References
  1. Persson M, Cnattingius S, Villamor E et al. Risk of major congenital malformations in relation to maternal overweight and obesity severity: cohort study of 1.2 million singletons. BMJ 2017;357:j2563.
  2. 21st Edition Nelson pediatric symptom-based diagnosis. Robert Kliegman; Patricia S Lye; Brett J Bordini; Heather Toth; Donald Basel. Philadelphia, PA: Elsevier, 2018. ISBN:9780323399562 0323399568.
  3. Callaway JL, Shaffer LG, Chitty LS et al. The clinical utility of microarray technologies applied to prenatal cytogenetic diagnosis in the presence of a normal conventional karyotype : a review of the literature. Prenat Diagn 2013; 33: 1119-1123.
  4. Hillman SC, McMullan DJ, Hall G, Togneri FS, James N, Maher EJ, Meller CH, Williams D, Wapner RJ, Maher ER, Kilby MD. Use of prenatal chromosomal microarray: prospective cohort study and a systematic review and meta-analysis of the literature. Ultrasound Obstet Gynecol 2013; 41: 610-620.
  5. Gergev G, Mate A, Zimmermann A, Rarosi R, Sztriha L. Spectrum of neurodevelopmental disabilities: a cohort study in Hungary. J Child Neurol . 2015;30(3):344-56.
  6. Yang Y, Muzny DM, Reid JG et al. Clinical whole exome sequencing for the diagnosis of Mendelian disorders. N Engl J Med 2013; 369: 1502-1511.
  7. Deciphering Developmental Disorders (DDD) Study. Large-scale recovery of novel genetic causes of developmental disorders. Nature2015; 519: 223-228.
  8. Petrikin JE, Willig LK, Smith LD, Kingsmore SF. Rapid whole genome sequencing and precision neonatology. Semin Perinatol . 2015;39(8):623–631. doi:10.1053/j.semperi.2015.09.009
  9. Best S, Wou K, Vora N, Van der Veyver IB, Wapner R, Chitty LS. Promises, pitfalls and practicalities of prenatal whole exome sequencing. Prenat Diagn . 2018;38(1):10–19. doi:10.1002/pd.5102.
  10. Yates CL, Monaghan KG, Copenheaver D, et al. Whole-exome sequencing on deceased fetuses with ultrasound anomalies: expanding our knowledge of genetic disease during fetal development. Genet Med . 2017;19(10):1171–1178. doi:10.1038/gim.2017.31.
  11. McMullan DJ, Eberhart R, Rinck G et al, Exome sequencing of 406 parental/fetal trios with structural anomalies revealed by ultrasound in the UK PAGE study. European Society of Human Genetics , Copenhagen, Denmark, 2017 (Abstract).
  12. Yadava SM, Ashkinadze E. Abstract 125: Whole exome sequencing (WES) in prenatal diagnosis for carefully selected cases. Am J Obstet Gynecol . 2017; 216: S87-S88. http://www.ajog.org.article/S0002-9378(16)31008-0/fulltext/.
  13. Talkowski ME, Ordulu Z, Pillalamarri V, et al. Clinical diagnosis by whole-genome sequencing of a prenatal sample. N Engl J Med . 2012;367(23):2226–2232. doi:10.1056/NEJMoa1208594.
  14. Shamseldin HE, Swaid A, Alkuraya FS. Lifting the lid on unborn lethal Mendelian phenotypes through exome sequencing. Genet Med . 2013;15(4):307–309. doi:10.1038/gim.2012.130.
  15. Filges I, Nosova E, Bruder E, et al. Exome sequencing identifies mutations in KIF14 as a novel cause of an autosomal recessive lethal fetal ciliopathy phenotype. Clin Genet. 2014;86(3):220–228. doi:10.1111/cge.12301.
  16. Drury S, Boustred C, Tekman M, et al. A novel homozygous ERCC5 truncating mutation in a family with prenatal arthrogryposis–further evidence of genotype-phenotype correlation.Am J Med Genet A . 2014;164A(7):1777–1783. doi:10.1002/ajmg.a.36506.
