References
  1. Adamzik, M., Frey, U., Sixt, S., Knemeyer, L., Beiderlinden, M., Peters, J., & Siffert, W. (2007). ACE I/D but not AGT (-6) A/G polymorphism is a risk factor for mortality in ARDS. European Respiratory Journal, 29(3), 482-488.
  2. Adedeji, A. O., & Sarafianos, S. G. (2014). Antiviral drugs specific for coronaviruses in preclinical development. Current opinion in virology, 8, 45-53.
  3. Adedeji, A. O., Severson, W., Jonsson, C., Singh, K., Weiss, S. R., & Sarafianos, S. G. (2013). Novel inhibitors of severe acute respiratory syndrome coronavirus entry that act by three distinct mechanisms. Journal of virology, 87(14), 8017-8028.
  4. Alexander, S. P., Battey, J., Benson, H. E., Benya, R. V., Bonner, T. I., Davenport, A. P., … & Karnik, S. (2019). Class A Orphans (version 2019.5) in the IUPHAR/BPS Guide to Pharmacology Database. IUPHAR/BPS Guide to Pharmacology CITE, 2019(5).
  5. Andreeva, A. V., Kutuzov, M. A., & Voyno-Yasenetskaya, T. A. (2007). Regulation of surfactant secretion in alveolar type II cells. American Journal of Physiology-Lung Cellular and Molecular Physiology, 293(2), L259-L271.
  6. Armstrong, J. F., Faccenda, E., Harding, S. D., Pawson, A. J., Southan, C., Sharman, J. L., … & Spedding, M. (2020). The IUPHAR/BPS Guide to PHARMACOLOGY in 2020: extending immunopharmacology content and introducing the IUPHAR/MMV Guide to MALARIA PHARMACOLOGY. Nucleic acids research, 48(D1), D1006-D1021.
  7. Arumugam, S., Sreedhar, R., Thandavarayan, R. A., Karuppagounder, V., Krishnamurthy, P., Suzuki, K., … & Watanabe, K. (2016). Angiotensin receptor blockers: Focus on cardiac and renal injury. Trends in cardiovascular medicine, 26(3), 221-228.
  8. Attaway, A. H., Myers, C., Velani, S., & Schilz, R. (2017). Inhaled Prostacyclin as Salvage Therapy for ARDS: Can We Find the Right Patient?
  9. Aumiller, V., Balsara, N., Wilhelm, J., Günther, A., & Königshoff, M. (2013). WNT/β-catenin signaling induces IL-1β expression by alveolar epithelial cells in pulmonary fibrosis. American journal of respiratory cell and molecular biology, 49(1), 96-104.
  10. Baker, K. M., Booz, G. W., & Dostal, D. E. (1992). Cardiac actions of angiotensin II: role of an intracardiac renin-angiotensin system. Annual review of physiology, 54(1), 227-241.
  11. Bao, L., Deng, W., Gao, H., Xiao, C., Liu, J., Xue, J., … & Qi, F. (2020). Reinfection could not occur in SARS-CoV-2 infected rhesus macaques. bioRxiv. doi: https://doi.org/10.1101/2020.03.13.990226
  12. Bar-On, Y. M., Flamholz, A., Phillips, R., & Milo, R. (2020). SARS-CoV-2 (COVID-19) by the numbers. eLife, 9, e57309.
  13. Barroso, L. C., Magalhaes, G. S., Galvão, I., Reis, A. C., Souza, D. G., Sousa, L. P., … & Teixeira, M. M. (2017). Angiotensin-(1-7) promotes resolution of neutrophilic inflammation in a model of antigen-induced arthritis in mice. Frontiers in immunology, 8, 1596.
  14. Bechara, R. I., Brown, L. A. S., Eaton, D. C., Roman, J., & Guidot, D. M. (2003). Chronic ethanol ingestion increases expression of the angiotensin II type 2 (AT2) receptor and enhances tumor necrosis factor‐α‐and angiotensin II‐induced cytotoxicity via AT2 signaling in rat alveolar epithelial cells. Alcoholism: Clinical and Experimental Research, 27(6), 1006-1014.
  15. Becker, L. K., Totou, N., Moura, S., Kangussu, L., Millán, R. D. S., Campagnole-Santos, M. J., … & Santos, R. A. S. (2018). Eccentric overload muscle damage is attenuated by a novel angiotensin-(1-7) treatment. International journal of sports medicine, 39(10), 743-748.
  16. Bhattacharya, J., & Westphalen, K. (2016, July). Macrophage-epithelial interactions in pulmonary alveoli. In Seminars in immunopathology (Vol. 38, No. 4, pp. 461-469). Springer Berlin Heidelberg.
  17. Bodor, C., Nagy, J. P., Végh, B., Németh, A., Jenei, A., MirzaHosseini, S., … & Rosivall, L. (2012). Angiotensin II increases the permeability and PV-1 expression of endothelial cells. American Journal of Physiology-Cell Physiology, 302(1), C267-C276.
  18. Boskabadi, J., Askari, V. R., Hosseini, M., & Boskabady, M. H. (2019). Immunomodulatory properties of captopril, an ACE inhibitor, on LPS-induced lung inflammation and fibrosis as well as oxidative stress. Inflammopharmacology, 27(3), 639-647.
  19. Bozkurt, B., Kovacs, R., & Harrington, B. (2020). HFSA/ACC/AHA Statement Addresses Concerns Re: Using RAAS Antagonists in COVID-19. American Heart Association Professional Heart Daily.
  20. Buckley, S. T., Medina, C., & Ehrhardt, C. (2010). Differential susceptibility to epithelial-mesenchymal transition (EMT) of alveolar, bronchial and intestinal epithelial cells in vitro and the effect of angiotensin II receptor inhibition. Cell and tissue research, 342(1), 39-51.
  21. Caldeira, D., Alarcão, J., Vaz-Carneiro, A., & Costa, J. (2012). Risk of pneumonia associated with use of angiotensin converting enzyme inhibitors and angiotensin receptor blockers: systematic review and meta-analysis. Bmj, 345, e4260.
  22. Castelo-Branco, C., & Soveral, I. (2014). The immune system and aging: a review. Gynecological Endocrinology, 30(1), 16-22.
  23. Channappanavar, R., & Perlman, S. (2017, July). Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology. In Seminars in immunopathology (Vol. 39, No. 5, pp. 529-539). Springer Berlin Heidelberg.
  24. Channappanavar, R., Zhao, J., & Perlman, S. (2014). T cell-mediated immune response to respiratory coronaviruses. Immunologic research, 59(1-3), 118-128.
