References
1. Shah KS, Xu H, Matsouaka RA, et al. Heart Failure With Preserved,
Borderline, and Reduced Ejection Fraction: 5-Year Outcomes. J Am
Coll Cardiol. 2017;70(20):2476-2486 DOI:10.1016/j.jacc.2017.08.074.
PubMed PMID: 29141781.
2. Wan SH, Vogel MW, Chen HH. Pre-clinical diastolic dysfunction.J Am Coll Cardiol. 2014;63(5):407-416
DOI:10.1016/j.jacc.2013.10.063. PubMed PMID: 24291270.
3. Lee DS, Gona P, Vasan RS, et al. Relation of disease pathogenesis and
risk factors to heart failure with preserved or reduced ejection
fraction: insights from the framingham heart study of the national
heart, lung, and blood institute. Circulation.2009;119(24):3070-3077 DOI:10.1161/circulationaha.108.815944. PubMed
PMID: 19506115.
4. Bianco CM, Farjo PD, Ghaffar YA, Sengupta PP. Myocardial Mechanics in
Patients With Normal LVEF and Diastolic Dysfunction. JACC
Cardiovasc Imaging. 2020;13(1 Pt 2):258-271
DOI:10.1016/j.jcmg.2018.12.035. PubMed PMID: 31202770.
5. Sengupta PP, Tajik AJ, Chandrasekaran K, Khandheria BK. Twist
mechanics of the left ventricle: principles and application. JACC
Cardiovasc Imaging. 2008;1(3):366-376 DOI:10.1016/j.jcmg.2008.02.006.
PubMed PMID: 19356451.
6. Wang J, Khoury DS, Yue Y, Torre-Amione G, Nagueh SF. Preserved left
ventricular twist and circumferential deformation, but depressed
longitudinal and radial deformation in patients with diastolic heart
failure. Eur Heart J. 2008;29(10):1283-1289
DOI:10.1093/eurheartj/ehn141. PubMed PMID: 18385117.
7. Sengupta PP, Krishnamoorthy VK, Abhayaratna WP, et al. Disparate
patterns of left ventricular mechanics differentiate constrictive
pericarditis from restrictive cardiomyopathy. JACC: Cardiovascular
imaging. 2008;1(1):29-38.
8. Wang Y, Marwick TH. Update on Echocardiographic Assessment in
Diabetes Mellitus. Curr Cardiol Rep. 2016;18(9):85
DOI:10.1007/s11886-016-0759-0. PubMed PMID: 27443381.
9. Szelényi Z, Fazakas Á, Szénási G, et al. The mechanism of reduced
longitudinal left ventricular systolic function in hypertensive patients
with normal ejection fraction. Journal of hypertension.2015;33(9):1962-1969.
10. Ernande L, Bergerot C, Rietzschel ER, et al. Diastolic dysfunction
in patients with type 2 diabetes mellitus: is it really the first marker
of diabetic cardiomyopathy? J Am Soc Echocardiogr.2011;24(11):1268-1275.e1261 DOI:10.1016/j.echo.2011.07.017. PubMed PMID:
21907542.
11. Zhang J. Myocardial energetics in cardiac hypertrophy. Clin
Exp Pharmacol Physiol. 2002;29(4):351-359
DOI:10.1046/j.1440-1681.2002.03657.x. PubMed PMID: 11985549.
12. Kosmala W, Marwick TH. Asymptomatic Left Ventricular Diastolic
Dysfunction: Predicting Progression to Symptomatic Heart Failure.JACC Cardiovasc Imaging. 2020;13(1 Pt 2):215-227
DOI:10.1016/j.jcmg.2018.10.039. PubMed PMID: 31005530.
13. Shah AM, Claggett B, Sweitzer NK, et al. Prognostic Importance of
Impaired Systolic Function in Heart Failure With Preserved Ejection
Fraction and the Impact of Spironolactone. Circulation.2015;132(5):402-414 DOI:10.1161/circulationaha.115.015884. PubMed PMID:
26130119.
14. Morris DA, Ma XX, Belyavskiy E, et al. Left ventricular longitudinal
systolic function analysed by 2D speckle-tracking echocardiography in
heart failure with preserved ejection fraction: a meta-analysis.Open Heart. 2017;4(2):e000630 DOI:10.1136/openhrt-2017-000630.
