References
Ajioka, R. S., Phillips, J. D., & Kushner, J. P. (2006). Biosynthesis
of heme in mammals. Biochimica et Biophysica Acta (BBA) -
Molecular Cell Research, 1763 (7), 723-736.
doi:https://doi.org/10.1016/j.bbamcr.2006.05.005
Ali, A. S., Raju, R., Kshirsagar, R., Ivanov, A. R., Gilbert, A., Zang,
L., & Karger, B. L. (2019). Multi-Omics Study on the Impact of Cysteine
Feed Level on Cell Viability and mAb Production in a CHO Bioprocess.Biotechnol J, 14 (4), 1800352. doi:10.1002/biot.201800352
Allocati, N., Masulli, M., Di Ilio, C., & Federici, L. (2018).
Glutathione transferases: substrates, inihibitors and pro-drugs in
cancer and neurodegenerative diseases. Oncogenesis, 7 (1), 8.
doi:10.1038/s41389-017-0025-3
Armstrong, R. N. (2010). Glutathione Transferases. InComprehensive Toxicology, Second Edition (Vol. 4, pp. 295-321).
Burg, J. S., & Espenshade, P. J. (2011). Regulation of HMG-CoA
reductase in mammals and yeast. Progress in lipid research,
50 (4), 403-410. doi:10.1016/j.plipres.2011.07.002
Chakravarthi, S., & Bulleid, N. J. (2004). Glutathione is required to
regulate the formation of native disulfide bonds within proteins
entering the secretory pathway. J Biol Chem, 279 (38),
39872-39879. doi:10.1074/jbc.M406912200
Chong, W. P., Thng, S. H., Hiu, A. P., Lee, D. Y., Chan, E. C., & Ho,
Y. S. (2012). LC-MS-based metabolic characterization of high monoclonal
antibody-producing Chinese hamster ovary cells. Biotechnol Bioeng,
109 (12), 3103-3111. doi:10.1002/bit.24580
Consortium, T. U. (2018). UniProt: a worldwide hub of protein knowledge.Nucleic Acids Research, 47 (D1), D506-D515.
doi:10.1093/nar/gky1049
Craig, R., Cortens, J. P., & Beavis, R. C. (2004). Open Source System
for Analyzing, Validating, and Storing Protein Identification Data.J Proteome Res, 3 (6), 1234-1242. doi:10.1021/pr049882h
Dorfer, V., Pichler, P., Stranzl, T., Stadlmann, J., Taus, T., Winkler,
S., & Mechtler, K. (2014). MS Amanda, a universal identification
algorithm optimized for high accuracy tandem mass spectra. J
Proteome Res, 13 (8), 3679-3684. doi:10.1021/pr500202e
Eaton, D. L., & Bammler, T. K. (1999). Concise review of the
glutathione S-transferases and their significance to toxicology.Toxicol Sci, 49 (2), 156-164. doi:10.1093/toxsci/49.2.156
Feary, M., Racher, A. J., Young, R. J., & Smales, C. M. (2017).
Methionine sulfoximine supplementation enhances productivity in
GS-CHOK1SV cell lines through glutathione biosynthesis. Biotechnol
Prog, 33 (1), 17-25. doi:10.1002/btpr.2372
Fujii, H., Takahashi, T., Matsumi, M., Kaku, R., Shimizu, H., Yokoyama,
M., . . . Morita, K. (2004). Increased heme oxygenase-1 and decreased
delta-aminolevulinate synthase expression in the liver of patients with
acute liver failure. Int J Mol Med, 14 (6), 1001-1005.
Gozzelino, R., Jeney, V., & Soares, M. P. (2010) Mechanisms of cell
protection by heme Oxygenase-1. In: Vol. 50. Annu Rev Pharmacol
Toxicol (pp. 323-354).
Hedblom, A., Hejazi, S. M., Canesin, G., Choudhury, R., Hanafy, K. A.,
Csizmadia, E., . . . Wegiel, B. (2019). Heme detoxification by heme
oxygenase-1 reinstates proliferative and immune balances upon genotoxic
tissue injury. Cell Death Dis, 10 (2), 72.
doi:10.1038/s41419-019-1342-6
Howe, V., Sharpe, L. J., Alexopoulos, S. J., Kunze, S. V., Chua, N. K.,
Li, D., & Brown, A. J. (2016). Cholesterol homeostasis: How do cells
sense sterol excess? Chem Phys Lipids, 199 , 170-178.
doi:10.1016/j.chemphyslip.2016.02.011
Ketterer, B., Coles, B., & Meyer, D. J. (1983). The role of glutathione
in detoxication. Environmental health perspectives, 49 , 59-69.
doi:10.1289/ehp.834959
Kolde, R. (2015). pheatmap: Pretty heatmaps [Software]. In.