  25. Chen, C., Zhang, Z., Li, Z., Zhang, F., Peng, M., Chen, Y., & Wang, Y. (2014). Losartan attenuates microvascular permeability in mechanical ventilator-induced lung injury in diabetic mice. Molecular biology reports, 41(2), 809-814.
  26. Chen, C., Zhou, Y., & Wang, D. W. (2020). SARS-CoV-2: a potential novel etiology of fulminant myocarditis. Herz, 1-3.
  27. Chuquimia, O. D., Petursdottir, D. H., Rahman, M. J., Hartl, K., Singh, M., & Fernández, C. (2012). The role of alveolar epithelial cells in initiating and shaping pulmonary immune responses: communication between innate and adaptive immune systems. PloS one, 7(2).
  28. Cohen, E. P., Bedi, M., Irving, A. A., Jacobs, E., Tomic, R., Klein, J., … & Moulder, J. E. (2012). Mitigation of late renal and pulmonary injury after hematopoietic stem cell transplantation. International Journal of Radiation Oncology* Biology* Physics, 83(1), 292-296.
  29. da Silveira, K. D., Coelho, F. M., Vieira, A. T., Sachs, D., Barroso, L. C., Costa, V. V., … & dos Santos, R. A. S. (2010). Anti-inflammatory effects of the activation of the angiotensin-(1–7) receptor, MAS, in experimental models of arthritis. The Journal of Immunology, 185(9), 5569-5576.
  30. De Mello, W. C., & Danser, A. J. (2000). Angiotensin II and the heart: on the intracrine renin-angiotensin system. Hypertension, 35(6), 1183-1188.
  31. Deng, J., Wang, D. X., Deng, W., Li, C. Y., & Tong, J. (2012a). The effect of endogenous angiotensin II on alveolar fluid clearance in rats with acute lung injury. Canadian respiratory journal, 19(5), 311-318.
  32. Deng, J., Wang, D. X., Deng, W., Li, C. Y., Tong, J., & Ma, H. (2012b). Regulation of alveolar fluid clearance and ENaC expression in lung by exogenous angiotensin II. Respiratory physiology & neurobiology, 181(1), 53-61.
  33. Dhama, K.; Patel, S.K.; Pathak, M.; Yatoo, M.I.; Tiwari, R.; … & Rodriguez-Morales, A.J. An Update on SARS-COV-2/COVID-19 with Particular Reference on Its Clinical Pathology, Pathogenesis, Immunopathology and Mitigation Strategies – A Review. Preprints 2020, 2020030348 (doi: 10.20944/preprints202003.0348.v1)
  34. Dijkman, R., Jebbink, M. F., Deijs, M., Milewska, A., Pyrc, K., Buelow, E., … & van der Hoek, L. (2012). Replication-dependent downregulation of cellular angiotensin-converting enzyme 2 protein expression by human coronavirus NL63. Journal of general virology, 93(9), 1924-1929.
  35. Donath, M. Y., Meier, D. T., & Böni-Schnetzler, M. (2019). Inflammation in the pathophysiology and therapy of cardiometabolic disease. Endocrine reviews, 40(4), 1080-1091.
  36. Dostal, D. E., & Baker, K. M. (1999). The cardiac renin-angiotensin system: conceptual, or a regulator of cardiac function?. Circulation research, 85(7), 643-650.
  37. Du, Y., Tu, L., Zhu, P., Mu, M., Wang, R., Yang, P., … & Li, T. (2020). Clinical Features of 85 Fatal Cases of COVID-19 from Wuhan: A Retrospective Observational Study. American Journal of Respiratory and Critical Care Medicine, (ja).
  38. Eisele, N. A., & Anderson, D. M. (2011). Host defense and the airway epithelium: frontline responses that protect against bacterial invasion and pneumonia. Journal of pathogens, 2011.
  39. Fang, L., Karakiulakis, G., & Roth, M. (2020). Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection? The Lancet Respiratory Medicine. 8(4), PE-21
  40. Ferrucci, L., & Fabbri, E. (2018). Inflammageing: chronic inflammation in ageing, cardiovascular disease, and frailty. Nature Reviews Cardiology, 15(9), 505-522.
  41. Flores‐Muñoz, M., Smith, N. J., Haggerty, C., Milligan, G., & Nicklin, S. A. (2011). Angiotensin1‐9 antagonises pro‐hypertrophic signalling in cardiomyocytes via the angiotensin type 2 receptor. The journal of Physiology, 589(4), 939-951.
  42. Florez‐Sampedro, L., Song, S., & Melgert, B. N. (2018). The diversity of myeloid immune cells shaping wound repair and fibrosis in the lung. Regeneration, 5(1), 3-25.
  43. Forrester, S. J., Booz, G. W., Sigmund, C. D., Coffman, T. M., Kawai, T., Rizzo, V., … & Eguchi, S. (2018). Angiotensin II signal transduction: an update on mechanisms of physiology and pathophysiology. Physiological reviews, 98(3), 1627-1738.
  44. Frieler, R. A., & Mortensen, R. M. (2015). Immune cell and other noncardiomyocyte regulation of cardiac hypertrophy and remodeling. Circulation, 131(11), 1019-1030.
  45. Fulop, T., Larbi, A., Dupuis, G., Le Page, A., Frost, E. H., Cohen, A. A., … & Franceschi, C. (2018). Immunosenescence and inflamm-aging as two sides of the same coin: friends or foes?. Frontiers in immunology, 8, 1960.
  46. Gard, P. R. (2010). Implications of the angiotensin converting enzyme gene insertion/deletion polymorphism in health and disease: a snapshot review. International journal of molecular epidemiology and genetics, 1(2), 145.
  47. Gautret, P., Lagier, J. C., Parola, P., Meddeb, L., Mailhe, M., Doudier, B., … & Honoré, S. (2020). Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. International Journal of Antimicrobial Agents, 105949.
  48. Glowacka, I., Bertram, S., Herzog, P., Pfefferle, S., Steffen, I., Muench, M. O., … & Eichler, J. (2010). Differential downregulation of ACE2 by the spike proteins of severe acute respiratory syndrome coronavirus and human coronavirus NL63. Journal of virology, 84(2), 1198-1205.
  49. Godugu, C., Patel, A. R., Doddapaneni, R., Marepally, S., Jackson, T., & Singh, M. (2013). Inhalation delivery of Telmisartan enhances intratumoral distribution of nanoparticles in lung cancer models. Journal of controlled release, 172(1), 86-95.
  50. Gralinski, L. E., & Baric, R. S. (2015). Molecular pathology of emerging coronavirus infections. The Journal of pathology, 235(2), 185-195.
