References
1. Shah KS, Xu H, Matsouaka RA, et al. Heart Failure With Preserved, Borderline, and Reduced Ejection Fraction: 5-Year Outcomes. J Am Coll Cardiol. 2017;70(20):2476-2486 DOI:10.1016/j.jacc.2017.08.074. PubMed PMID: 29141781.
2. Wan SH, Vogel MW, Chen HH. Pre-clinical diastolic dysfunction.J Am Coll Cardiol. 2014;63(5):407-416 DOI:10.1016/j.jacc.2013.10.063. PubMed PMID: 24291270.
3. Lee DS, Gona P, Vasan RS, et al. Relation of disease pathogenesis and risk factors to heart failure with preserved or reduced ejection fraction: insights from the framingham heart study of the national heart, lung, and blood institute. Circulation.2009;119(24):3070-3077 DOI:10.1161/circulationaha.108.815944. PubMed PMID: 19506115.
4. Bianco CM, Farjo PD, Ghaffar YA, Sengupta PP. Myocardial Mechanics in Patients With Normal LVEF and Diastolic Dysfunction. JACC Cardiovasc Imaging. 2020;13(1 Pt 2):258-271 DOI:10.1016/j.jcmg.2018.12.035. PubMed PMID: 31202770.
5. Sengupta PP, Tajik AJ, Chandrasekaran K, Khandheria BK. Twist mechanics of the left ventricle: principles and application. JACC Cardiovasc Imaging. 2008;1(3):366-376 DOI:10.1016/j.jcmg.2008.02.006. PubMed PMID: 19356451.
6. Wang J, Khoury DS, Yue Y, Torre-Amione G, Nagueh SF. Preserved left ventricular twist and circumferential deformation, but depressed longitudinal and radial deformation in patients with diastolic heart failure. Eur Heart J. 2008;29(10):1283-1289 DOI:10.1093/eurheartj/ehn141. PubMed PMID: 18385117.
7. Sengupta PP, Krishnamoorthy VK, Abhayaratna WP, et al. Disparate patterns of left ventricular mechanics differentiate constrictive pericarditis from restrictive cardiomyopathy. JACC: Cardiovascular imaging. 2008;1(1):29-38.
8. Wang Y, Marwick TH. Update on Echocardiographic Assessment in Diabetes Mellitus. Curr Cardiol Rep. 2016;18(9):85 DOI:10.1007/s11886-016-0759-0. PubMed PMID: 27443381.
9. Szelényi Z, Fazakas Á, Szénási G, et al. The mechanism of reduced longitudinal left ventricular systolic function in hypertensive patients with normal ejection fraction. Journal of hypertension.2015;33(9):1962-1969.
10. Ernande L, Bergerot C, Rietzschel ER, et al. Diastolic dysfunction in patients with type 2 diabetes mellitus: is it really the first marker of diabetic cardiomyopathy? J Am Soc Echocardiogr.2011;24(11):1268-1275.e1261 DOI:10.1016/j.echo.2011.07.017. PubMed PMID: 21907542.
11. Zhang J. Myocardial energetics in cardiac hypertrophy. Clin Exp Pharmacol Physiol. 2002;29(4):351-359 DOI:10.1046/j.1440-1681.2002.03657.x. PubMed PMID: 11985549.
12. Kosmala W, Marwick TH. Asymptomatic Left Ventricular Diastolic Dysfunction: Predicting Progression to Symptomatic Heart Failure.JACC Cardiovasc Imaging. 2020;13(1 Pt 2):215-227 DOI:10.1016/j.jcmg.2018.10.039. PubMed PMID: 31005530.
13. Shah AM, Claggett B, Sweitzer NK, et al. Prognostic Importance of Impaired Systolic Function in Heart Failure With Preserved Ejection Fraction and the Impact of Spironolactone. Circulation.2015;132(5):402-414 DOI:10.1161/circulationaha.115.015884. PubMed PMID: 26130119.
14. Morris DA, Ma XX, Belyavskiy E, et al. Left ventricular longitudinal systolic function analysed by 2D speckle-tracking echocardiography in heart failure with preserved ejection fraction: a meta-analysis.Open Heart. 2017;4(2):e000630 DOI:10.1136/openhrt-2017-000630. PubMed PMID: 29018535.