  17. Wilbe M, Ekvall S, Eurenius K, et al. MuSK: a new target for lethal fetal akinesia deformation sequence (FADS). J Med Genet.2015;52(3):195–202. doi:10.1136/jmedgenet-2014-102730.
  18. Kan A, Au PK, Li M et al. Exome sequencing on a family with 3 pregnancies affected by central nervous system malformation identified a novel stop mutation in WDr81. Prenat Diagn 2015; 35: 35 (Suppl 1:71).
  19. Casey J, Flood K, Ennis S, Doyle E, Farrell M, Lynch SA. Intra-familial variability associated with recessive RYR1 mutation diagnosed prenatally by exome sequencing. Prenat Diagn . 2016;36(11):1020–1026. doi:10.1002/pd.4925.
  20. Romagnoli MPE, Palombo F, Bonara E, Seri M, RYR1 related congenital myopathy in two sib fetuses conceived through AID. Eur J Hum Genet 2016; 24 (E-Suppl I):26.
  21. Kooper AHW, Smeets D, Lugtenberg D et al. Prenatal diagnosis of a rare, autosomal recessive disorder by combining genome wide array analysis and whole exome sequencing. Prenat Diag 2016:36 (Suppl 1):76.
  22. Alamillo CL, Powis Z, Farwell K, et al. Exome sequencing positively identified relevant alterations in more than half of cases with an indication of prenatal ultrasound anomalies. Prenat Diagn . 2015;35(11):1073–1078. doi:10.1002/pd.4648.
  23. Vora NL, Powell B, Brandt A, et al. Prenatal exome sequencing in anomalous fetuses: new opportunities and challenges. Genet Med . 2017;19(11):1207–1216. doi:10.1038/gim.2017.33.
  24. Ryan E, Friedman B, Haskins A, Barbar R, Nelson Z, Al Musafri A et al. Whole exome sequencing in 129 fetuses with abnormal ultrasound findings. Presented at ACMG Annual Clinical Genetics Meeting, Phoenix, Arizona2017. http://acmg.expoplanner.com/index.cfm?do=expomap.sess&session_id=5012/ (accessed 19/04/2020).
  25. Sa J, Melo F, Tarelho A et al, Broad multi-gene panel or whole exome sequencing in malformed fetuses reveals eight definitive and one likely diagnoses in fifteen studied fetuses in prenatal setting.European Society of Human Genetics 2017; https://2017.eshg.org/index.php/abstracts-2/online-planner-abstract-search/ (accessed 19/04/2020).
  26. Joset P, Wisser J, Niedrist D et al. Mendeliome and whole exome sequencing in 60 fetuses with abnormal ultrasound revealed a diagnostic yield of 30%. European Society of Human Genetics2017; https://2017.eshg.org/index.php/abstracts-2/online-planner-abstract-search/ (accessed 19/04/2020).
  27. Lord J, McMullan DJ, Eberhardt RY, et al. Prenatal exome sequencing analysis in fetal structural anomalies detected by ultrasonography (PAGE): a cohort study. Lancet. 2019;393(10173):747–757. doi:10.1016/S0140-6736(18)31940-8.
  28. Petrovski S, Aggarwal V, Giordano JL, et al. Whole-exome sequencing in the evaluation of fetal structural anomalies: a prospective cohort study. Lancet . 2019;393(10173):758–767. doi:10.1016/S0140-6736(18)32042-7.
  29. Boyd PA, Tonks AM, Rankin J, et al. Monitoring the prenatal detection of structural fetal congenital anomalies in England and Wales: register-based study. J Med Screen . 2011;18(1):2–7. doi:10.1258/jms.2011.010139
  30. Griffiths PD, Bradburn M, Campbell MJ, et al. Use of MRI in the diagnosis of fetal brain abnormalities in utero (MERIDIAN): a multicentre, prospective cohort study. Lancet.S2017;389(10068):538–546. doi:10.1016/S0140-6736(16)31723-8.
  31. Chandler N, Best S, Hayward J, Faravelli F, Mansour S, Kivuva E, et al. Rapid prenatal diagnosis using targeted exome sequencing: a cohort study to assess feasibility and potential impact on prenatal counselling and pregnancy management. Genet Med2018;20:1430–7.