  51. Gretebeck, L. M., & Subbarao, K. (2015). Animal models for SARS and MERS coronaviruses. Current opinion in virology, 13, 123-129.
  52. Grommes, J., & Soehnlein, O. (2011). Contribution of neutrophils to acute lung injury. Molecular medicine, 17(3), 293.
  53. Gu, J., Han, B., & Wang, J. (2020). COVID-19: Gastrointestinal manifestations and potential fecal-oral transmission. Gastroenterology.
  54. Guo, T., Fan, Y., Chen, M., Wu, X., Zhang, L., He, T., … & Lu, Z. (2020). Cardiovascular implications of fatal outcomes of patients with coronavirus disease 2019 (COVID-19). JAMA cardiology.
  55. Haga, S., Yamamoto, N., Nakai-Murakami, C., Osawa, Y., Tokunaga, K., Sata, T., … & Ishizaka, Y. (2008). Modulation of TNF-α-converting enzyme by the spike protein of SARS-CoV and ACE2 induces TNF-α production and facilitates viral entry. Proceedings of the National Academy of Sciences, 105(22), 7809-7814.
  56. Hammer, A., Yang, G., Friedrich, J., Kovacs, A., Lee, D. H., Grave, K., … & Gold, R. (2016). Role of the receptor Mas in macrophage-mediated inflammation in vivo. Proceedings of the National Academy of Sciences, 113(49), 14109-14114.
  57. Hamming, I., Timens, W., Bulthuis, M. L. C., Lely, A. T., Navis, G. J., & van Goor, H. (2004). Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. The Journal of Pathology: A Journal of the Pathological Society of Great Britain and Ireland, 203(2), 631-637.
  58. Han, D. P., Penn-Nicholson, A., & Cho, M. W. (2006). Identification of critical determinants on ACE2 for SARS-CoV entry and development of a potent entry inhibitor. Virology, 350(1), 15-25.
  59. Han, S. X., He, G. M., Wang, T., Chen, L., Ning, Y. Y., Luo, F., … & Xu, D. (2010). Losartan attenuates chronic cigarette smoke exposure-induced pulmonary arterial hypertension in rats: possible involvement of angiotensin-converting enzyme-2. Toxicology and applied pharmacology, 245(1), 100-107.
  60. Harder, E. M., Park, H. S., Nath, S. K., Mancini, B. R., & Decker, R. H. (2015). Angiotensin-converting enzyme inhibitors decrease the risk of radiation pneumonitis after stereotactic body radiation therapy. Practical radiation oncology, 5(6), e643-e649.
  61. He, F., Deng, Y., & Li, W. (2020). Coronavirus Disease 2019 (COVID‐19): What we know?. Journal of Medical Virology.
  62. He, H., Liu, L., Chen, Q., Liu, A., Cai, S., Yang, Y., … & Qiu, H. (2015). Mesenchymal stem cells overexpressing angiotensin-converting enzyme 2 rescue lipopolysaccharide-induced lung injury. Cell transplantation, 24(9), 1699-1715.
  63. He, X., Han, B., Mura, M., Xia, S., Wang, S., Ma, T., … & Liu, Z. (2007). Angiotensin-converting enzyme inhibitor captopril prevents oleic acid-induced severe acute lung injury in rats. Shock, 28(1), 106-111.
  64. Herold, S., Ludwig, S., Pleschka, S., & Wolff, T. (2012). Apoptosis signaling in influenza virus propagation, innate host defense, and lung injury. Journal of leukocyte biology, 92(1), 75-82.
  65. Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., … & Cheng, Z. (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet, 395(10223), 497-506.
  66. Hui, D. S., Joynt, G. M., Wong, K. T., Gomersall, C. D., Li, T. S., Antonio, G., … & Rainer, T. H. (2005). Impact of severe acute respiratory syndrome (SARS) on pulmonary function, functional capacity and quality of life in a cohort of survivors. Thorax, 60(5), 401-409.
  67. Hung, I. F. N., Cheng, V. C. C., Wu, A. K. L., Tang, B. S. F., Chan, K. H., Chu, C. M., … & Chan, K. S. (2004). Viral loads in clinical specimens and SARS manifestations. Emerging infectious diseases, 10(9), 1550.
  68. Imai, Y., Kuba, K., Rao, S., Huan, Y., Guo, F., Guan, B., … & Crackower, M. A. (2005). Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature, 436(7047), 112-116.
  69. Inoue, Y., Tanaka, N., Tanaka, Y., Inoue, S., Morita, K., Zhuang, M., … & Sugamura, K. (2007). Clathrin-dependent entry of severe acute respiratory syndrome coronavirus into target cells expressing ACE2 with the cytoplasmic tail deleted. Journal of virology, 81(16), 8722-8729.
  70. Ismael-Badarneh, R., Guetta, J., Klorin, G., Berger, G., Abu-saleh, N., Abassi, Z., & Azzam, Z. S. (2015). The role of angiotensin II and cyclic AMP in alveolar active sodium transport. PloS one, 10(7).
  71. Itoyama, S., Keicho, N., Quy, T., Phi, N. C., Long, H. T., Van Ban, V., … & Yanai, H. (2004). ACE1 polymorphism and progression of SARS. Biochemical and biophysical research communications, 323(3), 1124-1129.
  72. Jerng, J. S., Hsu, Y. C., Wu, H. D., Pan, H. Z., Wang, H. C., Shun, C. T., … & Yang, P. C. (2007). Role of the renin-angiotensin system in ventilator-induced lung injury: an in vivo study in a rat model. Thorax, 62(6), 527-535.
  73. Jiang, J. S., Wang, L. F., Chou, H. C., & Chen, C. M. (2007). Angiotensin-converting enzyme inhibitor captopril attenuates ventilator-induced lung injury in rats. Journal of applied physiology, 102(6), 2098-2103.
  74. Jones, E. S., Vinh, A., McCarthy, C. A., Gaspari, T. A., & Widdop, R. E. (2008). AT2 receptors: functional relevance in cardiovascular disease. Pharmacology & therapeutics, 120(3), 292-316.
  75. Kam, K. Q., Yung, C. F., Cui, L., Tzer Pin Lin, R., Mak, T. M., Maiwald, M., … & Thoon, K. C. (2020). A Well Infant with Coronavirus Disease 2019 with High Viral Load. Clinical Infectious Diseases.
  76. Karnik, S. S., Singh, K. D., Tirupula, K., & Unal, H. (2017). Significance of angiotensin 1–7 coupling with MAS1 receptor and other GPCRs to the renin‐angiotensin system: IUPHAR Review 22. British journal of pharmacology, 174(9), 737-753.
  77. Kaschina, E., & Unger, T. (2003). Angiotensin AT1/AT2 receptors: regulation, signalling and function. Blood pressure, 12(2), 70-88.
