖u‖mp > 0,

by Fatou’s Lemma, we can deduce that

lim
t→∞

Iλ(tu)

tp∗s
=
a

p
lim
t→∞

‖u‖p

tp∗s−p
− 1

q
lim
t→∞

∫
Ω λf(x)|u|qdx

tp∗s−q
+

1

mp

(
b‖u‖mp −

∫
Ω
K(x)|u|mpdx

)
< 0.

The rest proof is the same as that in (i). �

In Lemma 3.10 and 3.11, we show that Iλ satisfies the mountain pass geometry. Therefore, there

exists a (PS)c sequence with

c = inf
γ∈Γ

max
t∈[0,1]

I(γ(t)),

where

Γ := {γ ∈ C([0, 1], E0) : γ(0) = 0, γ(1) = e}.
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In order to estimate the mountain pass level c, we recall some facts. The authors in [16] observed

that the following critical fractional p-Laplacian problem:(−∆)spu = S|u|p∗s−2u, x ∈ RN ,

u ∈ Ds,p(RN ).
(3.27)

admitted a positive radially symmetric decreasing solution U = U(r) satisfying

lim
|x|→∞

|x|
N−sp
p−1 U(x) = U∞ ∈ R \ {0}. (3.28)

For any ε > 0, define

Uε,y(x) =
1

ε
N−ps
p

U(
|x− y|
ε

).

Moreover, the following estimates hold:

Lemma 3.12. [16] There exist constants c1, c2 > 0 and θ > 1 such that for all r ≥ 1,

c1

r
N−sp
p−1

≤ U(r) ≤ c2

r
N−sp
p−1

(3.29)

and
U(θr)

U(r)
≤ 1

2
. (3.30)

Let θ be the universal constant in Lemma 3.12 that depends only on N, p and s. For ε, δ > 0, let

mε,y,δ :=
Uε,y(δ)

Uε,y(δ)− Uε,y(θδ)
,

gε,y,δ(t) :=


0, if 0 ≤ t ≤ Uε,y(θδ),

mp
ε,y,δ(t− Uε,y(θδ)), if Uε,y(θδ) ≤ t ≤ Uε,y(δ),

t+ Uε,y(δ)(m
p−1
ε,y,δ − 1), if t ≥ Uε,y(δ),

and

Gε,y,δ(t) :=

∫ t

0
(g
′
ε,y,δ(τ))

1
pdτ =


0, if 0 ≤ t ≤ Uε,y(θδ),

mε,y,δ(t− Uε(θδ)), if Uε,y(θδ) ≤ t ≤ Uε,y(δ),

t, if t ≥ Uε,y(δ).

We conclude that gε,y,δ and Gε,y,δ are nondecreasing and absolutely continuous functions. For any z ∈ Π,

let

uε,z,δ = Gε,z,δ(Uε,z(r)).

By the definition of Gε,z,δ, we get

uε,z,δ(r) =

Uε,z(r), if r ≤ δ,

0, if r ≥ θδ,
(3.31)

As in [35, Lemma 2.7], the following asymptotic estimations hold:
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Lemma 3.13. There exists C = C(N, p, s) > 0 such that for any ε ≤ δ
2 the following estimates hold

‖ uε,z,δ ‖p≤ S
N
ps + C((

ε

δ
)
N−ps
p−1 ),

|uε,z,δ|
p∗s
p∗s
≥ S

N
ps − C((

ε

δ
)
N
p−1 ).

Moreover, in view of the definition of uε,z,δ, the following result also holds. From now on, we assume

that δ = r0
2 and let uε = uε,z,r0/2.

Lemma 3.14. Let (K) hold, then there exists C = C(N, p, s) > 0 such that for any ε ≤ δ
2 ,∫

Πr0

(1−K)|uε|p
∗
sdx ≤ Cερ.

