References
Alpkvist, E., & Klapper, I. (2007). Description of mechanical response including detachment using a novel particle model of biofilm/flow interaction. Water Science and Technology , 55 (8–9), 265–273.
Alpkvist, E., Picioreanu, C., van Loosdrecht, M. C. M., & Heyden, A. (2006). Three‐dimensional biofilm model with individual cells and continuum EPS matrix. Biotechnology and Bioengineering ,94 (5), 961–979.
Areias, P., & Matouš, K. (2008). Finite element formulation for modeling nonlinear viscoelastic elastomers. Computer Methods in Applied Mechanics and Engineering , 197 (51–52), 4702–4717.
Aybar, M., Perez-Calleja, P., Li, M., Pavissich, J. P., & Nerenberg, R. (2019). Predation creates unique void layer in membrane-aerated biofilms. Water Research , 149 , 232–242. https://doi.org/https://doi.org/10.1016/j.watres.2018.10.084
Bai, F., He, X., Yang, X., Zhou, R., & Wang, C. (2017). Three dimensional phase-field investigation of droplet formation in microfluidic flow focusing devices with experimental validation.International Journal of Multiphase Flow , 93 , 130–141.
Blauert, F., Horn, H., & Wagner, M. (2015). Time‐resolved biofilm deformation measurements using optical coherence tomography.Biotechnology and Bioengineering , 112 (9), 1893–1905.
Böl, M., Ehret, A. E., Bolea Albero, A., Hellriegel, J., & Krull, R. (2012). Recent advances in mechanical characterisation of biofilm and their significance for material modelling. Critical Reviews in Biotechnology , 8551 (August 2015), 1–27. https://doi.org/10.3109/07388551.2012.679250
Chen, A. Y., Deng, Z., Billings, A. N., Seker, U. O. S., Lu, M. Y., Citorik, R. J., … Lu, T. K. (2014). Synthesis and patterning of tunable multiscale materials with engineered cells. Nature Materials , 13 (5), 515.
Craven, T. J., Rees, J. M., & Zimmerman, W. B. (2006). Stabilised finite element modelling of oldroyd-B viscoelastic flows. InCOMSOL Conference .
Desmond, P., Best, J. P., Morgenroth, E., & Derlon, N. (2018). Linking composition of extracellular polymeric substances (EPS) to the physical structure and hydraulic resistance of membrane biofilms. Water Research , 132 , 211–221.
Draget, K. I., Ostgaard, K., & Smidsrod, O. (1991). Homogeneous Alginate Gels : A Technical Approach, 14 , 159–178.
Dupin, H. J., Kitanidis, P. K., & McCarty, P. L. (2001). Pore‐scale modeling of biological clogging due to aggregate expansion: A material mechanics approach. Water Resources Research , 37 (12), 2965–2979.
Eberl, C., Thompson, R., Gianola, D., Sharpe Jr, W., & Hemker, K. (2006). Digital image correlation and tracking. MatLabCentral, Mathworks File Exchange Server, FileID , 12413 .
Ehret, A. E., & Böl, M. (2013). Modelling mechanical characteristics of microbial biofilms by network theory. Journal of The Royal Society Interface , 10 (78), 20120676.
Flemming, H.-C., & Wingender, J. (2010). The biofilm matrix.Nature Reviews. Microbiology , 8 (9), 623–633. https://doi.org/10.1038/nrmicro2415
Galy, O., Latour-Lambert, P., Zrelli, K., Ghigo, J. M., Beloin, C., & Henry, N. (2012). Mapping of bacterial biofilm local mechanics by magnetic microparticle actuation. Biophysical Journal ,103 (6), 1400–1408. https://doi.org/10.1016/j.bpj.2012.07.001
Gao, L.-T., Feng, X.-Q., & Gao, H. (2009). A phase field method for simulating morphological evolution of vesicles in electric fields.Journal of Computational Physics , 228 (11), 4162–4181.