  32. Normand EA, Braxton A, Nassef S, Ward PA, Vetrini F, He W, et al. Clinical exome sequencing for fetuses with ultrasound abnormalities and a suspected Mendelian disorder. Genet Med 2018;10:74.
  33. Mellis R, Eberhardt R, Lord J, Quinlan Jones E, Rinck G, McMullan D, Maher ER, Hurles ME, Chitty L. Prenatal exome sequencing for isolated increased nuchal translucency: Should we be doing it? Proceeding of the ISPD, 23rd International Conference on Prenatal Diagnosis and Therapy, Singapore. Prenat Diagn (Supplement), 2019.19. DOI: 10.1002/pd.5624
  34. Cocciadiferro D, Augello B, De Nittis P, et al. Dissecting KMT2D missense mutations in Kabuki syndrome patients. Hum Mol Genet . 2018;27(21):3651–3668. doi:10.1093/hmg/ddy241.
  35. Adam MP, Hudgins L, Hannibal M. Kabuki Syndrome. In: Adam MP, Ardinger HH, Pagon RA, et al., eds. GeneReviews®. Seattle (WA): University of Washington, Seattle; 1993.
  36. Quinlan-Jones E, Lord J, Williams D, Hamilton S, Marton T, Eberhardt RY, et al. Molecular autopsy by trio exome sequencing and full post-mortem examination in fetuses and neonates with prenatally identified structural anomalies. Genet Med 2019;21:1065–73.
  37. Wright CF, Fitzgerald TW, Jones WD, et al. Genetic diagnosis of developmental disorders in the DDD study: a scalable analysis of genome-wide research data. Lancet. 2015;385(9975):1305–1314. doi:10.1016/S0140-6736(14)61705-0.
  38. Zhu X, Petrovski S, Xie P, et al. Whole-exome sequencing in undiagnosed genetic diseases: interpreting 119 trios. Genet Med . 2015;17(10):774–781. doi:10.1038/gim.2014.191.
  39. Hillman SC, Skelton J, Quinlan-Jones E, Wilson A, Kilby MD. ”If it helps…” the use of microarray technology in prenatal testing: patient and partners reflections. Am J Med Genet A . 2013;161A(7):1619–1627. doi:10.1002/ajmg.a.35981.
  40. Bernhardt BA, Soucier D, Hanson K, Savage MS, Jackson L, Wapner RJ. Women’s experiences receiving abnormal prenatal chromosomal microarray testing results. Genet Med . 2013;15(2):139–145. doi:10.1038/gim.2012.113
  41. Quinlan-Jones E, Hillman SC, Kilby MD, Greenfield SM. Parental experiences of prenatal whole exome sequencing (WES) in cases of ultrasound diagnosed fetal structural anomaly. Prenat Diagn . 2017;37(12):1225–1231. doi:10.1002/pd.5172.
  42. Kalia SS, Adelman K, Bale SJ, et al. Recommendations for reporting of secondary findings in clinical exome and genome sequencing, 2016 update (ACMG SF v2.0): a policy statement of the American College of Medical Genetics and Genomics [published correction appears in Genet Med. 2017 Apr;19(4):484]. Genet Med . 2017;19(2):249–255. doi:10.1038/gim.2016.190.
  43. Amor DJ, Chitty LS, Van den Veyver IB. Current controversies in prenatal diagnosis 2: The 59 genes ACMG recommends reporting as secondary findings when sequencing postnatally should be reported when detected on fetal (and parental) sequencing [published online ahead of print, 2020 Feb 24]. Prenat Diagn . 2020;10.1002/pd.5670. doi:10.1002/pd.5670.
  44. Auerbach AD, Sagi M, Adler B. Fanconi anemia: prenatal diagnosis in 30 fetuses at risk. Pediatrics. 1985;76(5):794–800.