Proof. Using Remark 1.1, a change of variable, Lemma 3.12 and the fact that ε ≤ δ
2 , we get∫

Bδ(0)
(1−K)|uε|p

∗
sdx ≤ σ0

∫
Bδ(0)

|x|ρUp∗sε,z(x)dx = Cερ
∫
B δ
ε

(0)
|x|ρUp∗sdx

= CερωN−1

∫ δ
ε

1
rρ+N−1Up

∗
s (r)dr

≤ CερωN−1

∫ δ
ε

1
r
ρ+N−1− Np

p−1dr

=
(p− 1)Cερ

N − (p− 1)ρ

[
1− (

ε

δ
)
N
p−1
−ρ
]
≤ Cερ.

(3.32)

Since Uε,z is radially nonincreasing, taking δ = r0
2 , θ = 2, then for δ ≤ r ≤ θδ = r0, we see

0 ≤ mε(Uε,z(r)− Uε,z(θδ)) = Uε,z(δ)
Uε,z(r)− Uε,z(θδ)
Uε,z(δ)− Uε,z(θδ)

≤ Uε,z(δ).

Together with the definition of Uε,z,
δ
ε ≥ 2 and Lemma 3.12, we get∫

Br0 (0)\Bδ(0)
(1−K)|uε|p

∗
sdx ≤

∫
Br0 (0)\Bδ(0)

|uε|p
∗
sdx

=

∫
Br0 (0)\Bδ(0)

[mε(Uε,z(r)− Uε,z(θδ))]p
∗
sdx

≤
∫
Br0 (0)\Bδ(0)

Up
∗
s
ε,z(δ)dx

= |Uε,z(δ)|p
∗
s |Br0(0) \Bδ(0)|

≤ Cδ−
Np
p−1 ε

N
p−1 ≤ Cε

N
p−1 .

(3.33)

Using (3.32) and (3.33), we deduce that∫
Πr0

(1−K)|uε|p
∗
sdx ≤

∫
Bδ(0)

(1−K)|uε|p
∗
sdx+

∫
Br0 (0)\Bδ(0)

(1−K)|uε|p
∗
sdx

≤ Cερ + Cε
N
p−1 ≤ Cερ,

because of 0 < ρ < N
p−1 . �
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Lemma 3.15. Let m < N
N−ps or m = N

N−ps , b < 1/Sm, and (K) hold, then there exists λ∗ ∈ (0, λ0), b∗ > 0

such that for any λ ∈ (0, λ∗), b ∈ (0, b∗) the inequality

c ≤ sup
t≥0

Iλ(tuε) <
s

N
(aS)

N
ps −Dλ

p
p−q

holds.

Proof. To estimate c, we define the functions,

s(t) := Iλ(tuε) =
atp

p
‖uε‖p +

btmp

mp
‖uε‖mp −

tq

q

∫
Πr0

λf(x)|uε|qdx−
tp
∗
s

p∗s

∫
Πr0

K(x)|uε|p
∗
sdx

and

s̃(t) :=
atp

p
‖uε‖p −

tp
∗
s

p∗s

∫
Πr0

K(x)|uε|p
∗
sdx

for all t ≥ 0. Then for m < N
N−ps or m = N

N−ps , b < 1/Sm, we can easily check that there exists tε > 0

such that s′(tε) = 0 and maxt≥0 s(t) = s(tε). It is clear that there exists T > 0 such that

0 < tε ≤ T for ε sufficiently small, (3.34)

where T is given in Lemma 3.11. Gathering the estimates in Lemma 3.13 and Lemma 3.14, we get

s̃(t) ≤ s

N
(aS)

N
sp +

1

p∗s

∫
Πr0

(1−K)|Tuε|p
∗
sdx ≤ s

N
(aS)

N
sp +O(ερ0)

for some ε0 > 0. Let λ5 ≤ min{λ0, λ4} such that s
N (aS)

N
ps −Dλ

p
p−q
5 > 0. Since

lim
t→0+

(
atp

p
S
N
sp +

btmp

mp
S
Nm
sp

)
= 0,

which implies that there exists t1 ∈ (0, tε) such that for each λ ∈ (0, λ5) we get

max
0≤t≤t1

s(t) ≤ max
0≤t≤t1

(
atp

p
S
N
sp +

btmp

mp
S
Nm
sp

)
≤ s

N
(aS)

N
ps −Dλ

p
p−q
5 <

s

N
(aS)

N
ps −Dλ

p
p−q .