15. Sengupta PP, Narula J. Reclassifying heart failure: predominantly subendocardial, subepicardial, and transmural. Heart Fail Clin.2008;4(3):379-382 DOI:10.1016/j.hfc.2008.03.013. PubMed PMID: 18598989.
16. Stohr EJ, Shave RE, Baggish AL, Weiner RB. Left ventricular twist mechanics in the context of normal physiology and cardiovascular disease: a review of studies using speckle tracking echocardiography.Am J Physiol Heart Circ Physiol. 2016;311(3):H633-644 DOI:10.1152/ajpheart.00104.2016. PubMed PMID: 27402663.
17. Yip GW, Zhang Q, Xie JM, et al. Resting global and regional left ventricular contractility in patients with heart failure and normal ejection fraction: insights from speckle-tracking echocardiography.Heart. 2011;97(4):287-294 DOI:10.1136/hrt.2010.205815. PubMed PMID: 21193686.
18. Nguyen JS, Lakkis NM, Bobek J, Goswami R, Dokainish H. Systolic and diastolic myocardial mechanics in patients with cardiac disease and preserved ejection fraction: impact of left ventricular filling pressure. J Am Soc Echocardiogr. 2010;23(12):1273-1280 DOI:10.1016/j.echo.2010.09.008. PubMed PMID: 20970305.
19. Hatipoglu S, Ozdemir N, Babur Guler G, et al. Prediction of elevated left ventricular filling pressures in patients with preserved ejection fraction using longitudinal deformation indices of the left ventricle.Eur Heart J Cardiovasc Imaging. 2015;16(10):1154-1161 DOI:10.1093/ehjci/jev063. PubMed PMID: 25896356.
20. Biering-Sorensen T, Santos M, Rivero J, et al. Left ventricular deformation at rest predicts exercise-induced elevation in pulmonary artery wedge pressure in patients with unexplained dyspnoea. Eur J Heart Fail. 2017;19(1):101-110 DOI:10.1002/ejhf.659. PubMed PMID: 27878925.
21. Pieske B, Tschope C, de Boer RA, et al. How to diagnose heart failure with preserved ejection fraction: the HFA-PEFF diagnostic algorithm: a consensus recommendation from the Heart Failure Association (HFA) of the European Society of Cardiology (ESC). Eur Heart J.2019;40(40):3297-3317 DOI:10.1093/eurheartj/ehz641. PubMed PMID: 31504452.
22. Kosmala W, Rojek A, Przewlocka-Kosmala M, Mysiak A, Karolko B, Marwick TH. Contributions of Nondiastolic Factors to Exercise Intolerance in Heart Failure With Preserved Ejection Fraction. J Am Coll Cardiol. 2016;67(6):659-670 DOI:10.1016/j.jacc.2015.10.096. PubMed PMID: 26868691.
23. Wang J, Fang F, Wai-Kwok Yip G, et al. Left ventricular long-axis performance during exercise is an important prognosticator in patients with heart failure and preserved ejection fraction. Int J Cardiol. 2015;178:131-135 DOI:10.1016/j.ijcard.2014.10.130. PubMed PMID: 25464236.
24. Tsang TS, Barnes ME, Gersh BJ, Bailey KR, Seward JB. Left atrial volume as a morphophysiologic expression of left ventricular diastolic dysfunction and relation to cardiovascular risk burden. The American journal of cardiology. 2002;90(12):1284-1289.
25. Cameli M, Lisi M, Righini FM, et al. Left atrial strain in patients with arterial hypertension. Paper presented at: International Cardiovascular Forum Journal2013.
26. Badano LP, Kolias TJ, Muraru D, et al. Standardization of left atrial, right ventricular, and right atrial deformation imaging using two-dimensional speckle tracking echocardiography: a consensus document of the EACVI/ASE/Industry Task Force to standardize deformation imaging.European Heart Journal-Cardiovascular Imaging.2018;19(6):591-600.
27. Fang NN, Sui DX, Yu JG, et al. Strain/strain rate imaging of impaired left atrial function in patients with metabolic syndrome.Hypertens Res. 2015;38(11):758-764 DOI:10.1038/hr.2015.76. PubMed PMID: 26178155.
