Data and materials availability
We declare the data that support the findings of this study are
available from the corresponding author upon reasonable
request.
References
Adler, P. B., Salguero-Gomez, R.,
Compagnoni, A., Hsu, J. S., Ray-Mukherjee, J., Mbeau-Ache, C., &
Franco, M. (2014). Functional traits explain variation in plant life
history strategies. Proc Natl Acad Sci U S A, 111 (2), 740-745.
doi:10.1073/pnas.1315179111
Aranda, I., Ramírez-Valiente, J., &
Rodríguez-Calcerrada, J. (2014). Características funcionales que
influyen en la respuesta a la sequía de las especies del género Quercus:
variación inter- e intra-específica. Ecosistemas, 23 , 27-36.
doi:10.7818/ECOS.2014.23-2.05
Araya, Y. N., Silvertown, J., Gowing,
D. J., McConway, K. J., Linder, H. P., & Midgley, G. (2011). A
fundamental, eco-hydrological basis for niche segregation in plant
communities. New Phytol, 189 (1), 253-258.
doi:10.1111/j.1469-8137.2010.03475.x
Bartelheimer, M., Gowing, D., &
Silvertown, J. (2010). Explaining hydrological niches: the decisive role
of below-ground competition in two closely related Senecio species.Journal of Ecology, 98 (1), 126-136. doi:DOI
10.1111/j.1365-2745.2009.01598.x
Berlyn, G. P., & Miksche, J. P.
(1976). Botanical Microtechnique and Cytochemistry . USA: Iowa
State Univ.
Beyer, M., Hamutoko, J. T., Wanke, H.,
Gaj, M., & Koeniger, P. (2018). Examination of deep root water uptake
using anomalies of soil water stable isotopes, depth-controlled isotopic
labeling and mixing models. Journal of Hydrology, 566 , 122-136.
doi:https://doi.org/10.1016/j.jhydrol.2018.08.060
Cai, J., Li, S., Zhang, H., Zhang, S.,
& Tyree, M. T. (2014). Recalcitrant vulnerability curves: methods of
analysis and the concept of fibre bridges for enhanced cavitation
resistance. Plant Cell Environ, 37 (1), 35-44.
doi:10.1111/pce.12120
Cermak, J., Nadezhdina, N.,
Meiresonne, L., & Ceulemans, R. (2008). Scots pine root distribution
derived from radial sap flow patterns in stems of large leaning trees.Plant and Soil, 305 (1-2), 61-75. doi:10.1007/s11104-007-9433-z
Cramer, V. A., Thorburn, P. J., &
Fraser, G. W. (1999). Transpiration and groundwater uptake from farm
forest plots of Casuarina glauca and Eucalyptus camaldulensis in saline
areas of southeast Queensland, Australia. Agricultural Water
Management, 39 (2), 187-204.
doi:https://doi.org/10.1016/S0378-3774(98)00078-X
David, T. S., Henriques, M. O.,
Kurz-Besson, C., Nunes, J., Valente, F., Vaz, M., . . . David, J. S.
(2007). Water-use strategies in two co-occurring Mediterranean evergreen
oaks: surviving the summer drought. Tree Physiol, 27 (6), 793-803.
doi:10.1093/treephys/27.6.793
Dawson, T. E., Mambelli, S.,
Plamboeck, A. H., Templer, P. H., & Tu, K. P. (2002). Stable Isotopes
in Plant Ecology. Annual Review of Ecology and Systematics,
33 (1), 507-559. doi:10.1146/annurev.ecolsys.33.020602.095451
de la Riva, E. G., Marañón, T.,
Violle, C., Villar, R., & Pérez-Ramos, I. M. (2017). Biogeochemical and
Ecomorphological Niche Segregation of Mediterranean Woody Species along
a Local Gradient. Front Plant Sci, 8 , 1242.
doi:10.3389/fpls.2017.01242
Evaristo, J., Jasechko, S., &
McDonnell, J. J. (2015). Global separation of plant transpiration from
groundwater and streamflow. Nature, 525 (7567), 91-94.
doi:10.1038/nature14983
Evaristo, J., & McDonnell, J. J.
(2017). Prevalence and magnitude of groundwater use by vegetation: a
global stable isotope meta-analysis. Sci Rep, 7 , 44110.
doi:10.1038/srep44110
FAO. (2006). World Reference
Base for Soil Resources (103). Retrieved from Rome:
Franceschi, V. R., & Nakata, P. A.