  45. D’Andrea A, Grompe, M. The Fanconi anaemia/BRCA pathway. Nat Rev Cancer 3, 23–34 (2003). https://doi.org/10.1038/nrc970
  46. Horn R, Parker M. Opening Pandora’s box?: ethical issues in prenatal whole genome and exome sequencing. Prenat Diagn . 2018;38(1):20–25. doi:10.1002/pd.5114.
  47. Horn R, Parker M. Health professionals’ and researchers’ perspectives on prenatal whole genome and exome sequencing: ’We can’t shut the door now, the genie’s out, we need to refine it’. PLoS One . 2018;13(9):e0204158. Published 2018 Sep 21. doi:10.1371/journal.pone.0204158.
  48. Costain G, Jobling R, Walker S, et al. Periodic reanalysis of whole-genome sequencing data enhances the diagnostic advantage over standard clinical genetic testing. Eur J Hum Genet. 2018;26(5):740–744. doi:10.1038/s41431-018-0114-6.
  49. Mone F, O’Connor C, Hamilton S, et al. Evolution of a prenatal genetic clinic-A 10-year cohort study. Prenat Diagn.2020;40(5):618–625. doi:10.1002/pd.5661.
  50. Chitty LC. Optimising Exome PREnatal Sequencing Services (Express Study). https://www.fundingawards.nihr.ac.uk/award/NIHR127829 (accessed on 25th April 2020).
  51. Meng L, Pammi M, Saronwala A, et al. Use of Exome Sequencing for Infants in Intensive Care Units: Ascertainment of Severe Single-Gene Disorders and Effect on Medical Management. JAMA Pediatr . 2017;171(12):e173438. doi:10.1001/jamapediatrics.2017.3438.
  52. Illsinger S, Das AM. Impact of selected inborn errors of metabolism on prenatal and neonatal development. JUBMB Life 2010; 62: 403-413.
  53. Sofou K, Dahlin M, Hallböök T, Lindefeldt M, Viggedal G, Darin N. Ketogenic diet in pyruvate dehydrogenase complex deficiency: short- and long-term outcomes. J Inherit Metab Dis . 2017;40(2):237–245. doi:10.1007/s10545-016-0011-5.
  54. de Koning MA, Haak MC, Adama van Scheltema PN, et al. From diagnostic yield to clinical impact: a pilot study on the implementation of prenatal exome sequencing in routine care. Genet Med . 2019;21(10):2303–2310. doi:10.1038/s41436-019-0499-9.
  55. Schofield D, Rynehart L, Shresthra R, White SM, Stark Z. Long-term economic impacts of exome sequencing for suspected monogenic disorders: diagnosis, management, and reproductive outcomes.Genet Med. 2019;21(11):2586–2593. doi:10.1038/s41436-019-0534-x.
  56. Kodabuckus SS, Quinlan-Jones E, McMullan DJ, et al. Exome Sequencing for Prenatal Detection of Genetic Abnormalities in Fetal Ultrasound Anomalies: An Economic Evaluation [published online ahead of print, 2020 Jan 21]. Fetal Diagn Ther . 2020;1–11. doi:10.1159/000504976.
  57. NHS Genomics England. Fetal anomalies (Version 1.7). Relevant disorders: R21, Fetal anomalies with a likely genetic cause. Panel types: GMS Rare Disease Virtual, GMS Panel version 1.2 (signed off on 17 Feb 2020) https://panelapp.genomicsengland.co.uk/panels/478/
  58. Harrison SM, Riggs ER, Maglott DR, et al. Using ClinVar as a Resource to Support Variant Interpretation. Curr Protoc Hum Genet . 2016;89:8.16.1–8.16.23. Published 2016 Apr 1. doi:10.1002/0471142905.hg0816s89.
  59. Hill M, Lewis C, Riddington M, et al. Stakeholder views and attitudes towards prenatal and postnatal transplantation of fetal mesenchymal stem cells to treat Osteogenesis Imperfecta. Eur J Hum Genet . 2019;27(8):1244–1253. doi:10.1038/s41431-019-0387-
  60. Gaille M, Viot G. Prenatal diagnosis as a tool and support for eugenics: myth or reality in contemporary French Society? Med Health Care Philos . 2013;16(1):83–91. doi:10.1007/s11019-012-9429-1.