28. Brecht A, Oertelt-Prigione S, Seeland U, et al. Left Atrial Function in Preclinical Diastolic Dysfunction: Two-Dimensional Speckle-Tracking Echocardiography-Derived Results from the BEFRI Trial. J Am Soc Echocardiogr. 2016;29(8):750-758 DOI:10.1016/j.echo.2016.03.013. PubMed PMID: 27156904.
29. Morris DA, Belyavskiy E, Aravind-Kumar R, et al. Potential Usefulness and Clinical Relevance of Adding Left Atrial Strain to Left Atrial Volume Index in the Detection of Left Ventricular Diastolic Dysfunction. JACC Cardiovasc Imaging. 2018;11(10):1405-1415 DOI:10.1016/j.jcmg.2017.07.029. PubMed PMID: 29153567.
30. Kaminski M, Steel K, Jerosch-Herold M, et al. Strong cardiovascular prognostic implication of quantitative left atrial contractile function assessed by cardiac magnetic resonance imaging in patients with chronic hypertension. Journal of Cardiovascular Magnetic Resonance.2011;13(1):42.
31. Dimitroula H, Damvopoulou E, Giannakoulas G, et al. Effects of renin–angiotensin system inhibition on left atrial function of hypertensive patients: an echocardiographic tissue deformation imaging study. American journal of hypertension. 2010;23(5):556-561.
32. Sanchis L, Gabrielli L, Andrea R, et al. Left atrial dysfunction relates to symptom onset in patients with heart failure and preserved left ventricular ejection fraction. Eur Heart J Cardiovasc Imaging. 2015;16(1):62-67 DOI:10.1093/ehjci/jeu165. PubMed PMID: 25187609.
33. von Roeder M, Rommel K-P, Kowallick JT, et al. Influence of left atrial function on exercise capacity and left ventricular function in patients with heart failure and preserved ejection fraction.Circulation: Cardiovascular Imaging. 2017;10(4):e005467.
34. Santos AB, Kraigher‐Krainer E, Gupta DK, et al. Impaired left atrial function in heart failure with preserved ejection fraction.European journal of heart failure. 2014;16(10):1096-1103.
35. Hewing B, Theres L, Spethmann S, Stangl K, Dreger H, Knebel F. Left atrial strain predicts hemodynamic parameters in cardiovascular patients. Echocardiography. 2017;34(8):1170-1178.
36. Lundberg A, Johnson J, Hage C, et al. Left atrial strain improves estimation of filling pressures in heart failure: a simultaneous echocardiographic and invasive haemodynamic study. Clinical Research in Cardiology. 2019;108(6):703-715.
37. Reddy YNV, Obokata M, Egbe A, et al. Left atrial strain and compliance in the diagnostic evaluation of heart failure with preserved ejection fraction. Eur J Heart Fail. 2019;21(7):891-900 DOI:10.1002/ejhf.1464. PubMed PMID: 30919562.
38. Freed BH, Daruwalla V, Cheng JY, et al. Prognostic Utility and Clinical Significance of Cardiac Mechanics in Heart Failure With Preserved Ejection Fraction: Importance of Left Atrial Strain.Circ Cardiovasc Imaging. 2016;9(3) DOI:10.1161/circimaging.115.003754. PubMed PMID: 26941415.
39. Sugimoto T, Bandera F, Generati G, Alfonzetti E, Bussadori C, Guazzi M. Left Atrial Function Dynamics During Exercise in Heart Failure: Pathophysiological Implications on the Right Heart and Exercise Ventilation Inefficiency. JACC Cardiovasc Imaging. 2017;10(10 Pt B):1253-1264 DOI:10.1016/j.jcmg.2016.09.021. PubMed PMID: 28017395.
40. Shah SJ, Katz DH, Selvaraj S, et al. Phenomapping for novel classification of heart failure with preserved ejection fraction.Circulation. 2015;131(3):269-279 DOI:10.1161/circulationaha.114.010637. PubMed PMID: 25398313.
41. Buckberg G, Hoffman JI, Nanda NC, Coghlan C, Saleh S, Athanasuleas C. Ventricular torsion and untwisting: further insights into mechanics and timing interdependence: a viewpoint. Echocardiography.2011;28(7):782-804.
