References
Alpkvist, E., & Klapper, I. (2007). Description of mechanical response
including detachment using a novel particle model of biofilm/flow
interaction. Water Science and Technology , 55 (8–9),
265–273.
Alpkvist, E., Picioreanu, C., van Loosdrecht, M. C. M., & Heyden, A.
(2006). Three‐dimensional biofilm model with individual cells and
continuum EPS matrix. Biotechnology and Bioengineering ,94 (5), 961–979.
Areias, P., & Matouš, K. (2008). Finite element formulation for
modeling nonlinear viscoelastic elastomers. Computer Methods in
Applied Mechanics and Engineering , 197 (51–52), 4702–4717.
Aybar, M., Perez-Calleja, P., Li, M., Pavissich, J. P., & Nerenberg, R.
(2019). Predation creates unique void layer in membrane-aerated
biofilms. Water Research , 149 , 232–242.
https://doi.org/https://doi.org/10.1016/j.watres.2018.10.084
Bai, F., He, X., Yang, X., Zhou, R., & Wang, C. (2017). Three
dimensional phase-field investigation of droplet formation in
microfluidic flow focusing devices with experimental validation.International Journal of Multiphase Flow , 93 , 130–141.
Blauert, F., Horn, H., & Wagner, M. (2015). Time‐resolved biofilm
deformation measurements using optical coherence tomography.Biotechnology and Bioengineering , 112 (9), 1893–1905.
Böl, M., Ehret, A. E., Bolea Albero, A., Hellriegel, J., & Krull, R.
(2012). Recent advances in mechanical characterisation of biofilm and
their significance for material modelling. Critical Reviews in
Biotechnology , 8551 (August 2015), 1–27.
https://doi.org/10.3109/07388551.2012.679250
Chen, A. Y., Deng, Z., Billings, A. N., Seker, U. O. S., Lu, M. Y.,
Citorik, R. J., … Lu, T. K. (2014). Synthesis and patterning of
tunable multiscale materials with engineered cells. Nature
Materials , 13 (5), 515.
Craven, T. J., Rees, J. M., & Zimmerman, W. B. (2006). Stabilised
finite element modelling of oldroyd-B viscoelastic flows. InCOMSOL Conference .
Desmond, P., Best, J. P., Morgenroth, E., & Derlon, N. (2018). Linking
composition of extracellular polymeric substances (EPS) to the physical
structure and hydraulic resistance of membrane biofilms. Water
Research , 132 , 211–221.
Draget, K. I., Ostgaard, K., & Smidsrod, O. (1991). Homogeneous
Alginate Gels : A Technical Approach, 14 , 159–178.
Dupin, H. J., Kitanidis, P. K., & McCarty, P. L. (2001). Pore‐scale
modeling of biological clogging due to aggregate expansion: A material
mechanics approach. Water Resources Research , 37 (12),
2965–2979.
Eberl, C., Thompson, R., Gianola, D., Sharpe Jr, W., & Hemker, K.
(2006). Digital image correlation and tracking. MatLabCentral,
Mathworks File Exchange Server, FileID , 12413 .
Ehret, A. E., & Böl, M. (2013). Modelling mechanical characteristics of
microbial biofilms by network theory. Journal of The Royal Society
Interface , 10 (78), 20120676.
Flemming, H.-C., & Wingender, J. (2010). The biofilm matrix.Nature Reviews. Microbiology , 8 (9), 623–633.
https://doi.org/10.1038/nrmicro2415
Galy, O., Latour-Lambert, P., Zrelli, K., Ghigo, J. M., Beloin, C., &
Henry, N. (2012). Mapping of bacterial biofilm local mechanics by
magnetic microparticle actuation. Biophysical Journal ,103 (6), 1400–1408. https://doi.org/10.1016/j.bpj.2012.07.001
Gao, L.-T., Feng, X.-Q., & Gao, H. (2009). A phase field method for
simulating morphological evolution of vesicles in electric fields.Journal of Computational Physics , 228 (11), 4162–4181.
Gloag, E. S., Fabbri, S., Wozniak, D. J., & Stoodley, P. (2019).
Biofilm mechanics: implications in infection and survival.Biofilm , 100017.
Hall-Stoodley, L., Costerton, J. W., & Stoodley, P. (2004). Bacterial
biofilms: from the natural environment to infectious diseases.Nature Reviews Microbiology , 2 (February), 95–108.
https://doi.org/10.1038/nrmicro821
Han, G., Han, Z., Luo, A. A., & Liu, B. (2015). Three-Dimensional
Phase-Field Simulation and Experimental Validation of β-Mg 17 Al 12
Phase Precipitation in Mg-Al-Based Alloys. Metallurgical and
Materials Transactions A , 46 (2), 948–962.