Gloag, E. S., Fabbri, S., Wozniak, D. J., & Stoodley, P. (2019). Biofilm mechanics: implications in infection and survival.Biofilm , 100017.
Hall-Stoodley, L., Costerton, J. W., & Stoodley, P. (2004). Bacterial biofilms: from the natural environment to infectious diseases.Nature Reviews Microbiology , 2 (February), 95–108. https://doi.org/10.1038/nrmicro821
Han, G., Han, Z., Luo, A. A., & Liu, B. (2015). Three-Dimensional Phase-Field Simulation and Experimental Validation of β-Mg 17 Al 12 Phase Precipitation in Mg-Al-Based Alloys. Metallurgical and Materials Transactions A , 46 (2), 948–962.
Hughes, T. J. R. (2012). The finite element method: linear static and dynamic finite element analysis . Courier Corporation.
Jafari, M., Desmond, P., van Loosdrecht, M. C. M., Derlon, N., Morgenroth, E., & Picioreanu, C. (2018). Effect of biofilm structural deformation on hydraulic resistance during ultrafiltration: A numerical and experimental study. Water Research , 145 , 375–387.
Jones, W. L., Sutton, M. P., McKittrick, L., & Stewart, P. S. (2011). Chemical and antimicrobial treatments change the viscoelastic properties of bacterial biofilms. Biofouling , 27 (2), 207–215. https://doi.org/10.1080/08927014.2011.554977
Kim, J. (2012). Phase-Field Models for Multi-Component Fluid Flows,12 (3), 613–661. https://doi.org/10.4208/cicp.301110.040811a
Klapper, I., Rupp, C. J., Cargo, R., Purvedorj, B., & Stoodley, P. (2002). Viscoelastic fluid description of bacterial biofilm material properties. Biotechnology and Bioengineering , 80 (3), 289–296. https://doi.org/10.1002/bit.10376
Klapper, Isaac, & Dockery, J. (2010). Mathematical description of microbial biofilms. SIAM Review , 52 (2), 221–265.
Laspidou, C S, Rittmann, B. E., & Karamanos, S. A. (2005). Finite element modeling to expand the UMCCA model to describe biofilm mechanical behavior. Water Science and Technology , 52 (7), 161–166.
Laspidou, Chrysi S, & Rittmann, B. E. (2004). Modeling the development of biofilm density including active bacteria, inert biomass, and extracellular polymeric substances. Water Research ,38 (14), 3349–3361.
Liou, H.-C., Sabba, F., Packman, A. I., Wells, G., & Balogun, O. (2019). Nondestructive characterization of soft materials and biofilms by measurement of guided elastic wave propagation using optical coherence elastography. Soft Matter , 15 (4), 575–586.
Mokbel, D., Abels, H., & Aland, S. (2018). A phase-field model for fluid–structure interaction. Journal of Computational Physics ,372 , 823–840.
Nguyen, T. T., Yvonnet, J., Bornert, M., Chateau, C., Sab, K., Romani, R., & Le Roy, R. (2016). On the choice of parameters in the phase field method for simulating crack initiation with experimental validation.International Journal of Fracture , 197 (2), 213–226.
Paul, E., Ochoa, J. C., Pechaud, Y., Liu, Y., & Liné, A. (2012). Effect of shear stress and growth conditions on detachment and physical properties of biofilms. Water Research , 46 (17), 5499–5508.
Pavissich, J., Li, M., & Nerenberg, R. (2020). Spatial heterogeneity of mechanical properties of Pseudomonas aeruginosa biofilms, and its impacts on biofilm deformation. Manuscript Submitted for Publication .