42. Buckberg G, Hoffman JI. Right ventricular architecture responsible for mechanical performance: unifying role of ventricular septum.The Journal of thoracic and cardiovascular surgery.2014;148(6):3166-3171. e3164.
43. Kosmala W, Przewlocka-Kosmala M, Mazurek W. Subclinical right ventricular dysfunction in diabetes mellitus–an ultrasonic strain/strain rate study. Diabet Med. 2007;24(6):656-663 DOI:10.1111/j.1464-5491.2007.02101.x. PubMed PMID: 17367309.
44. Wong CY, O’Moore-Sullivan T, Leano R, Hukins C, Jenkins C, Marwick TH. Association of subclinical right ventricular dysfunction with obesity. Journal of the American College of Cardiology.2006;47(3):611-616.
45. Morris DA, Gailani M, Vaz Perez A, et al. Right ventricular myocardial systolic and diastolic dysfunction in heart failure with normal left ventricular ejection fraction. J Am Soc Echocardiogr.2011;24(8):886-897 DOI:10.1016/j.echo.2011.04.005. PubMed PMID: 21601421.
46. Bosch L, Lam CSP, Gong L, et al. Right ventricular dysfunction in left-sided heart failure with preserved versus reduced ejection fraction. Eur J Heart Fail. 2017;19(12):1664-1671 DOI:10.1002/ejhf.873. PubMed PMID: 28597497.
47. Jain S, Kuriakose D, Edelstein I, et al. Right atrial phasic function in heart failure with preserved and reduced ejection fraction.JACC: Cardiovascular Imaging. 2019;12(8 Part 1):1460-1470.
48. Deschle HA, Amenabar A, Casso NA, et al. Behavior of right atrial strain in high systolic pulmonary artery pressure.Echocardiography. 2018;35(10):1557-1563.
49. Seetharam K, Shresthra S, Mills JD, Sengupta PP. Artificial Intelligence in Nuclear Cardiology: Adding Value to Prognostication.Current Cardiovascular Imaging Reports. 2019;12(5) DOI:10.1007/s12410-019-9490-8.
50. Seetharam K, Kagiyama N, Sengupta PP. Application of mobile health, telemedicine and artificial intelligence to echocardiography. Echo Res Pract. 2019;6(2):R41-R52 DOI:10.1530/ERP-18-0081. PubMed PMID: 30844756.
51. Seetharam K, Shrestha S, Sengupta P. Artificial Intelligence in Cardiac Imaging. US Cardiology Review. 2020;13:110-116 DOI:10.15420/usc.2019.19.2.
52. Narula J. Are we up to speed?: from big data to rich insights in CV imaging for a hyperconnected world. JACC Cardiovasc Imaging.2013;6(11):1222-1224 DOI:10.1016/j.jcmg.2013.09.007. PubMed PMID: 24229779.
53. Lancaster MC, Salem Omar AM, Narula S, Kulkarni H, Narula J, Sengupta PP. Phenotypic Clustering of Left Ventricular Diastolic Function Parameters: Patterns and Prognostic Relevance. JACC Cardiovasc Imaging. 2019;12(7 Pt 1):1149-1161 DOI:10.1016/j.jcmg.2018.02.005. PubMed PMID: 29680357.
54. Omar AMS, Narula S, Abdel Rahman MA, et al. Precision Phenotyping in Heart Failure and Pattern Clustering of Ultrasound Data for the Assessment of Diastolic Dysfunction. JACC Cardiovasc Imaging.2017;10(11):1291-1303 DOI:10.1016/j.jcmg.2016.10.012. PubMed PMID: 28109936.
55. Salem Omar AM, Shameer K, Narula S, et al. Artificial Intelligence-Based Assessment of Left Ventricular Filling Pressures From 2-Dimensional Cardiac Ultrasound Images. JACC Cardiovasc Imaging.2018;11(3):509-510 DOI:10.1016/j.jcmg.2017.05.003. PubMed PMID: 28734920.
56. Tabassian M, Sunderji I, Erdei T, et al. Diagnosis of Heart Failure With Preserved Ejection Fraction: Machine Learning of Spatiotemporal Variations in Left Ventricular Deformation. J Am Soc Echocardiogr. 2018;31(12):1272-1284.e1279 DOI:10.1016/j.echo.2018.07.013. PubMed PMID: 30146187.