  78. Ketai, L., Paul, N. S., & Ka-tak, T. W. (2006). Radiology of severe acute respiratory syndrome (SARS): the emerging pathologic-radiologic correlates of an emerging disease. Journal of thoracic imaging, 21(4), 276-283.
  79. Khan, A., Benthin, C., Zeno, B., Albertson, T. E., Boyd, J., Christie, J. D., … & Hardes, K. (2017). A pilot clinical trial of recombinant human angiotensin-converting enzyme 2 in acute respiratory distress syndrome. Critical Care, 21(1), 234.
  80. Khan, A., Benthin, C., Zeno, B., Albertson, T. E., Boyd, J., Christie, J. D., … & Hardes, K. (2017). A pilot clinical trial of recombinant human angiotensin-converting enzyme 2 in acute respiratory distress syndrome. Critical Care, 21(1), 234.
  81. Kharofa, J., Cohen, E. P., Tomic, R., Xiang, Q., & Gore, E. (2012). Decreased risk of radiation pneumonitis with incidental concurrent use of angiotensin-converting enzyme inhibitors and thoracic radiation therapy. International Journal of Radiation Oncology* Biology* Physics, 84(1), 238-243.
  82. Kim, M. D., Baumlin, N., Yoshida, M., Polineni, D., Salathe, S. F., David, J. K., … & Whitney, P. (2020). Losartan rescues inflammation-related mucociliary dysfunction in relevant models of cystic fibrosis. American journal of respiratory and critical care medicine, 201(3), 313-324.
  83. Kode, A., Yang, S. R., & Rahman, I. (2006). Differential effects of cigarette smoke on oxidative stress and proinflammatory cytokine release in primary human airway epithelial cells and in a variety of transformed alveolar epithelial cells. Respiratory research, 7(1), 132.
  84. Konigshoff, M., Wilhelm, A., Jahn, A., Sedding, D., Amarie, O. V., Eul, B., … & Rose, F. (2007). The angiotensin II receptor 2 is expressed and mediates angiotensin II signaling in lung fibrosis. American journal of respiratory cell and molecular biology, 37(6), 640-650.
  85. Kruse, R. L. (2020). Therapeutic strategies in an outbreak scenario to treat the novel coronavirus originating in Wuhan, China. F1000Research, 9.
  86. Kuba, K., Imai, Y., Rao, S., Gao, H., Guo, F., Guan, B., … & Bao, L. (2005). A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus–induced lung injury. Nature medicine, 11(8), 875-879.
  87. Kuba, K., Imai, Y., Rao, S., Jiang, C., & Penninger, J. M. (2006). Lessons from SARS: control of acute lung failure by the SARS receptor ACE2. Journal of molecular medicine, 84(10), 814-820.
  88. Kurdi, M., & Booz, G. W. (2011). New take on the role of angiotensin II in cardiac hypertrophy and fibrosis. Hypertension, 57(6), 1034-1038.
  89. Lambert, D. W., Yarski, M., Warner, F. J., Thornhill, P., Parkin, E. T., Smith, A. I., … & Turner, A. J. (2005). Tumor necrosis factor-α convertase (ADAM17) mediates regulated ectodomain shedding of the severe-acute respiratory syndrome-coronavirus (SARS-CoV) receptor, angiotensin-converting enzyme-2 (ACE2). Journal of Biological Chemistry, 280(34), 30113-30119.
  90. Lee, J. H., Kim, J. H., Kim, J. S., Chang, J. W., Kim, S. B., Park, J. S., & Lee, S. K. (2013). AMP-activated protein kinase inhibits TGF-β-, angiotensin II-, aldosterone-, high glucose-, and albumin-induced epithelial-mesenchymal transition. American Journal of Physiology-Renal Physiology, 304(6), F686-F697.
  91. Lee, Y. H., Mungunsukh, O., Tutino, R. L., Marquez, A. P., & Day, R. M. (2010). Angiotensin-II-induced apoptosis requires regulation of nucleolin and Bcl-xL by SHP-2 in primary lung endothelial cells. Journal of cell science, 123(10), 1634-1643.
  92. Lemarié, C. A., & Schiffrin, E. L. (2010). The angiotensin II type 2 receptor in cardiovascular disease. Journal of the renin-angiotensin-aldosterone system, 11(1), 19-31.
  93. Li, C. K. F., Wu, H., Yan, H., Ma, S., Wang, L., Zhang, M., … & Douek, D. C. (2008). T cell responses to whole SARS coronavirus in humans. The Journal of Immunology, 181(8), 5490-5500.
  94. Li, G., Fan, Y., Lai, Y., Han, T., Li, Z., Zhou, P., … & Zhang, Q. (2020). Coronavirus infections and immune responses. Journal of medical virology, 92(4), 424-432.
  95. Li, X., Molina-Molina, M., Abdul-Hafez, A., Uhal, V., Xaubet, A., & Uhal, B. D. (2008b). Angiotensin converting enzyme-2 is protective but downregulated in human and experimental lung fibrosis. American Journal of Physiology-Lung Cellular and Molecular Physiology, 295(1), L178-L185.
  96. Li, X., Rayford, H., & Uhal, B. D. (2003). Essential roles for angiotensin receptor AT1a in bleomycin-induced apoptosis and lung fibrosis in mice. The American journal of pathology, 163(6), 2523-2530.
  97. Li, X., Zhuang, J., Rayford, H., Zhang, H., Shu, R., & Uhal, B. D. (2007). Attenuation of bleomycin-induced pulmonary fibrosis by intratracheal administration of antisense oligonucleotides against angiotensinogen mRNA. Current pharmaceutical design, 13(12), 1257-1268.
  98. Li, Y., Zeng, Z., Li, Y., Huang, W., Zhou, M., Zhang, X., & Jiang, W. (2015). Angiotensin-converting enzyme inhibition attenuates lipopolysaccharide-induced lung injury by regulating the balance between angiotensin-converting enzyme and angiotensin-converting enzyme 2 and inhibiting mitogen-activated protein kinase activation. Shock, 43(4), 395-404.
  99. Liu, J., Zhang, P. S., Yu, Q., Liu, L., Yang, Y., Guo, F. M., & Qiu, H. B. (2012). Losartan inhibits conventional dendritic cell maturation and Th1 and Th17 polarization responses: Νovel mechanisms of preventive effects on lipopolysaccharide-induced acute lung injury. International journal of molecular medicine, 29(2), 269-276.