Clearly, there exist two positive numbers b∗ > 0 and λ∗ ∈ (0, λ5] such that for any λ ∈ (0, λ∗), b ∈ (0, b∗)

we get

λ
tq1
q

∫
Πr0

f(x)|uε|qdx > Dλ
p
p−q + Cb+ Cερ0.

Thus for all λ ∈ (0, λ∗) and b ∈ (0, b∗), we can conclude that

c ≤ sup
t≥0

Iλ(tuε) = sup
t≥0

s(t) <
s

N
(aS)

N
ps −Dλ

p
p−q ,

which completes the proof. �

Proof of Theorem 1.1. (i)The proof of (i) follows immediately by the Proposition 3.9.

(ii) By Lemma 3.10 and Lemma 3.11, it is easy to see Iλ has a mountain pass geometry. Thus there

exists a bounded (PS) sequence {vn}. Then from Lemmas 3.15 and 3.8, up to a subsequence, we get

there exists uλ,b ∈ E0 such that vn → uλ,b, a nontrivial and nonnegative solution of (1.1). Finally, since

Iλ(uλ) < 0 < Iλ(uλ,b), uλ and uλ,b are distinct. This ends the proof. �
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Proof of Theorem 1.2. (i) By Remark 3.1, we see N+
λ = Nλ and define cλ = infu∈Nλ Iλ(u). It is clear

that cλ < 0. As done similarly in Proposition 3.9, there exists a (PS)cλ sequence {un} ⊂ N+
λ for Iλ. It

follows from Lemma 2.2 {un} is bounded in E0. Hence, up to a subsequence, there exists u ∈ E0 verifying

(3.17). Denote vn = un − u, for b ≥ S−m, we get∫
Ω
K(x)|vn|p

∗
sdx− b‖vn‖mp ≤ 0.

Then combining this and (3.19)-(3.20), we get

a‖vn‖p ≤ a‖vn‖p + b‖u‖(m−1)p‖vn‖p + b‖vn‖mp −
∫

Ω
K(x)|vn|p

∗
sdx = on(1),

which implies that un → u in E0. Following the argument used in Proposition 3.9, we get u is a

nonnegative solution of (1.1).

(ii) The proof is similar to that of Theorem 1.1. �

4 Proof of Theorem 1.3

In this section, we will show you the proof of the last result by applying the Krasnoselskii genus

theory. First of all, recall that in [2], let X be a real Banach space. Set∑
= {A ⊂ X \ {0} : A is compact and A = −A}.

Definition 4.1. Let A ∈
∑

and X = Rk. The genus γ(A) of A is defined by

γ(A) = min{k ≥ 1 : there exists an odd continuous mapping φ : A→ Rk \ {0}}.

If such a mapping does not exist for any k > 0, we set γ(A) = +∞. Moreover, from definition, γ(∅) = 0.

For the functional defined in (1.10), we deduce from Hölder inequality and (1.9) that

Iλ(u) ≥ a

p
‖u‖p +

b

mp
‖u‖mp − λ

q
|f |q∗S−q/p‖u‖q −

1

p∗s
S−p

∗
s/p‖u‖p∗s

≥ C1‖u‖p − C2λ‖u‖q − C3‖u‖p
∗
s ,

where C1 = a
p , C2 =

|f |q∗S−q/p
q , C3 = 1

p∗s
S−p

∗
s/p. Define l : R+ → R as

l(t) = C1t
p − C2λt

q − C3t
p∗s .