57. Sanchez-Martinez S, Duchateau N, Erdei T, et al. Machine Learning Analysis of Left Ventricular Function to Characterize Heart Failure With Preserved Ejection Fraction. Circ Cardiovasc Imaging.2018;11(4):e007138 DOI:10.1161/circimaging.117.007138. PubMed PMID: 29661795.
Figure 1 Temporal Evolution of Myocardial Mechanics
*modified from Bianco et al. J Am Coll Cardiol Img 2020;13:258–71
LV = left ventricular, LA = left atrial, RV = right ventricular
Figure 2 Parameters of Myocardial Mechanics in HFpEF
A. Impairment of left ventricular global longitudinal strain and mechanical dispersion are common HFpEF mechanical changes. B. Reductions in left atrial reservoir, conduit, and contractile function commonly encountered in symptomatic HFpEF. C. HFpEF associated impairment of right ventricular free wall and four chamber deformation. D. Despite normal or near normal tissue Doppler-derived parameters of diastolic function, significant deteriorations of mechanical deformation may exist. GSL_Endo_Peak_Avg = Peak endocardial global longitudinal strain average, LASr_ED = Left atrial reservoir strain at end-diastole, LAScd_ED = Left atrial conduit strain at end-diastole, LAct_ED = Left atrial contractile strain at end-diastole, RVFWSL = Right ventricular free wall longitudinal strain, RV4CSL = Right ventricular 4 chamber longitudinal strain
Figure 3 Temporal Evolution of Left Atrial Failure
Preclinical dysfunction is associated with a reduction in reservoir and conduit function, while relative contractile function remains normal or increased. Atrial contractile failure, along with further reductions in reservoir and conduit function, are associated with symptom onset. Advanced symptomatic HFpEF is characterized by an eventual decrement in all 3 atrial strain phases.
Figure 4 Clustering Dendrograms for Conventional Variables and Their STE Correspondents
*reprinted with permission from 54 Omar et al J Am Coll Cardiol Img.2017:10(11):1291-1303
Clustering dendrograms using STE and conventional variables together. The dissimilarity matrix is given as a heat map of Euclidean distance (red). The AU (red numbers) and BP (green numbers) were calculated. AU values are shown only for leaflets that had an AU>95% (considered statistically significant). Significant proximity of variables in the clustering leaflets were decided using 2D-LAVmax, E/e’, A-wave velocity, and a’ velocity were shown to be in perfect proximity with their STE counterparts STE-LAV max, VR-E/SR-EAV, VR-AAV, and SR-AAV, respectively (AU = 97%, 96%, 98%, and 100%, respectively). The conventional parameters e’/a’ and E/A were also in significant proximity to their STE counterparts SR-E/SR-AAV and VR-E/VR-AAV, respectively (AU = 98%) and also between e’ and s’ and their STE counterparts SR-EAV and SR-SAV, respectively (AU = 100%). STE = speckle tracking echocardiogram, E = pulsed Doppler derived mitral flow early diastolic velocity; E’ = tissue Doppler derived mitral annular early diastolic velocity; E/A = Doppler derived mitral flow early to late diastolic velocity ratio; E/e’ = ratio of Doppler derived mitral flow early diastolic velocity to tissue Doppler derived mitral annular early diastolic velocity; LAV = left atrial maximum volume; AU = approximately unbiased probability; 2D = 2-dimensional; VR-E = rate of volume expansion at early diastole, SR-AAV = peak atrioventricular strain rate during atrial contraction; SR-EAV = early diastolic peak atrioventricular strain rate; SRE/SRAAV = ratio between atrioventricular strain rate at early diastole and during atrial contraction; TLVd = total left heart volume during ventricular diastole; TLVs = total left heart volume during ventricular systole; VR-AAV = peak atrioventricular volume expansion rate at left atrial contraction; VR-EAV = early diastolic peak atrioventricular volume expansion rate; VRE/SREAV = ratio between atrioventricular volume expansion rate and strain rate at early diastole; VRE-VRAAV = ratio between atrioventricular volume expansion rate at early diastole and during atrial contraction.
Figure 1 Temporal Evolution of Myocardial Mechanics