  100. Liu, P., Wysocki, J., Souma, T., Ye, M., Ramirez, V., Zhou, B., … & Jin, J. (2018). Novel ACE2-Fc chimeric fusion provides long-lasting hypertension control and organ protection in mouse models of systemic renin angiotensin system activation. Kidney international, 94(1), 114-125.
  101. Liu, Y., Huang, F., Xu, J., Yang, P., Qin, Y., Cao, M., … & Lv, J. (2020). Anti-hypertensive Angiotensin II receptor blockers associated to mitigation of disease severity in elderly COVID-19 patients. medRxiv. doi: https://doi.org/10.1101/2020.03.20.20039586
  102. Liu, Y., Yang, Y., Zhang, C., Huang, F., Wang, F., Yuan, J., … & Zhang, Z. (2020b). Clinical and biochemical indexes from 2019-nCoV infected patients linked to viral loads and lung injury. Science China Life Sciences, 63(3), 364-374.
  103. Lukkarinen, H. P., Laine, J., Aho, H., Zagariya, A., Vidyasagar, D., & Kääpä, P. O. (2005). Angiotensin II receptor inhibition prevents pneumocyte apoptosis in surfactant‐depleted rat lungs. Pediatric pulmonology, 39(4), 349-358.
  104. Luo, W., Yu, H., Gou, J., Li, X., Sun, Y., Li, J., & Liu, L. (2020). Clinical pathology of critical patient with novel coronavirus pneumonia (COVID-19). Pathology & Pathobiology, 2020020407.
  105. Ma, X., Xu, D., Ai, Y., Ming, G., & Zhao, S. (2010). Fas inhibition attenuates lipopolysaccharide-induced apoptosis and cytokine release of rat type II alveolar epithelial cells. Molecular biology reports, 37(7), 3051-3056.
  106. Magalhães, G. S., Rodrigues-Machado, M. G., Motta-Santos, D., Alenina, N., Bader, M., Santos, R. A., … & Campagnole-Santos, M. J. (2016). Chronic allergic pulmonary inflammation is aggravated in angiotensin-(1–7) Mas receptor knockout mice. American Journal of Physiology-Lung Cellular and Molecular Physiology, 311(6), L1141-L1148.
  107. Mancini, G. J., Etminan, M., Zhang, B., Levesque, L. E., FitzGerald, J. M., & Brophy, J. M. (2006). Reduction of morbidity and mortality by statins, angiotensin-converting enzyme inhibitors, and angiotensin receptor blockers in patients with chronic obstructive pulmonary disease. Journal of the American College of Cardiology, 47(12), 2554-2560.
  108. Marshall, R. P., McANULTY, R. J., & Laurent, G. J. (2000). Angiotensin II is mitogenic for human lung fibroblasts via activation of the type 1 receptor. American journal of respiratory and critical care medicine, 161(6), 1999-2004.
  109. Medhora, M., Gao, F., Jacobs, E. R., & Moulder, J. E. (2012). Radiation damage to the lung: Mitigation by angiotensin‐converting enzyme (ACE) inhibitors. Respirology, 17(1), 66-71.
  110. Meng, Y., Li, T., Zhou, G. S., Chen, Y., Yu, C. H., Pang, M. X., … & Li, X. (2015). The angiotensin-converting enzyme 2/angiotensin (1–7)/Mas axis protects against lung fibroblast migration and lung fibrosis by inhibiting the NOX4-derived ROS-mediated RhoA/Rho kinase pathway. Antioxidants & redox signaling, 22(3), 241-258.
  111. Meng, Y., Yu, C. H., Li, W., Li, T., Luo, W., Huang, S., … & Li, X. (2014). Angiotensin-converting enzyme 2/angiotensin-(1-7)/Mas axis protects against lung fibrosis by inhibiting the MAPK/NF-κB pathway. American journal of respiratory cell and molecular biology, 50(4), 723-736.
  112. Mohammadi-Karakani, A., Ghazi-Khansari, M., & Sotoudeh, M. (2006). Lisinopril ameliorates paraquat-induced lung fibrosis. Clinica chimica acta, 367(1-2), 170-174.
  113. Molteni, A., Wolfe, L. F., Ward, W. F., Hsin Ts’ ao, C., Brizio Molteni, L., Veno, P., … & Moulder, J. E. (2007). Effect of an angiotensin II receptor blocker and two angiotensin converting enzyme inhibitors on transforming growth factor-β (TGF-β) and α-Actomyosin (α SMA), important mediators of radiation-induced pneumopathy and lung fibrosis. Current pharmaceutical design, 13(13), 1307-1316.
  114. Monteil, V., Kwon, H., Prado, P., Hagelkrüys, A., Wimmer, R. A., Stahl, M., … & Romero, J. P. (2020). Inhibition of SARS-CoV-2 infections in engineered human tissues using clinical-grade soluble human ACE2. Cell, DOI: 10.1016/j.cell.2020.04.004. Monteiro, R., & Azevedo, I. (2010). Chronic inflammation in obesity and the metabolic syndrome. Mediators of inflammation, 2010.
  115. Mortensen, E. M., Nakashima, B., Cornell, J., Copeland, L. A., Pugh, M. J., Anzueto, A., … & Fine, M. J. (2012). Population-based study of statins, angiotensin II receptor blockers, and angiotensin-converting enzyme inhibitors on pneumonia-related outcomes. Clinical infectious diseases, 55(11), 1466-1473.
  116. Mortensen, E. M., Restrepo, M. I., Anzueto, A., & Pugh, J. (2005). The impact of prior outpatient ACE inhibitor use on 30-day mortality for patients hospitalized with community-acquired pneumonia. BMC pulmonary medicine, 5(1), 12.
  117. Mossel, E. C., Wang, J., Jeffers, S., Edeen, K. E., Wang, S., Cosgrove, G. P., … & Holmes, K. V. (2008). SARS-CoV replicates in primary human alveolar type II cell cultures but not in type I-like cells. Virology, 372(1), 127-135.
  118. Naicker, S., Yang, C. W., Hwang, S. J., Liu, B. C., Chen, J. H., & Jha, V. (2020). The novel coronavirus 2019 epidemic and kidneys. Kidney International.
  119. Noveanu, M., Breidthardt, T., Reichlin, T., Gayat, E., Potocki, M., Pargger, H., … & Mebazaa, A. (2010). Effect of oral beta-blocker on short and long-term mortality in patients with acute respiratory failure: results from the BASEL-II-ICU study. Critical care, 14(6), R198.
  120. Otsuka, M., Takahashi, H., Shiratori, M., Chiba, H., & Abe, S. (2004). Reduction of bleomycin induced lung fibrosis by candesartan cilexetil, an angiotensin II type 1 receptor antagonist. Thorax, 59(1), 31-38.