(2005). Calcium oxalate in plants: formation and function. Annu
Rev Plant Biol, 56 , 41-71. doi:10.1146/annurev.arplant.56.032604.144106
Gause, G. F. (1934). The
struggle for existence : Baltimore: The Williams & Wilkins company.
Gottwald, H. P. J. (1972). Tyloses in
fibre tracheids. Wood Science and Technology, 6 (2), 121-127.
doi:10.1007/bf00350825
Gray, M. (2004). Geodiversity:
Valuing and Conserving Abiotic Nature : Wiley.
Hacke, U. G., Sperry, J. S., &
Pittermann, J. (2005). 16 - Efficiency Versus Safety Tradeoffs for Water
Conduction in Angiosperm Vessels Versus Gymnosperm Tracheids. In N. M.
Holbrook & M. A. Zwieniecki (Eds.), Vascular Transport in Plants(pp. 333-353). Burlington: Academic Press.
IAWA Comittee. (1989). List of
microscopic features for hardwood identification : Int. Assoc. Wood
Anatomists Bull.
Jackson, R. B., Moore, L. A.,
Hoffmann, W. A., Pockman, W. T., & Linder, C. R. (1999). Ecosystem
rooting depth determined with caves and DNA. Proc Natl Acad Sci U
S A, 96 (20), 11387-11392. doi:10.1073/pnas.96.20.11387
James, S. A., Meinzer, F. C.,
Goldstein, G., Woodruff, D., Jones, T., Restom, T., . . . Campanello, P.
(2003). Axial and radial water transport and internal water storage in
tropical forest canopy trees. Oecologia, 134 (1), 37-45.
doi:10.1007/s00442-002-1080-8
Johansen, D. A. (1940). Plant
microtechnique . New York: McGraw-Hill.
Kukowski, K. R., Schwinning, S., &
Schwartz, B. F. (2013). Hydraulic responses to extreme drought
conditions in three co-dominant tree species in shallow soil over
bedrock. Oecologia, 171 (4), 819-830.
doi:10.1007/s00442-012-2466-x
Kutschera, L., & Lichtenegger, E.
(2002). Wurzelatlas mitteleuropäischer Waldbäume und Sträucher :
Stocker.
MacArthur, R. H. (1968). The
theory of the niche . Syracuse University Press.
Maestre, F. T., Callaway, R. M.,
Valladares, F., & Lortie, C. J. (2009). Refining the stress-gradient
hypothesis for competition and facilitation in plant communities.Journal of Ecology, 97 (2), 199-205.
doi:10.1111/j.1365-2745.2008.01476.x
Meinzer, F. C., Brooks, J. R., Domec,
J. C., Gartner, B. L., Warren, J. M., Woodruff, D. R., . . . Shaw, D. C.
(2006). Dynamics of water transport and storage in conifers studied with
deuterium and heat tracing techniques. Plant Cell and Environment,
29 (1), 105-114. doi:10.1111/j.1365-3040.2005.01404.x
Muscarella, R., & Uriarte, M.
(2016). Do community-weighted mean functional traits reflect optimal
strategies? Proceedings of the Royal Society B: Biological
Sciences, 283 (1827). doi:10.1098/rspb.2015.2434
Noble, A. E., & Fagan, W. F. (2015).
A niche remedy for the dynamical problems of neutral theory.Theoretical Ecology, 8 (1), 149-161. doi:10.1007/s12080-014-0240-x
Parnell, A. C., Inger, R., Bearhop,
S., & Jackson, A. L. (2010). Source partitioning using stable isotopes:
coping with too much variation. PLoS One, 5 (3), e9672.
doi:10.1371/journal.pone.0009672
Peñuelas, J., Fernández-Martínez, M.,
Ciais, P., Jou, D., Piao, S., Obersteiner, M., . . . Sardans, J. (2019).
The bioelements, the elementome, and the biogeochemical niche.Ecology, 100 (5), e02652. doi:10.1002/ecy.2652
Pérez, S., M., Arredondo, M., J. T.,
Huber, S., E., & Serna, P., A. (2014). Forest structure, species traits
and rain characteristics influences on horizontal and vertical rainfall
partitioning in a semiarid pine-oak forest from Central Mexico.Ecohydrology, 7 (2), 532-543. doi:10.1002/eco.1372
Phillips, D. L., & Gregg, J. W.
(2003). Source partitioning using stable isotopes: coping with too many
sources. Oecologia, 136 (2), 261-269.
doi:10.1007/s00442-003-1218-3
Rodriguez-Robles, U., Arredondo, J.