PubMed PMID: 29018535.
15. Sengupta PP, Narula J. Reclassifying heart failure: predominantly
subendocardial, subepicardial, and transmural. Heart Fail Clin.2008;4(3):379-382 DOI:10.1016/j.hfc.2008.03.013. PubMed PMID: 18598989.
16. Stohr EJ, Shave RE, Baggish AL, Weiner RB. Left ventricular twist
mechanics in the context of normal physiology and cardiovascular
disease: a review of studies using speckle tracking echocardiography.Am J Physiol Heart Circ Physiol. 2016;311(3):H633-644
DOI:10.1152/ajpheart.00104.2016. PubMed PMID: 27402663.
17. Yip GW, Zhang Q, Xie JM, et al. Resting global and regional left
ventricular contractility in patients with heart failure and normal
ejection fraction: insights from speckle-tracking echocardiography.Heart. 2011;97(4):287-294 DOI:10.1136/hrt.2010.205815. PubMed
PMID: 21193686.
18. Nguyen JS, Lakkis NM, Bobek J, Goswami R, Dokainish H. Systolic and
diastolic myocardial mechanics in patients with cardiac disease and
preserved ejection fraction: impact of left ventricular filling
pressure. J Am Soc Echocardiogr. 2010;23(12):1273-1280
DOI:10.1016/j.echo.2010.09.008. PubMed PMID: 20970305.
19. Hatipoglu S, Ozdemir N, Babur Guler G, et al. Prediction of elevated
left ventricular filling pressures in patients with preserved ejection
fraction using longitudinal deformation indices of the left ventricle.Eur Heart J Cardiovasc Imaging. 2015;16(10):1154-1161
DOI:10.1093/ehjci/jev063. PubMed PMID: 25896356.
20. Biering-Sorensen T, Santos M, Rivero J, et al. Left ventricular
deformation at rest predicts exercise-induced elevation in pulmonary
artery wedge pressure in patients with unexplained dyspnoea. Eur J
Heart Fail. 2017;19(1):101-110 DOI:10.1002/ejhf.659. PubMed PMID:
27878925.
21. Pieske B, Tschope C, de Boer RA, et al. How to diagnose heart
failure with preserved ejection fraction: the HFA-PEFF diagnostic
algorithm: a consensus recommendation from the Heart Failure Association
(HFA) of the European Society of Cardiology (ESC). Eur Heart J.2019;40(40):3297-3317 DOI:10.1093/eurheartj/ehz641. PubMed PMID:
31504452.
22. Kosmala W, Rojek A, Przewlocka-Kosmala M, Mysiak A, Karolko B,
Marwick TH. Contributions of Nondiastolic Factors to Exercise
Intolerance in Heart Failure With Preserved Ejection Fraction. J
Am Coll Cardiol. 2016;67(6):659-670 DOI:10.1016/j.jacc.2015.10.096.
PubMed PMID: 26868691.
23. Wang J, Fang F, Wai-Kwok Yip G, et al. Left ventricular long-axis
performance during exercise is an important prognosticator in patients
with heart failure and preserved ejection fraction. Int J
Cardiol. 2015;178:131-135 DOI:10.1016/j.ijcard.2014.10.130. PubMed
PMID: 25464236.
24. Tsang TS, Barnes ME, Gersh BJ, Bailey KR, Seward JB. Left atrial
volume as a morphophysiologic expression of left ventricular diastolic
dysfunction and relation to cardiovascular risk burden. The
American journal of cardiology. 2002;90(12):1284-1289.
25. Cameli M, Lisi M, Righini FM, et al. Left atrial strain in patients
with arterial hypertension. Paper presented at: International
Cardiovascular Forum Journal2013.
26. Badano LP, Kolias TJ, Muraru D, et al. Standardization of left
atrial, right ventricular, and right atrial deformation imaging using
two-dimensional speckle tracking echocardiography: a consensus document
of the EACVI/ASE/Industry Task Force to standardize deformation imaging.European Heart Journal-Cardiovascular Imaging.2018;19(6):591-600.
27. Fang NN, Sui DX, Yu JG, et al. Strain/strain rate imaging of
impaired left atrial function in patients with metabolic syndrome.Hypertens Res. 2015;38(11):758-764 DOI:10.1038/hr.2015.76. PubMed
PMID: 26178155.