It is easy to see that

Iλ(u) ≥ l(‖u‖). (4.1)

We note that l(t) achieves its positive maximum. Similar to the argument in the proof of Theorem 1.1,

one can readily show that there exists λ3 > 0 as given in (3.24) such that for any λ ∈ (0, λ3), we get

that c∗λ > 0, where c∗λ defined in (3.15). Also we can conclude that there are constants 0 < T1 < T2, for

t < T1, l(t) ≤ 0, for t ∈ (T1, T2), l(t) > 0, and l(t) < 0 for t > T2. Let κ ∈ C∞0 (R+) be nonincreasing such

that 0 ≤ κ ≤ 1,κ = 1 if t ≤ T1 and κ = 0 if t ≥ T2. From now on, we set ω(u) = κ(‖u‖). We consider the

following truncated functional

J(u) =
a

p
‖u‖p +

b

mp
‖u‖mp − 1

q

∫
Ω
λf(x)|u|qdx− 1

p∗s

∫
Ω
K(x)|u|p∗sω(u)dx.
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As (4.1), we obtain that J(u) ≥ l̃(‖u‖), where l̃(t) = C1t
p−C2λt

q−C3t
p∗sκ(t). It is immediate to see that

l̃(t) ≥ l(t) for t ≥ 0, l̃(t) = l(t) if 0 ≤ t ≤ T1, l̃(t) ≥ l(t) if T1 < t ≤ T2, and if t > T2, l̃(t) = C1t
p −C2λt

q,

which is strictly increasing. Hence, we immediately get l̃(t) > 0 if t > T2. Furthermore, l̃(t) > 0 for

t > T1.

From this, we can state the next technical lemma.

Lemma 4.2. (i) J ∈ C1(E0,R).

(ii) If J(u) < 0, then ‖u‖ < T1 and J(ũ) = Iλ(ũ) for all ũ in a small enough neighbourhood of u.

(iii) There is a λ3 > 0 such that if λ ∈ (0, λ3), then J satisfies the (PS)c condition for c < 0.

Proof. (i) Since κ ∈ C∞ and κ = 1 for u near 0, J ∈ C1(E0,R) and completes the proof.

Let us prove (ii) by contradiction. Assume J(u) < 0 and ‖u‖ ≥ T1, then 0 > J(u) ≥ l̃(‖u‖) ≥ 0, a

contradiction. Thus (ii) holds true.

Next, we prove (iii). Let λ3 be given in (3.24). If {un} is a (PS)c sequence for J with c < 0, i.e.,

J(un)→ c and ‖J ′(un)‖E−1
0
→ 0 as n→∞.

Then it follows from (ii) that ‖u‖ < T1. Hence, Iλ(un) = J(un) and I ′λ(un) = J ′(un). By Lemma 3.8, Iλ

satisfies the (PS)c condition for c < 0 < c∗λ. This indicates that J satisfies the (PS)c condition for c < 0.

�

Now, we are ready to state the main result of this section constructing negative critical values of J

via genus, as done similarly in [17].

Lemma 4.3. Let f− ≡ 0 and k ∈ N, there exists an ε = ε(k) > 0, such that γ({u ∈ E0 : J(u) ≤ −ε}) ≥ k.

Proof. Fix k, let us set Ek be a k dimensional subspace of E0. Let u ∈ Ek be such that ‖u‖ = 1. For

0 < θ < T1, we obtain

Iλ(θu) = J(θu) =
a

p
θp +

b

mp
θmp − θq

q

∫
Ω
λf(x)|u|qdx− θp

∗
s

p∗s

∫
Ω
K(x)|u|p∗sω(θ)dx.

Obviously, all the norms in Ek are equivalent. It is easy to see that

σk = inf{
∫

Ω
|u|qdx : u ∈ Ek, ‖u‖ = 1} > 0.

