Data and materials availability
We declare the data that support the findings of this study are available from the corresponding author upon reasonable request.
References
Adler, P. B., Salguero-Gomez, R., Compagnoni, A., Hsu, J. S., Ray-Mukherjee, J., Mbeau-Ache, C., & Franco, M. (2014). Functional traits explain variation in plant life history strategies. Proc Natl Acad Sci U S A, 111 (2), 740-745. doi:10.1073/pnas.1315179111
Aranda, I., Ramírez-Valiente, J., & Rodríguez-Calcerrada, J. (2014). Características funcionales que influyen en la respuesta a la sequía de las especies del género Quercus: variación inter- e intra-específica. Ecosistemas, 23 , 27-36. doi:10.7818/ECOS.2014.23-2.05
Araya, Y. N., Silvertown, J., Gowing, D. J., McConway, K. J., Linder, H. P., & Midgley, G. (2011). A fundamental, eco-hydrological basis for niche segregation in plant communities. New Phytol, 189 (1), 253-258. doi:10.1111/j.1469-8137.2010.03475.x
Bartelheimer, M., Gowing, D., & Silvertown, J. (2010). Explaining hydrological niches: the decisive role of below-ground competition in two closely related Senecio species.Journal of Ecology, 98 (1), 126-136. doi:DOI 10.1111/j.1365-2745.2009.01598.x
Berlyn, G. P., & Miksche, J. P. (1976). Botanical Microtechnique and Cytochemistry . USA: Iowa State Univ.
Beyer, M., Hamutoko, J. T., Wanke, H., Gaj, M., & Koeniger, P. (2018). Examination of deep root water uptake using anomalies of soil water stable isotopes, depth-controlled isotopic labeling and mixing models. Journal of Hydrology, 566 , 122-136. doi:https://doi.org/10.1016/j.jhydrol.2018.08.060
Cai, J., Li, S., Zhang, H., Zhang, S., & Tyree, M. T. (2014). Recalcitrant vulnerability curves: methods of analysis and the concept of fibre bridges for enhanced cavitation resistance. Plant Cell Environ, 37 (1), 35-44. doi:10.1111/pce.12120
Cermak, J., Nadezhdina, N., Meiresonne, L., & Ceulemans, R. (2008). Scots pine root distribution derived from radial sap flow patterns in stems of large leaning trees.Plant and Soil, 305 (1-2), 61-75. doi:10.1007/s11104-007-9433-z
Cramer, V. A., Thorburn, P. J., & Fraser, G. W. (1999). Transpiration and groundwater uptake from farm forest plots of Casuarina glauca and Eucalyptus camaldulensis in saline areas of southeast Queensland, Australia. Agricultural Water Management, 39 (2), 187-204. doi:https://doi.org/10.1016/S0378-3774(98)00078-X
David, T. S., Henriques, M. O., Kurz-Besson, C., Nunes, J., Valente, F., Vaz, M., . . . David, J. S. (2007). Water-use strategies in two co-occurring Mediterranean evergreen oaks: surviving the summer drought. Tree Physiol, 27 (6), 793-803. doi:10.1093/treephys/27.6.793
Dawson, T. E., Mambelli, S., Plamboeck, A. H., Templer, P. H., & Tu, K. P. (2002). Stable Isotopes in Plant Ecology. Annual Review of Ecology and Systematics, 33 (1), 507-559. doi:10.1146/annurev.ecolsys.33.020602.095451
de la Riva, E. G., Marañón, T., Violle, C., Villar, R., & Pérez-Ramos, I. M. (2017). Biogeochemical and Ecomorphological Niche Segregation of Mediterranean Woody Species along a Local Gradient. Front Plant Sci, 8 , 1242. doi:10.3389/fpls.2017.01242
Evaristo, J., Jasechko, S., & McDonnell, J. J. (2015). Global separation of plant transpiration from groundwater and streamflow. Nature, 525 (7567), 91-94. doi:10.1038/nature14983
Evaristo, J., & McDonnell, J. J. (2017). Prevalence and magnitude of groundwater use by vegetation: a global stable isotope meta-analysis. Sci Rep, 7 , 44110. doi:10.1038/srep44110
FAO. (2006). World Reference Base for Soil Resources (103). Retrieved from Rome:
Franceschi, V. R., & Nakata, P. A. (2005). Calcium oxalate in plants: formation and function. Annu Rev Plant Biol, 56 , 41-71. doi:10.1146/annurev.arplant.56.032604.144106
Gause, G. F. (1934). The struggle for existence : Baltimore: The Williams & Wilkins company.