Lau, L. F. (2011). CCN1/CYR61: the very model of a modern matricellular
protein. Cell Mol Life Sci, 68 (19), 3149-3163.
doi:10.1007/s00018-011-0778-3
Loh, W. P., Yang, Y., & Lam, K. P. (2017). miR-92a enhances recombinant
protein productivity in CHO cells by increasing intracellular
cholesterol levels. Biotechnol J, 12 (4).
doi:10.1002/biot.201600488
Micheletta, F., & Iuliano, L. (2006). Free Radical Attack on
Cholesterol: Oxysterols as Markers of Oxidative Stress and as Bioactive
Molecules. Immunology, Endocrine & Metabolic Agents - Medicinal
Chemistry, 6 , 305-316. doi:10.2174/187152206777435618
Mulukutla, B. C., Mitchell, J., Geoffroy, P., Harrington, C., Krishnan,
M., Kalomeris, T., . . . Hiller, G. W. (2019). Metabolic engineering of
Chinese hamster ovary cells towards reduced biosynthesis and
accumulation of novel growth inhibitors in fed-batch cultures.Metabolic Engineering, 54 , 54-68. doi:10.1016/j.ymben.2019.03.001
Olkkonen, V. M., Béaslas, O., & Nissilä, E. (2012). Oxysterols and
their cellular effectors. Biomolecules, 2 (1), 76-103.
doi:10.3390/biom2010076
Orellana, C. A., Marcellin, E., Gray, P. P., & Nielsen, L. K. (2017).
Overexpression of the regulatory subunit of glutamate-cysteine ligase
enhances monoclonal antibody production in CHO cells. Biotechnol
Bioeng, 114 (8), 1825-1836. doi:10.1002/bit.26316
Orellana, C. A., Marcellin, E., Schulz, B. L., Nouwens, A. S., Gray, P.
P., & Nielsen, L. K. (2015). High-antibody-producing Chinese hamster
ovary cells up-regulate intracellular protein transport and glutathione
synthesis. J Proteome Res, 14 (2), 609-618. doi:10.1021/pr501027c
Phipson, B., Lee, S., Majewski, I. J., Alexander, W. S., & Smyth, G. K.
(2016). Robust hyperparameter estimation protects agaisnt hypervariable
genes and improves power to detect differential expression. The
annals of applied statistics, 10 (2), 946-963. doi:10.1214/16-AOAS920
Porter, T. D. (2015). Electron Transfer Pathways in Cholesterol
Synthesis. Lipids, 50 (10), 927-936. doi:10.1007/s11745-015-4065-1
Ribas, V., García-Ruiz, C., & Fernández-Checa, J. C. (2014).
Glutathione and mitochondria. Frontiers in pharmacology, 5 ,
151-151. doi:10.3389/fphar.2014.00151
Ribas, V., García-Ruiz, C., & Fernández-Checa, J. C. (2016).
Mitochondria, cholesterol and cancer cell metabolism. Clinical and
translational medicine, 5 (1), 22-22. doi:10.1186/s40169-016-0106-5
Ritchie, M. E., Phipson, B., Wu, D., Hu, Y., Law, C. W., Shi, W., &
Smyth, G. K. (2015). limma powers differential expression analyses for
RNA-sequencing and microarray studies. Nucleic Acids Research,
43 (7), e47-e47. doi:10.1093/nar/gkv007
Salinas, A. E., & Wong, M. G. (1999). Glutathione S-transferases–a
review. Curr Med Chem, 6 (4), 279-309.
Solsona-Vilarrasa, E., Fucho, R., Torres, S., Nunez, S., Nuno-Lambarri,
N., Enrich, C., . . . Fernandez-Checa, J. C. (2019). Cholesterol
enrichment in liver mitochondria impairs oxidative phosphorylation and
disrupts the assembly of respiratory supercomplexes. Redox Biol,
24 , 101214. doi:10.1016/j.redox.2019.101214
Sonnhammer, E. L., & Ostlund, G. (2015). InParanoid 8: orthology
analysis between 273 proteomes, mostly eukaryotic. Nucleic Acids
Res, 43 (Database issue), D234-239. doi:10.1093/nar/gku1203
Stevens, J. F., & Maier, C. S. (2008). Acrolein: sources, metabolism,
and biomolecular interactions relevant to human health and disease.Mol Nutr Food Res, 52 (1), 7-25. doi:10.1002/mnfr.200700412
Tonelli, C., In, C. C. I., & Tuveson, D. A. (2018). Transcriptional
Regulation by Nrf2. Antioxid Redox Signal, 29 (17), 1727-1745.
doi:10.1089/ars.2017.7342
Turrens, J. F. (2003). Mitochondrial formation of reactive oxygen
species. J Physiol, 552 (Pt 2), 335-344.
doi:10.1113/jphysiol.2003.049478
Wang, Y., Thiele, C., & Huttner, W. B. (2000). Cholesterol is required
for the formation of regulated and constitutive secretory vesicles from
the trans-Golgi network. Traffic, 1 (12), 952-962.
Wei, R., Enaka, M., & Muragaki, Y. (2019). Activation of KEAP1/NRF2/P62
signaling alleviates high phosphate-induced calcification of vascular
smooth muscle cells by suppressing reactive oxygen species production.Sci Rep, 9 (1), 10366. doi:10.1038/s41598-019-46824-2
Yang, Y., Huycke, M. M., Herman, T. S., & Wang, X. (2016). Glutathione
S-transferase alpha 4 induction by activator protein 1 in colorectal
cancer. Oncogene, 35 (44), 5795-5806. doi:10.1038/onc.2016.113