28. Brecht A, Oertelt-Prigione S, Seeland U, et al. Left Atrial Function
in Preclinical Diastolic Dysfunction: Two-Dimensional Speckle-Tracking
Echocardiography-Derived Results from the BEFRI Trial. J Am Soc
Echocardiogr. 2016;29(8):750-758 DOI:10.1016/j.echo.2016.03.013. PubMed
PMID: 27156904.
29. Morris DA, Belyavskiy E, Aravind-Kumar R, et al. Potential
Usefulness and Clinical Relevance of Adding Left Atrial Strain to Left
Atrial Volume Index in the Detection of Left Ventricular Diastolic
Dysfunction. JACC Cardiovasc Imaging. 2018;11(10):1405-1415
DOI:10.1016/j.jcmg.2017.07.029. PubMed PMID: 29153567.
30. Kaminski M, Steel K, Jerosch-Herold M, et al. Strong cardiovascular
prognostic implication of quantitative left atrial contractile function
assessed by cardiac magnetic resonance imaging in patients with chronic
hypertension. Journal of Cardiovascular Magnetic Resonance.2011;13(1):42.
31. Dimitroula H, Damvopoulou E, Giannakoulas G, et al. Effects of
renin–angiotensin system inhibition on left atrial function of
hypertensive patients: an echocardiographic tissue deformation imaging
study. American journal of hypertension. 2010;23(5):556-561.
32. Sanchis L, Gabrielli L, Andrea R, et al. Left atrial dysfunction
relates to symptom onset in patients with heart failure and preserved
left ventricular ejection fraction. Eur Heart J Cardiovasc
Imaging. 2015;16(1):62-67 DOI:10.1093/ehjci/jeu165. PubMed PMID:
25187609.
33. von Roeder M, Rommel K-P, Kowallick JT, et al. Influence of left
atrial function on exercise capacity and left ventricular function in
patients with heart failure and preserved ejection fraction.Circulation: Cardiovascular Imaging. 2017;10(4):e005467.
34. Santos AB, Kraigher‐Krainer E, Gupta DK, et al. Impaired left atrial
function in heart failure with preserved ejection fraction.European journal of heart failure. 2014;16(10):1096-1103.
35. Hewing B, Theres L, Spethmann S, Stangl K, Dreger H, Knebel F. Left
atrial strain predicts hemodynamic parameters in cardiovascular
patients. Echocardiography. 2017;34(8):1170-1178.
36. Lundberg A, Johnson J, Hage C, et al. Left atrial strain improves
estimation of filling pressures in heart failure: a simultaneous
echocardiographic and invasive haemodynamic study. Clinical
Research in Cardiology. 2019;108(6):703-715.
37. Reddy YNV, Obokata M, Egbe A, et al. Left atrial strain and
compliance in the diagnostic evaluation of heart failure with preserved
ejection fraction. Eur J Heart Fail. 2019;21(7):891-900
DOI:10.1002/ejhf.1464. PubMed PMID: 30919562.
38. Freed BH, Daruwalla V, Cheng JY, et al. Prognostic Utility and
Clinical Significance of Cardiac Mechanics in Heart Failure With
Preserved Ejection Fraction: Importance of Left Atrial Strain.Circ Cardiovasc Imaging. 2016;9(3)
DOI:10.1161/circimaging.115.003754. PubMed PMID: 26941415.
39. Sugimoto T, Bandera F, Generati G, Alfonzetti E, Bussadori C, Guazzi
M. Left Atrial Function Dynamics During Exercise in Heart Failure:
Pathophysiological Implications on the Right Heart and Exercise
Ventilation Inefficiency. JACC Cardiovasc Imaging. 2017;10(10 Pt
B):1253-1264 DOI:10.1016/j.jcmg.2016.09.021. PubMed PMID: 28017395.
40. Shah SJ, Katz DH, Selvaraj S, et al. Phenomapping for novel
classification of heart failure with preserved ejection fraction.Circulation. 2015;131(3):269-279
DOI:10.1161/circulationaha.114.010637. PubMed PMID: 25398313.
41. Buckberg G, Hoffman JI, Nanda NC, Coghlan C, Saleh S, Athanasuleas
C. Ventricular torsion and untwisting: further insights into mechanics
and timing interdependence: a viewpoint. Echocardiography.2011;28(7):782-804.