Thus

J(θu) ≤ aθp

p
+
bθmp

mp
− λC θ

q

q
σk −

θp
∗
s

p∗s

∫
Ω
K(x)|u|p∗sω(θ)dx.

Then we conclude that for any ε > 0 there exists a positive number θ < T1 such that for each u ∈ Ek
with ‖u‖ = 1, J(θu) ≤ −ε. Denote Sθ = {u ∈ E0|‖u‖ = θ}. Clearly, Sθ ∩ Ek ⊂ {u ∈ E0 : J(u) ≤ −ε}.
Applying monotonicity property of genus and the fact that γ(Sθ ∩ Ek) = k, we get that γ({u ∈ E0 :

J(u) ≤ −ε}) ≥ γ(Sθ ∩ Ek) = k. �

Now we will prove the existence of infinitely many solutions for problem (1.1).
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Proof of Theorem 1.3. Set∑
k = {A ⊂

∑
: γ(A) ≥ k}, ck = infA∈

∑
k

supu∈A J(u), k = 1, 2, · · · .
Also, consider the following set

Kc = {u ∈ E0 : J(u) = c, J ′(u) = 0}, J−ε = {u ∈ E0 : J(u) ≤ −ε}

and assume that 0 < λ < λ3, with λ3 given in Lemma 4.2 (iii). It follows from Lemma 4.3 that for any

k ∈ N, there is a ε(k) > 0 such that γ(J−ε) ≥ k. Together with the fact that J is continuous and even,

we get that J−ε ∈
∑

k and ck ≤ −ε(k) < 0. Furthermore, ck > −∞, as J is bounded from below.

Now, we claim that if there exist k, i ∈ N such that c = ck = ck+1 = · · · = ck+i, then γ(Kc) ≥ i + 1.

Arguing by contradiction, we assume that c = ck = ck+1 = · · · = ck+i < 0 and γ(Kc) ≤ i. Hence, by

Lemma 4.2 (iii), J satisfies the (PS)c condition, which implies that Kc is compact. Since γ(Kc) ≤ i,

from [2, Proposition 7.5], there exists a closed and symmetric set V with Kc ⊂ V and γ(V ) ≤ i. On the

other hand, because c < 0, we can also hypothesize that the closed set V ⊂ J0. From [18, Lemma 1.3],

there is an odd homomorphism τ : E0 → E0 such that

τ(Jc+δ − V ) ⊂ Jc−δ (4.2)

for some 0 < δ < −c. Noting that

c = ck+i = inf
A∈

∑
k+i

sup
u∈A

J(u),

there is an A ∈
∑

k+i such that supu∈A J(u) < c + δ, i. e. A ⊂ Jc+δ. Together with (4.2), we get

τ(A− V ) ⊂ τ(Jc+δ − V ) ⊂ Jc−δ, which implies

sup
u∈τ(A−V )

J(u) ≤ c− δ. (4.3)

On the other hand, by γ(V ) ≤ i, we get that γ(τ(A− V )) ≥ γ(A− V ) ≥ γ(A)− γ(V ) ≥ k. from this, it

is clearly that τ(A− V ) ∈
∑

k and supu∈τ(A−V ) J(u) ≥ ck = c, which contradicts (4.3). Thus the claim

holds true.

Finally, if for all k ∈ N,
∑

k+1 ⊂
∑

k, ck ≤ ck+1 ≤ 0 and all ck are distinct, then γ(Kc) ≥ 1. We

observe that there is a sequence of distinct negative critical values of J . If for some k1, there exists a

i ≥ 1 such that c = ck1 = ck1+1 = · · · = ck1+i, then from the claim, it is clear that γ(Kc) ≥ i+ 1, which

implies that Kc contains infinitely many distinct elements. Then from Lemma 4.2 (ii), we know that

there exist infinitely many critical points for Iλ, concluding the proof. �
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