T., Huber-Sannwald, E., & Vargas, R. (2015). Geoecohydrological
mechanisms couple soil and leaf water dynamics and facilitate species
coexistence in shallow soils of a tropical semiarid mixed forest.New Phytol, 207 (1), 59-69. doi:10.1111/nph.13344
Rodríguez-Robles, U., Arredondo, T.,
Huber-Sannwald, E., Ramos-Leal, J. A., & Yépez, E. A. (2017). Technical
note: Application of geophysical tools for tree root studies in forest
ecosystems in complex soils. Biogeosciences, 14 , 5343-5357.
doi:10.5194/bg-14-5343-2017
Ruzin, S. E. (1999). Plant
Microtechnique and Microscopy . New York: Oxford University Press.
Schwinning, S. (2010). The
ecohydrology of roots in rocks. Ecohydrology, 3 (2), 238-245.
doi:10.1002/eco.134
Shapiro, S. S., & Wilk, M. B.
(1965). An Analysis of Variance Test for Normality (Complete Samples).Biometrika, 52 (3/4), 591-611. doi:10.2307/2333709
Silvertown, J. (2004). Plant
coexistence and the niche. Trends in Ecology & Evolution,
19 (11), 605-611.
Silvertown, J., Araya, Y., & Gowing,
D. (2015). Hydrological niches in terrestrial plant communities: a
review. Journal of Ecology , DOI: 10.1111/1365-2745.12332
doi:10.1111/1365-2745.12332
Silvertown, J., Dodd, M. E., Gowing,
D. J., & Mountford, J. O. (1999). Hydrologically defined niches reveal
a basis for species richness in plant communities. Nature,
400 (6739), 61-63.
Silvertown, J., & Law, R. (1987). Do
plants need niches? Some recent developments in plant community ecology.Trends Ecol Evol, 2 (1), 24-26. doi:10.1016/0169-5347(87)90197-2
Sperry, J. S., Hacke, U. G., &
Pittermann, J. (2006). Size and function in conifer tracheids and
angiosperm vessels. American Journal of Botany, 93 (10),
1490-1500. doi:10.3732/ajb.93.10.1490
Spicer, R. (2014). Symplasmic
networks in secondary vascular tissues: parenchyma distribution and
activity supporting long-distance transport. J Exp Bot, 65 (7),
1829-1848. doi:10.1093/jxb/ert459
Thomas Tyree, M., Salleo, S.,
Nardini, A., Assunta Lo Gullo, M., & Mosca, R. (1999). Refilling of
embolized vessels in young stems of laurel. Do We need a new paradigm?Plant physiology, 120 (1), 11-22.
Valladares, F., Bastias, C. C.,
Godoy, O., Granda, E., & Escudero, A. (2015). Species coexistence in a
changing world. Front Plant Sci, 6 , 866.
doi:10.3389/fpls.2015.00866
Voltas, J., Lucabaugh, D., Chambel,
M. R., & Ferrio, J. P. (2015). Intraspecific variation in the use of
water sources by the circum-Mediterranean conifer Pinus halepensis.208 (4), 1031-1041. doi:10.1111/nph.13569
von Arx, G., Arzac, A., Olano, J. M.,
& Fonti, P. (2015). Assessing Conifer Ray Parenchyma for Ecological
Studies: Pitfalls and Guidelines. Front Plant Sci, 6 .
West, A. G., Patrickson, S. J., &
Ehleringer, J. R. (2006). Water extraction times for plant and soil
materials used in stable isotope analysis. Rapid Commun Mass
Spectrom, 20 (8), 1317-1321. doi:10.1002/rcm.2456
Whittaker, R. H. (1969). Evolution of
diversity in plant communities. Brookhaven Symp Biol, 22 ,
178-196.
Table 1. Characterization of the nine identified
spatio/temporal niches occupied by Pinus cembroides (pine) andQuercus potosina (oak) in a semi-arid forest ecosystem in San
Luis Potosi, Mexico during different ecohydrological periods (depletion,
recovery and wet) between summer 2012 and winter 2014, total rainfall
received on a certain number of days in the ecohydrological period,
source of water used by oak and pine roots, values of leaf water
potential, geoecohydrological mechanisms exhibited by oak and pine
trees, and the type of niche use. The nine panels in Figure 4 (a-i)
correspond to the description of each niche (A-I) of the Table (see
first column).