42. Buckberg G, Hoffman JI. Right ventricular architecture responsible
for mechanical performance: unifying role of ventricular septum.The Journal of thoracic and cardiovascular surgery.2014;148(6):3166-3171. e3164.
43. Kosmala W, Przewlocka-Kosmala M, Mazurek W. Subclinical right
ventricular dysfunction in diabetes mellitus–an ultrasonic
strain/strain rate study. Diabet Med. 2007;24(6):656-663
DOI:10.1111/j.1464-5491.2007.02101.x. PubMed PMID: 17367309.
44. Wong CY, O’Moore-Sullivan T, Leano R, Hukins C, Jenkins C, Marwick
TH. Association of subclinical right ventricular dysfunction with
obesity. Journal of the American College of Cardiology.2006;47(3):611-616.
45. Morris DA, Gailani M, Vaz Perez A, et al. Right ventricular
myocardial systolic and diastolic dysfunction in heart failure with
normal left ventricular ejection fraction. J Am Soc Echocardiogr.2011;24(8):886-897 DOI:10.1016/j.echo.2011.04.005. PubMed PMID:
21601421.
46. Bosch L, Lam CSP, Gong L, et al. Right ventricular dysfunction in
left-sided heart failure with preserved versus reduced ejection
fraction. Eur J Heart Fail. 2017;19(12):1664-1671
DOI:10.1002/ejhf.873. PubMed PMID: 28597497.
47. Jain S, Kuriakose D, Edelstein I, et al. Right atrial phasic
function in heart failure with preserved and reduced ejection fraction.JACC: Cardiovascular Imaging. 2019;12(8 Part 1):1460-1470.
48. Deschle HA, Amenabar A, Casso NA, et al. Behavior of right atrial
strain in high systolic pulmonary artery pressure.Echocardiography. 2018;35(10):1557-1563.
49. Seetharam K, Shresthra S, Mills JD, Sengupta PP. Artificial
Intelligence in Nuclear Cardiology: Adding Value to Prognostication.Current Cardiovascular Imaging Reports. 2019;12(5)
DOI:10.1007/s12410-019-9490-8.
50. Seetharam K, Kagiyama N, Sengupta PP. Application of mobile health,
telemedicine and artificial intelligence to echocardiography. Echo
Res Pract. 2019;6(2):R41-R52 DOI:10.1530/ERP-18-0081. PubMed PMID:
30844756.
51. Seetharam K, Shrestha S, Sengupta P. Artificial Intelligence in
Cardiac Imaging. US Cardiology Review. 2020;13:110-116
DOI:10.15420/usc.2019.19.2.
52. Narula J. Are we up to speed?: from big data to rich insights in CV
imaging for a hyperconnected world. JACC Cardiovasc Imaging.2013;6(11):1222-1224 DOI:10.1016/j.jcmg.2013.09.007. PubMed PMID:
24229779.
53. Lancaster MC, Salem Omar AM, Narula S, Kulkarni H, Narula J,
Sengupta PP. Phenotypic Clustering of Left Ventricular Diastolic
Function Parameters: Patterns and Prognostic Relevance. JACC
Cardiovasc Imaging. 2019;12(7 Pt 1):1149-1161
DOI:10.1016/j.jcmg.2018.02.005. PubMed PMID: 29680357.
54. Omar AMS, Narula S, Abdel Rahman MA, et al. Precision Phenotyping in
Heart Failure and Pattern Clustering of Ultrasound Data for the
Assessment of Diastolic Dysfunction. JACC Cardiovasc Imaging.2017;10(11):1291-1303 DOI:10.1016/j.jcmg.2016.10.012. PubMed PMID:
28109936.
55. Salem Omar AM, Shameer K, Narula S, et al. Artificial
Intelligence-Based Assessment of Left Ventricular Filling Pressures From
2-Dimensional Cardiac Ultrasound Images. JACC Cardiovasc Imaging.2018;11(3):509-510 DOI:10.1016/j.jcmg.2017.05.003. PubMed PMID:
28734920.
56. Tabassian M, Sunderji I, Erdei T, et al. Diagnosis of Heart Failure
With Preserved Ejection Fraction: Machine Learning of Spatiotemporal
Variations in Left Ventricular Deformation. J Am Soc
Echocardiogr. 2018;31(12):1272-1284.e1279
DOI:10.1016/j.echo.2018.07.013. PubMed PMID: 30146187.