Pawar, S. N., & Edgar, K. J. (2012). Biomaterials Alginate derivatization : A review of chemistry , properties and applications.Biomaterials , 33 (11), 3279–3305. https://doi.org/10.1016/j.biomaterials.2012.01.007
Peterson, B. W., van der Mei, H. C., Sjollema, J., Busscher, H. J., & Sharma, P. K. (2013). A Distinguishable Role of eDNA in the Viscoelastic Relaxation of. MBio , 4 (5), 1–7. https://doi.org/10.1128/mBio.00497-13.Invited
Pham, K. H., Ravi-Chandar, K., & Landis, C. M. (2017). Experimental validation of a phase-field model for fracture. International Journal of Fracture , 205 (1), 83–101.
Picioreanu, C., Blauert, F., Horn, H., & Wagner, M. (2018). Determination of mechanical properties of biofilms by modelling the deformation measured using optical coherence tomography. Water Research , 145 , 588–598.
Picioreanu, C., Van Loosdrecht, M. C. M., & Heijnen, J. J. (2001). Two-dimensional model of biofilm detachment caused by internal stress from liquid flow. Biotechnology & Bioengineering , 72 (2), 205–218.
Purevdorj, B., Costerton, J. W., & Stoodley, P. (2002). Influence of hydrodynamics and cell signaling on the structure and behavior of Pseudomonas aeruginosa biofilms. Appl. Environ. Microbiol. ,68 (9), 4457–4464.
Radu, A. I., Vrouwenvelder, J. S., Van Loosdrecht, M. C. M., & Picioreanu, C. (2010). Modeling the effect of biofilm formation on reverse osmosis performance: flux, feed channel pressure drop and solute passage. Journal of Membrane Science , 365 (1–2), 1–15.
Rajagopal, M. C., & Das, S. K. (2016). Analyses of drag on viscoelastic liquid infused bio-inspired patterned surfaces. Journal of Non-Newtonian Fluid Mechanics , 228 , 17–30.
Rubenstein, D., Yin, W., & Frame, M. D. (2015). Biofluid mechanics: an introduction to fluid mechanics, macrocirculation, and microcirculation . Academic Press.
Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., … Schmid, B. (2012). Fiji: an open-source platform for biological-image analysis. Nature Methods ,9 (7), 676.
Shaheen, M., Scott, C., & Ashbolt, N. J. (2019). Long-term persistence of infectious Legionella with free-living amoebae in drinking water biofilms. International Journal of Hygiene and Environmental Health , 222 (4), 678–686.
Shaw, T., Winston, M., Rupp, C. J., Klapper, I., & Stoodley, P. (2004). Commonality of elastic relaxation times in biofilms. Physical Review Letters , 93 (9), 98102.
Shen, Y., Monroy, G. L., Derlon, N., Janjaroen, D., Huang, C., Morgenroth, E., … Nguyen, T. H. (2015). Role of biofilm roughness and hydrodynamic conditions in Legionella pneumophila adhesion to and detachment from simulated drinking water biofilms. Environmental Science & Technology , 49 (7), 4274–4282.
Simões, M., Simões, L. C., & Vieira, M. J. (2009). Species association increases biofilm resistance to chemical and mechanical treatments.Water Research , 43 (1), 229–237. https://doi.org/10.1016/j.watres.2008.10.010
Stewart, P. S. (1993). A model of biofilm detachment.Biotechnology and Bioengineering , 41 (1), 111–117.
Stoodley, P, Cargo, R., Rupp, C. J., Wilson, S., & Klapper, I. (2002). Biofilm material properties as related to shear-induced deformation and detachment phenomena. Journal of Industrial Microbiology and Biotechnology , 29 (6), 361–367. https://doi.org/10.1038/sj.jim.7000282
Stoodley, Paul, Lewandowski, Z., Boyle, J. D., & Lappin‐Scott, H. M. (1999). Structural deformation of bacterial biofilms caused by short‐term fluctuations in fluid shear: An in situ investigation of biofilm rheology. Biotechnology and Bioengineering , 65 (1), 83–92.