  121. Oudit, G. Y., Kassiri, Z., Jiang, C., Liu, P. P., Poutanen, S. M., Penninger, J. M., & Butany, J. (2009). SARS‐coronavirus modulation of myocardial ACE2 expression and inflammation in patients with SARS. European journal of clinical investigation, 39(7), 618-625.
  122. Pan, F., Ye, T., Sun, P., Gui, S., Liang, B., Li, L., … & Zheng, C. (2020). Time course of lung changes on chest CT during recovery from 2019 novel coronavirus (COVID-19) pneumonia. Radiology, 200370.
  123. Papp, M., Li, X., Zhuang, J., Wang, R., & Uhal, B. D. (2002). Angiotensin receptor subtype AT1 mediates alveolar epithelial cell apoptosis in response to ANG II. American Journal of Physiology-Lung Cellular and Molecular Physiology, 282(4), L713-L718.
  124. Parra, E. R., Ruppert, A. D. P., & Capelozzi, V. L. (2014). Angiotensin II type 1 and 2 receptors and lymphatic vessels modulate lung remodeling and fibrosis in systemic sclerosis and idiopathic pulmonary fibrosis. Clinics, 69(1), 47-54.
  125. Patel, A. B., & Verma, A. (2020). COVID-19 and Angiotensin-Converting Enzyme Inhibitors and Angiotensin Receptor Blockers: What Is the Evidence? JAMA. doi:10.1001/jama.2020.4812
  126. Patel, V. B., Clarke, N., Wang, Z., Fan, D., Parajuli, N., Basu, R., … & Oudit, G. Y. (2014). Angiotensin II induced proteolytic cleavage of myocardial ACE2 is mediated by TACE/ADAM-17: a positive feedback mechanism in the RAS. Journal of molecular and cellular cardiology, 66, 167-176.
  127. Patel, V. B., Zhong, J. C., Grant, M. B., & Oudit, G. Y. (2016). Role of the ACE2/angiotensin 1–7 axis of the renin–angiotensin system in heart failure. Circulation research, 118(8), 1313-1326.
  128. Pedersen, S. F., & Ho, Y. C. (2020). SARS-CoV-2: A Storm is Raging. The Journal of Clinical Investigation.
  129. Phadke, M., & Saunik, S. (2020). Rapid response: Use of angiotensin receptor blockers such as Telmisartan, Losartsan in nCoV Wuhan Corona Virus infections—Novel mode of treatment. Response to the emerging novel coronavirus outbreak. BMJ, 368, m406.
  130. Pickel, L., Matsuzuka, T., Doi, C., Ayuzawa, R., Maurya, D. K., Xie, S. X., … & Tamura, M. (2010). Over-expression of angiotensin II type 2 receptor gene induces cell death in lung adenocarcinoma cells. Cancer biology & therapy, 9(4), 277-285.
  131. Pires-Neto, R. C., Morales, M. M. B., Lancas, T., Inforsato, N., Duarte, M. I. S., Amato, M. B. P., … & Dolhnikoff, M. (2013). Expression of acute-phase cytokines, surfactant proteins, and epithelial apoptosis in small airways of human acute respiratory distress syndrome. Journal of critical care, 28(1), 111-e9.
  132. Povlsen, A. L., Grimm, D., Wehland, M., Infanger, M., & Krüger, M. (2020). The Vasoactive Mas Receptor in Essential Hypertension. Journal of Clinical Medicine, 9(1), 267.
  133. Prompetchara, E., Ketloy, C., & Palaga, T. (2020). Immune responses in COVID-19 and potential vaccines: Lessons learned from SARS and MERS epidemic. Asian Pac J Allergy Immunol, 38, 1-9.
  134. Qin, C., Zhou, L., Hu, Z., Zhang, S., Yang, S., Tao, Y., … & Tian, D. S. (2020). Dysregulation of immune response in patients with COVID-19 in Wuhan, China. China (February 17, 2020).
  135. Reyes, S., Varagic, J., Ahmad, S., VonCannon, J., Kon, N. D., Wang, H., … & Ferrario, C. M. (2017). Novel cardiac intracrine mechanisms based on Ang-(1-12)/chymase axis require a revision of therapeutic approaches in human heart disease. Current hypertension reports, 19(2), 16.
  136. Rodrigues-Díez, R., Carvajal-González, G., Sánchez-López, E., Rodríguez-Vita, J., Díez, R. R., Selgas, R., … & Ruiz-Ortega, M. (2008). Pharmacological modulation of epithelial mesenchymal transition caused by angiotensin II. Role of ROCK and MAPK pathways. Pharmaceutical research, 25(10), 2447-2461.
  137. Rothan, H. A., & Byrareddy, S. N. (2020). The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. Journal of Autoimmunity, 102433.
  138. Rzepka, J. P., Haick, A. K., & Miura, T. A. (2012). Virus-infected alveolar epithelial cells direct neutrophil chemotaxis and inhibit their apoptosis. American journal of respiratory cell and molecular biology, 46(6), 833-841.
  139. Sakai, N., & Tager, A. M. (2013). Fibrosis of two: Epithelial cell-fibroblast interactions in pulmonary fibrosis. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1832(7), 911-921.
  140. Santos, R. A. (2014). Angiotensin-(1–7). Hypertension, 63(6), 1138-1147.
  141. Santos, R. A. S., Oudit, G. Y., Verano-Braga, T., Canta, G., Steckelings, U. M., & Bader, M. (2019). The renin-angiotensin system: going beyond the classical paradigms. American Journal of Physiology-Heart and Circulatory Physiology, 316(5), H958-H970.
  142. Santos, R. A. S., Sampaio, W. O., Alzamora, A. C., Motta-Santos, D., Alenina, N., Bader, M., & Campagnole-Santos, M. J. (2018). The ACE2/angiotensin-(1–7)/MAS axis of the renin-angiotensin system: focus on angiotensin-(1–7). Physiological reviews, 98(1), 505-553.
  143. Schmermund, A., Lerman, L. O., Ritman, E. L., & Rumberger, J. A. (1999, May). Cardiac production of angiotensin II and its pharmacologic inhibition: effects on the coronary circulation. In Mayo Clinic Proceedings (Vol. 74, No. 5, pp. 503-513). Elsevier.
  144. Shao, M., Wen, Z. B., Yang, H. H., Zhang, C. Y., Xiong, J. B., Guan, X. X., … & He, X. F. (2019). Exogenous angiotensin (1-7) directly inhibits epithelial-mesenchymal transformation induced by transforming growth factor-β1 in alveolar epithelial cells. Biomedicine & Pharmacotherapy, 117, 109193.