57. Sanchez-Martinez S, Duchateau N, Erdei T, et al. Machine Learning
Analysis of Left Ventricular Function to Characterize Heart Failure With
Preserved Ejection Fraction. Circ Cardiovasc Imaging.2018;11(4):e007138 DOI:10.1161/circimaging.117.007138. PubMed PMID:
29661795.
Figure 1 Temporal Evolution of Myocardial Mechanics
*modified from Bianco et al. J Am Coll Cardiol Img 2020;13:258–71
LV = left ventricular, LA = left atrial, RV = right ventricular
Figure 2 Parameters of Myocardial Mechanics in HFpEF
A. Impairment of left ventricular global longitudinal strain and
mechanical dispersion are common HFpEF mechanical changes. B. Reductions
in left atrial reservoir, conduit, and contractile function commonly
encountered in symptomatic HFpEF. C. HFpEF associated impairment of
right ventricular free wall and four chamber deformation. D. Despite
normal or near normal tissue Doppler-derived parameters of diastolic
function, significant deteriorations of mechanical deformation may
exist. GSL_Endo_Peak_Avg = Peak endocardial global longitudinal
strain average, LASr_ED = Left atrial reservoir strain at end-diastole,
LAScd_ED = Left atrial conduit strain at end-diastole, LAct_ED = Left
atrial contractile strain at end-diastole, RVFWSL = Right ventricular
free wall longitudinal strain, RV4CSL = Right ventricular 4 chamber
longitudinal strain
Figure 3 Temporal Evolution of Left Atrial Failure
Preclinical dysfunction is associated with a reduction in reservoir and
conduit function, while relative contractile function remains normal or
increased. Atrial contractile failure, along with further reductions in
reservoir and conduit function, are associated with symptom onset.
Advanced symptomatic HFpEF is characterized by an eventual decrement in
all 3 atrial strain phases.
Figure 4 Clustering Dendrograms for Conventional Variables and Their STE
Correspondents
*reprinted with permission from 54 Omar et al J Am
Coll Cardiol Img.2017:10(11):1291-1303
Clustering dendrograms using STE and conventional variables together.
The dissimilarity matrix is given as a heat map of Euclidean distance
(red). The AU (red numbers) and BP (green numbers) were calculated. AU
values are shown only for leaflets that had an AU>95%
(considered statistically significant). Significant proximity of
variables in the clustering leaflets were decided using 2D-LAVmax, E/e’,
A-wave velocity, and a’ velocity were shown to be in perfect proximity
with their STE counterparts STE-LAV max,
VR-E/SR-EAV, VR-AAV, and
SR-AAV, respectively (AU = 97%, 96%, 98%, and 100%,
respectively). The conventional parameters e’/a’ and E/A were also in
significant proximity to their STE counterparts
SR-E/SR-AAV and VR-E/VR-AAV,
respectively (AU = 98%) and also between e’ and s’ and their STE
counterparts SR-EAV and SR-SAV,
respectively (AU = 100%). STE = speckle tracking echocardiogram, E =
pulsed Doppler derived mitral flow early diastolic velocity; E’ = tissue
Doppler derived mitral annular early diastolic velocity; E/A = Doppler
derived mitral flow early to late diastolic velocity ratio; E/e’ = ratio
of Doppler derived mitral flow early diastolic velocity to tissue
Doppler derived mitral annular early diastolic velocity; LAV = left
atrial maximum volume; AU = approximately unbiased probability; 2D =
2-dimensional; VR-E = rate of volume expansion at early diastole,
SR-AAV = peak atrioventricular strain rate during atrial
contraction; SR-EAV = early diastolic peak
atrioventricular strain rate; SRE/SRAAV = ratio between
atrioventricular strain rate at early diastole and during atrial
contraction; TLVd = total left heart volume during ventricular diastole;
TLVs = total left heart volume during ventricular systole;
VR-AAV = peak atrioventricular volume expansion rate at
left atrial contraction; VR-EAV = early diastolic peak
atrioventricular volume expansion rate; VRE/SREAV =
ratio between atrioventricular volume expansion rate and strain rate at
early diastole; VRE-VRAAV = ratio between
atrioventricular volume expansion rate at early diastole and during
atrial contraction.
Figure 1 Temporal Evolution of Myocardial Mechanics