Gottwald, H. P. J. (1972). Tyloses in fibre tracheids. Wood Science and Technology, 6 (2), 121-127. doi:10.1007/bf00350825
Gray, M. (2004). Geodiversity: Valuing and Conserving Abiotic Nature : Wiley.
Hacke, U. G., Sperry, J. S., & Pittermann, J. (2005). 16 - Efficiency Versus Safety Tradeoffs for Water Conduction in Angiosperm Vessels Versus Gymnosperm Tracheids. In N. M. Holbrook & M. A. Zwieniecki (Eds.), Vascular Transport in Plants(pp. 333-353). Burlington: Academic Press.
IAWA Comittee. (1989). List of microscopic features for hardwood identification : Int. Assoc. Wood Anatomists Bull.
Jackson, R. B., Moore, L. A., Hoffmann, W. A., Pockman, W. T., & Linder, C. R. (1999). Ecosystem rooting depth determined with caves and DNA. Proc Natl Acad Sci U S A, 96 (20), 11387-11392. doi:10.1073/pnas.96.20.11387
James, S. A., Meinzer, F. C., Goldstein, G., Woodruff, D., Jones, T., Restom, T., . . . Campanello, P. (2003). Axial and radial water transport and internal water storage in tropical forest canopy trees. Oecologia, 134 (1), 37-45. doi:10.1007/s00442-002-1080-8
Johansen, D. A. (1940). Plant microtechnique . New York: McGraw-Hill.
Kukowski, K. R., Schwinning, S., & Schwartz, B. F. (2013). Hydraulic responses to extreme drought conditions in three co-dominant tree species in shallow soil over bedrock. Oecologia, 171 (4), 819-830. doi:10.1007/s00442-012-2466-x
Kutschera, L., & Lichtenegger, E. (2002). Wurzelatlas mitteleuropäischer Waldbäume und Sträucher : Stocker.
MacArthur, R. H. (1968). The theory of the niche . Syracuse University Press.
Maestre, F. T., Callaway, R. M., Valladares, F., & Lortie, C. J. (2009). Refining the stress-gradient hypothesis for competition and facilitation in plant communities.Journal of Ecology, 97 (2), 199-205. doi:10.1111/j.1365-2745.2008.01476.x
Meinzer, F. C., Brooks, J. R., Domec, J. C., Gartner, B. L., Warren, J. M., Woodruff, D. R., . . . Shaw, D. C. (2006). Dynamics of water transport and storage in conifers studied with deuterium and heat tracing techniques. Plant Cell and Environment, 29 (1), 105-114. doi:10.1111/j.1365-3040.2005.01404.x
Muscarella, R., & Uriarte, M. (2016). Do community-weighted mean functional traits reflect optimal strategies? Proceedings of the Royal Society B: Biological Sciences, 283 (1827). doi:10.1098/rspb.2015.2434
Noble, A. E., & Fagan, W. F. (2015). A niche remedy for the dynamical problems of neutral theory.Theoretical Ecology, 8 (1), 149-161. doi:10.1007/s12080-014-0240-x
Parnell, A. C., Inger, R., Bearhop, S., & Jackson, A. L. (2010). Source partitioning using stable isotopes: coping with too much variation. PLoS One, 5 (3), e9672. doi:10.1371/journal.pone.0009672
Peñuelas, J., Fernández-Martínez, M., Ciais, P., Jou, D., Piao, S., Obersteiner, M., . . . Sardans, J. (2019). The bioelements, the elementome, and the biogeochemical niche.Ecology, 100 (5), e02652. doi:10.1002/ecy.2652
Pérez, S., M., Arredondo, M., J. T., Huber, S., E., & Serna, P., A. (2014). Forest structure, species traits and rain characteristics influences on horizontal and vertical rainfall partitioning in a semiarid pine-oak forest from Central Mexico.Ecohydrology, 7 (2), 532-543. doi:10.1002/eco.1372
Phillips, D. L., & Gregg, J. W. (2003). Source partitioning using stable isotopes: coping with too many sources. Oecologia, 136 (2), 261-269. doi:10.1007/s00442-003-1218-3
Rodriguez-Robles, U., Arredondo, J. T., Huber-Sannwald, E., & Vargas, R. (2015). Geoecohydrological mechanisms couple soil and leaf water dynamics and facilitate species coexistence in shallow soils of a tropical semiarid mixed forest.New Phytol, 207 (1), 59-69. doi:10.1111/nph.13344
Rodríguez-Robles, U., Arredondo, T., Huber-Sannwald, E., Ramos-Leal, J. A., & Yépez, E. A. (2017). Technical note: Application of geophysical tools for tree root studies in forest ecosystems in complex soils. Biogeosciences, 14 , 5343-5357. doi:10.5194/bg-14-5343-2017
Ruzin, S. E. (1999). Plant Microtechnique and Microscopy . New York: Oxford University Press.