  145. Shen, L., Mo, H., Cai, L., Kong, T., Zheng, W., Ye, J., … & Xiao, Z. (2009). losartan prevents sepsis-induced acute lung injury and decreases activation of nuclear factorκb and mitogen-activated protein kinases. Shock, 31(5), 500-506.
  146. Shi, J., Wen, Z., Zhong, G., Yang, H., Wang, C., Huang, B., … & Zhao, Y. (2020). Susceptibility of ferrets, cats, dogs, and other domesticated animals to SARS–coronavirus 2. Science.
  147. Shrikrishna, D., Astin, R., Kemp, P. R., & Hopkinson, N. S. (2012). Renin–angiotensin system blockade: a novel therapeutic approach in chronic obstructive pulmonary disease. Clinical science, 123(8), 487-498.
  148. Singh, V. P., Baker, K. M., & Kumar, R. (2008). Activation of the intracellular renin-angiotensin system in cardiac fibroblasts by high glucose: role in extracellular matrix production. American Journal of Physiology-Heart and Circulatory Physiology, 294(4), H1675-H1684.
  149. Skov, J., Persson, F., Frøkiær, J., & Christiansen, J. S. (2014). Tissue renin–angiotensin systems: a unifying hypothesis of metabolic disease. Frontiers in endocrinology, 5, 23.
  150. Sodhi, C. P., Nguyen, J., Yamaguchi, Y., Werts, A. D., Lu, P., Ladd, M. R., … & Zhang, Y. (2019). A Dynamic Variation of Pulmonary ACE2 Is Required to Modulate Neutrophilic Inflammation in Response to Pseudomonas aeruginosa Lung Infection in Mice. The Journal of Immunology, 203(11), 3000-3012.
  151. Sriram, K., & Insel, P. A. (2020). Dangers of ACE inhibitor and ARB usage in COVID-19: evaluating the evidence. medRxiv.
  152. Stebbing, J., Phelan, A., Griffin, I., Tucker, C., Oechsle, O., Smith, D., & Richardson, P. (2020). COVID-19: combining antiviral and anti-inflammatory treatments. The Lancet Infectious Diseases.
  153. Suk, J. S., & Ensign-Hodges, L. (2019). Development of Angiotensin II Receptor Blocker Nanoparticles for an Inhaled Therapeutic Treatment of COPD via TGF-Beta Antagonism (Doctoral dissertation, Johns Hopkins University).
  154. Sun, P., Lu, X., Xu, C., Sun, W., & Pan, B. (2020). Understanding of COVID‐19 based on current evidence. Journal of medical virology.
  155. Sutton, T. C., & Subbarao, K. (2015). Development of animal models against emerging coronaviruses: From SARS to MERS coronavirus. Virology, 479, 247-258.
  156. Thevarajan, I., Nguyen, T. H., Koutsakos, M., Druce, J., Caly, L., van de Sandt, C. E., … & Tong, S. Y. (2020). Breadth of concomitant immune responses prior to patient recovery: a case report of non-severe COVID-19. Nature Medicine, 1-3.
  157. Tian, S., Hu, W., Niu, L., Liu, H., Xu, H., & Xiao, S. Y. (2020). Pulmonary pathology of early phase 2019 novel coronavirus (COVID-19) pneumonia in two patients with lung cancer. Journal of Thoracic Oncology.
  158. Tikellis, C., & Thomas, M. C. (2012). Angiotensin-converting enzyme 2 (ACE2) is a key modulator of the renin angiotensin system in health and disease. International journal of peptides, 2012.
  159. To, K. K. W., Tsang, O. T. Y., Leung, W. S., Tam, A. R., Wu, T. C., Lung, D. C., … & Lau, D. P. L. (2020). Temporal profiles of viral load in posterior oropharyngeal saliva samples and serum antibody responses during infection by SARS-CoV-2: an observational cohort study. The Lancet Infectious Diseases.
  160. Uhal, B. D., Dang, M. T. T., Li, X., & Abdul-Hafez, A. (2012). Angiotensinogen gene transcription in pulmonary fibrosis. International journal of peptides, 2012.
  161. Uhal, B. D., Kyong Kim, J., Li, X., & Molina-Molina, M. (2007). Angiotensin-TGF-β1 crosstalk in human idiopathic pulmonary fibrosis: autocrine mechanisms in myofibroblasts and macrophages. Current pharmaceutical design, 13(12), 1247-1256.
  162. Uhal, B. D., Li, X., Piasecki, C. C., & Molina-Molina, M. (2012b). Angiotensin signalling in pulmonary fibrosis. The international journal of biochemistry & cell biology, 44(3), 465-468.
  163. Uhal, B. D., Li, X., Xue, A., Gao, X., & Abdul-Hafez, A. (2011). Regulation of alveolar epithelial cell survival by the ACE-2/angiotensin 1–7/Mas axis. American Journal of Physiology-Lung Cellular and Molecular Physiology, 301(3), L269-L274.
  164. Uhal, B. D., Nguyen, H., Dang, M., Gopallawa, I., Jiang, J., Dang, V., … & Morimoto, K. (2013). Abrogation of ER stress-induced apoptosis of alveolar epithelial cells by angiotensin 1–7. American Journal of Physiology-Lung Cellular and Molecular Physiology, 305(1), L33-L41.
  165. Vaduganathan, M., Vardeny, O., Michel, T., McMurray, J. J., Pfeffer, M. A., & Solomon, S. D. (2020). Renin–Angiotensin–Aldosterone System Inhibitors in Patients with Covid-19. New England Journal of Medicine. doi: 10.1056/NEJMsr2005760
  166. van de Garde, E. M., Souverein, P. C., Hak, E., Deneer, V. H., van den Bosch, J. M., & Leufkens, H. G. (2007). Angiotensin-converting enzyme inhibitor use and protection against pneumonia in patients with diabetes. Journal of hypertension, 25(1), 235-239.
  167. Walls, A. C., Park, Y. J., Tortorici, M. A., Wall, A., McGuire, A. T., & Veesler, D. (2020). Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell.
  168. Wan, Y., Shang, J., Graham, R., Baric, R. S., & Li, F. (2020). Receptor recognition by the novel coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS coronavirus. Journal of virology, 94(7).
  169. Wang, D., Chai, X. Q., Magnnusen, C. G., Zosky, G. R., Shu, S. H., Wei, X., & Hu, S. S. (2019). Renin-angiotensin-system, a potential pharmacological candidate, in acute respiratory distress syndrome during mechanical ventilation. Pulmonary pharmacology & therapeutics, 101833.