Sutherland, I. W. (2001). Biofilm exopolysaccharides: A strong and sticky framework. Microbiology , 147 (1), 3–9. https://doi.org/10.1099/00221287-147-1-3
Taherzadeh, D., Picioreanu, C., Küttler, U., Simone, A., Wall, W. A., & Horn, H. (2010). Computational study of the drag and oscillatory movement of biofilm streamers in fast flows. Biotechnology and Bioengineering , 105 (3), 600–610. https://doi.org/10.1002/bit.22551
Tallawi, M., Opitz, M., & Lieleg, O. (2017). Modulation of the mechanical properties of bacterial biofilms in response to environmental challenges. Biomater. Sci. https://doi.org/10.1039/C6BM00832A
Tierra, G., Pavissich, J. P., Nerenberg, R., Xu, Z., & Alber, M. S. (2015). Multicomponent model of deformation and detachment of a biofilm under fluid flow. Journal of The Royal Society Interface ,12 (106), 20150045.
Towler, B. W., Cunningham, A., Stoodley, P., & McKittrick, L. (2007). A model of fluid–biofilm interaction using a Burger material law.Biotechnology and Bioengineering , 96 (2), 259–271.
Towler, B. W., Rupp, C. J., Cunningham, A. L. B., & Stoodley, P. (2003). Viscoelastic properties of a mixed culture biofilm from rheometer creep analysis. Biofouling , 19 (5), 279–285.
Wen, Y. H., Wang, Y., Bendersky, L. A., & Chen, L.-Q. (2000). Microstructural evolution during the α2→ α2+ o transformation in Ti–Al–Nb alloys: phase-field simulation and experimental validation.Acta Materialia , 48 (16), 4125–4135.
Wéry, N., Bru-Adan, V., Minervini, C., Delgénes, J.-P., Garrelly, L., & Godon, J.-J. (2008). Dynamics of Legionella spp. and bacterial populations during the proliferation of L. pneumophila in a cooling tower facility. Appl. Environ. Microbiol. , 74 (10), 3030–3037.
Xavier, J. B., Picioreanu, C., Abdul Rani, S., van Loosdrecht, M. C. M., & Stewart, P. S. (2005). Biofilm-control strategies based on enzymic disruption of the extracellular polymeric substance matrix - A modelling study. Microbiology , 151 (12), 3817–3832. https://doi.org/10.1099/mic.0.28165-0
Xavier, J. de B., Picioreanu, C., & van Loosdrecht, M. C. M. (2005). A general description of detachment for multidimensional modelling of biofilms. Biotechnology and Bioengineering , 91 (6), 651–669.
Yue, P., Zhou, C., Feng, J. J., & Hu, H. H. (2006). Phase-field simulations of interfacial dynamics in viscoelastic fluids using finite elements with adaptive meshing, 219 , 47–67. https://doi.org/10.1016/j.jcp.2006.03.016
Zhang, T., Cogan, N. G., & Wang, Q. (2008a). Phase field models for biofilms. I. Theory and one-dimensional simulations. SIAM Journal on Applied Mathematics , 69 (3), 641–669.
Zhang, T., Cogan, N., & Wang, Q. (2008b). Phase field models for biofilms. II. 2-D numerical simulations of biofilm-flow interaction.Commun. Comput. Phys , 4 (1), 72–101.
Zhang, Y., Wang, H., & Tang, T. (2010). Simulating two-phase viscoelastic flows using moving finite element methods.Communications in Computational Physics , 7 (2), 333.
Zhao, J., Shen, Y., Haapasalo, M., Wang, Z., & Wang, Q. (2016). A 3D numerical study of antimicrobial persistence in heterogeneous multi-species biofilms. Journal of Theoretical Biology ,392 , 83–98.
Zheng, X., & Karniadakis, G. E. (2016). A phase-field/ALE method for simulating fluid–structure interactions in two-phase flow.Computer Methods in Applied Mechanics and Engineering ,309 , 19–40.
Table 1. Parameters used in the model