Schwinning, S. (2010). The ecohydrology of roots in rocks. Ecohydrology, 3 (2), 238-245. doi:10.1002/eco.134
Shapiro, S. S., & Wilk, M. B. (1965). An Analysis of Variance Test for Normality (Complete Samples).Biometrika, 52 (3/4), 591-611. doi:10.2307/2333709
Silvertown, J. (2004). Plant coexistence and the niche. Trends in Ecology & Evolution, 19 (11), 605-611.
Silvertown, J., Araya, Y., & Gowing, D. (2015). Hydrological niches in terrestrial plant communities: a review. Journal of Ecology , DOI: 10.1111/1365-2745.12332 doi:10.1111/1365-2745.12332
Silvertown, J., Dodd, M. E., Gowing, D. J., & Mountford, J. O. (1999). Hydrologically defined niches reveal a basis for species richness in plant communities. Nature, 400 (6739), 61-63.
Silvertown, J., & Law, R. (1987). Do plants need niches? Some recent developments in plant community ecology.Trends Ecol Evol, 2 (1), 24-26. doi:10.1016/0169-5347(87)90197-2
Sperry, J. S., Hacke, U. G., & Pittermann, J. (2006). Size and function in conifer tracheids and angiosperm vessels. American Journal of Botany, 93 (10), 1490-1500. doi:10.3732/ajb.93.10.1490
Spicer, R. (2014). Symplasmic networks in secondary vascular tissues: parenchyma distribution and activity supporting long-distance transport. J Exp Bot, 65 (7), 1829-1848. doi:10.1093/jxb/ert459
Thomas Tyree, M., Salleo, S., Nardini, A., Assunta Lo Gullo, M., & Mosca, R. (1999). Refilling of embolized vessels in young stems of laurel. Do We need a new paradigm?Plant physiology, 120 (1), 11-22.
Valladares, F., Bastias, C. C., Godoy, O., Granda, E., & Escudero, A. (2015). Species coexistence in a changing world. Front Plant Sci, 6 , 866. doi:10.3389/fpls.2015.00866
Voltas, J., Lucabaugh, D., Chambel, M. R., & Ferrio, J. P. (2015). Intraspecific variation in the use of water sources by the circum-Mediterranean conifer Pinus halepensis.208 (4), 1031-1041. doi:10.1111/nph.13569
von Arx, G., Arzac, A., Olano, J. M., & Fonti, P. (2015). Assessing Conifer Ray Parenchyma for Ecological Studies: Pitfalls and Guidelines. Front Plant Sci, 6 .
West, A. G., Patrickson, S. J., & Ehleringer, J. R. (2006). Water extraction times for plant and soil materials used in stable isotope analysis. Rapid Commun Mass Spectrom, 20 (8), 1317-1321. doi:10.1002/rcm.2456
Whittaker, R. H. (1969). Evolution of diversity in plant communities. Brookhaven Symp Biol, 22 , 178-196.
Table 1. Characterization of the nine identified spatio/temporal niches occupied by Pinus cembroides (pine) andQuercus potosina (oak) in a semi-arid forest ecosystem in San Luis Potosi, Mexico during different ecohydrological periods (depletion, recovery and wet) between summer 2012 and winter 2014, total rainfall received on a certain number of days in the ecohydrological period, source of water used by oak and pine roots, values of leaf water potential, geoecohydrological mechanisms exhibited by oak and pine trees, and the type of niche use. The nine panels in Figure 4 (a-i) correspond to the description of each niche (A-I) of the Table (see first column).