  170. Wang, L., Wang, Y., Yang, T., Guo, Y., & Sun, T. (2015). Angiotensin-converting enzyme 2 attenuates bleomycin-induced lung fibrosis in mice. Cellular Physiology and Biochemistry, 36(2), 697-711.
  171. Wang, R., Alam, G., Zagariya, A., Gidea, C., Pinillos, H., Lalude, O., … & Uhal, B. D. (2000). Apoptosis of lung epithelial cells in response to TNF‐α requires angiotensin II generation de novo. Journal of cellular physiology, 185(2), 253-259.
  172. Wang, R., Ramos, C., Joshi, I., Zagariya, A., Pardo, A., Selman, M., & Uhal, B. D. (1999a). Human lung myofibroblast-derived inducers of alveolar epithelial apoptosis identified as angiotensin peptides. American Journal of Physiology-Lung Cellular and Molecular Physiology, 277(6), L1158-L1164.
  173. Wang, R., Zagariya, A., Ang, E., Ibarra-Sunga, O., & Uhal, B. D. (1999b). Fas-induced apoptosis of alveolar epithelial cells requires ANG II generation and receptor interaction. American Journal of Physiology-Lung Cellular and Molecular Physiology, 277(6), L1245-L1250.
  174. Wang, R., Zagariya, A., Ibarra-Sunga, O., Gidea, C., Ang, E., Deshmukh, S., … & Uhal, B. D. (1999c). Angiotensin II induces apoptosis in human and rat alveolar epithelial cells. American Journal of Physiology-Lung Cellular and Molecular Physiology, 276(5), L885-L889.
  175. Waseda, Y., Yasui, M., Nishizawa, Y., Inuzuka, K., Takato, H., Ichikawa, Y., … & Nakao, S. (2008). Angiotensin II type 2 receptor antagonist reduces bleomycin-induced pulmonary fibrosis in mice. Respiratory research, 9(1), 43.
  176. Watanabe, T., Barker, T. A., & Berk, B. C. (2005). Angiotensin II and the endothelium: diverse signals and effects. Hypertension, 45(2), 163-169.
  177. Wen, H., Gwathmey, J. K., & Xie, L. H. (2012). Oxidative stress-mediated effects of angiotensin II in the cardiovascular system. World journal of hypertension, 2(4), 34.
  178. Wong, S. K., Li, W., Moore, M. J., Choe, H., & Farzan, M. (2004). A 193-amino acid fragment of the SARS coronavirus S protein efficiently binds angiotensin-converting enzyme 2. Journal of Biological Chemistry, 279(5), 3197-3201.
  179. Wösten-van Asperen, R. M., Lutter, R., Haitsma, J. J., Merkus, M. P., van Woensel, J. B., Van Der Loos, C. M., … & Bos, A. P. (2008). ACE mediates ventilator-induced lung injury in rats via angiotensin II but not bradykinin. European Respiratory Journal, 31(2), 363-371.
  180. Wösten‐van Asperen, R. M., Lutter, R., Specht, P. A., Moll, G. N., van Woensel, J. B., van der Loos, C. M., … & Bos, A. P. (2011). Acute respiratory distress syndrome leads to reduced ratio of ACE/ACE2 activities and is prevented by angiotensin‐(1–7) or an angiotensin II receptor antagonist. The Journal of pathology, 225(4), 618-627.
  181. Wright, J. R. (2003). Pulmonary surfactant: a front line of lung host defense. The Journal of clinical investigation, 111(10), 1453-1455.
  182. Wu, H., Li, Y., Wang, Y., Xu, D., Li, C., Liu, M., … & Li, Z. (2014). Tanshinone IIA attenuates bleomycin-induced pulmonary fibrosis via modulating angiotensin-converting enzyme 2/angiotensin-(1-7) axis in rats. International journal of medical sciences, 11(6), 578.
  183. Wu, Z., & McGoogan, J. M. (2020). Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72 314 cases from the Chinese Center for Disease Control and Prevention. Jama.
  184. Xu, H., Zhong, L., Deng, J., Peng, J., Dan, H., Zeng, X., … & Chen, Q. (2020a). High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa. International Journal of Oral Science, 12(1), 1-5.
  185. Xu, Z., Shi, L., Wang, Y., Zhang, J., Huang, L., Zhang, C., … & Tai, Y. (2020b). Pathological findings of COVID-19 associated with acute respiratory distress syndrome. The Lancet respiratory medicine.
  186. Yan, Y., Liu, Q., Li, N., Du, J., Li, X., Li, C., … & Jiang, C. (2015). Angiotensin II receptor blocker as a novel therapy in acute lung injury induced by avian influenza A H5N1 virus infection in mouse. Science China Life Sciences, 58(2), 208-211.
  187. Yao, H. W., Zhu, J. P., Zhao, M. H., & Lu, Y. (2006). Losartan attenuates bleomycin-induced pulmonary fibrosis in rats. Respiration, 73(2), 236-242.
  188. Yasui, F., Kohara, M., Kitabatake, M., Nishiwaki, T., Fujii, H., Tateno, C., … & Kai, C. (2014). Phagocytic cells contribute to the antibody-mediated elimination of pulmonary-infected SARS coronavirus. Virology, 454, 157-168.
  189. Zhang, H., Penninger, J. M., Li, Y., Zhong, N., & Slutsky, A. S. (2020). Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Intensive Care Medicine, 1-5.
  190. Zhang, Y., Li, Y., Shi, C., Fu, X., Zhao, L., & Song, Y. (2018). Angiotensin‐(1‐7)‐mediated Mas1 receptor/NF‐κB‐p65 signaling is involved in a cigarette smoke‐induced chronic obstructive pulmonary disease mouse model. Environmental toxicology, 33(1), 5-15.
  191. Zhao, J., Zhao, J., Van Rooijen, N., & Perlman, S. (2009). Evasion by stealth: inefficient immune activation underlies poor T cell response and severe disease in SARS-CoV-infected mice. PLoS pathogens, 5(10).
  192. Zhou, F., Yu, T., Du, R., Fan, G., Liu, Y., Liu, Z., … & Guan, L. (2020a). Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. The Lancet. 395( 10229), P1054-1062
  193. Zhou, J. B., Yang, J. K., Lu, J. K., & An, Y. H. (2010). Angiotensin-converting enzyme gene polymorphism is associated with type 2 diabetes: a meta-analysis. Molecular biology reports, 37(1), 67-73.
  194. Zhou, P., Yang, X. L., Wang, X. G., Hu, B., Zhang, L., Zhang, W., … & Chen, H. D. (2020b). A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 579(7798), 270-273.
  195. Zou, X., Chen, K., Zou, J., Han, P., Hao, J., & Han, Z. (2020). Single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection. Frontiers of Medicine, 1-8.