Hughes, T. J. R. (2012). The finite element method: linear static
and dynamic finite element analysis . Courier Corporation.
Jafari, M., Desmond, P., van Loosdrecht, M. C. M., Derlon, N.,
Morgenroth, E., & Picioreanu, C. (2018). Effect of biofilm structural
deformation on hydraulic resistance during ultrafiltration: A numerical
and experimental study. Water Research , 145 , 375–387.
Jones, W. L., Sutton, M. P., McKittrick, L., & Stewart, P. S. (2011).
Chemical and antimicrobial treatments change the viscoelastic properties
of bacterial biofilms. Biofouling , 27 (2), 207–215.
https://doi.org/10.1080/08927014.2011.554977
Kim, J. (2012). Phase-Field Models for Multi-Component Fluid Flows,12 (3), 613–661. https://doi.org/10.4208/cicp.301110.040811a
Klapper, I., Rupp, C. J., Cargo, R., Purvedorj, B., & Stoodley, P.
(2002). Viscoelastic fluid description of bacterial biofilm material
properties. Biotechnology and Bioengineering , 80 (3),
289–296. https://doi.org/10.1002/bit.10376
Klapper, Isaac, & Dockery, J. (2010). Mathematical description of
microbial biofilms. SIAM Review , 52 (2), 221–265.
Laspidou, C S, Rittmann, B. E., & Karamanos, S. A. (2005). Finite
element modeling to expand the UMCCA model to describe biofilm
mechanical behavior. Water Science and Technology , 52 (7),
161–166.
Laspidou, Chrysi S, & Rittmann, B. E. (2004). Modeling the development
of biofilm density including active bacteria, inert biomass, and
extracellular polymeric substances. Water Research ,38 (14), 3349–3361.
Liou, H.-C., Sabba, F., Packman, A. I., Wells, G., & Balogun, O.
(2019). Nondestructive characterization of soft materials and biofilms
by measurement of guided elastic wave propagation using optical
coherence elastography. Soft Matter , 15 (4), 575–586.
Mokbel, D., Abels, H., & Aland, S. (2018). A phase-field model for
fluid–structure interaction. Journal of Computational Physics ,372 , 823–840.
Nguyen, T. T., Yvonnet, J., Bornert, M., Chateau, C., Sab, K., Romani,
R., & Le Roy, R. (2016). On the choice of parameters in the phase field
method for simulating crack initiation with experimental validation.International Journal of Fracture , 197 (2), 213–226.
Paul, E., Ochoa, J. C., Pechaud, Y., Liu, Y., & Liné, A. (2012). Effect
of shear stress and growth conditions on detachment and physical
properties of biofilms. Water Research , 46 (17),
5499–5508.
Pavissich, J., Li, M., & Nerenberg, R. (2020). Spatial heterogeneity of
mechanical properties of Pseudomonas aeruginosa biofilms, and its
impacts on biofilm deformation. Manuscript Submitted for
Publication .
Pawar, S. N., & Edgar, K. J. (2012). Biomaterials Alginate
derivatization : A review of chemistry , properties and applications.Biomaterials , 33 (11), 3279–3305.
https://doi.org/10.1016/j.biomaterials.2012.01.007
Peterson, B. W., van der Mei, H. C., Sjollema, J., Busscher, H. J., &
Sharma, P. K. (2013). A Distinguishable Role of eDNA in the Viscoelastic
Relaxation of. MBio , 4 (5), 1–7.
https://doi.org/10.1128/mBio.00497-13.Invited
Pham, K. H., Ravi-Chandar, K., & Landis, C. M. (2017). Experimental
validation of a phase-field model for fracture. International
Journal of Fracture , 205 (1), 83–101.
Picioreanu, C., Blauert, F., Horn, H., & Wagner, M. (2018).
Determination of mechanical properties of biofilms by modelling the
deformation measured using optical coherence tomography. Water
Research , 145 , 588–598.
Picioreanu, C., Van Loosdrecht, M. C. M., & Heijnen, J. J. (2001).
Two-dimensional model of biofilm detachment caused by internal stress
from liquid flow. Biotechnology & Bioengineering , 72 (2),
205–218.
Purevdorj, B., Costerton, J. W., & Stoodley, P. (2002). Influence of
hydrodynamics and cell signaling on the structure and behavior of
Pseudomonas aeruginosa biofilms. Appl. Environ. Microbiol. ,68 (9), 4457–4464.
Radu, A. I., Vrouwenvelder, J. S., Van Loosdrecht, M. C. M., &
Picioreanu, C. (2010). Modeling the effect of biofilm formation on
reverse osmosis performance: flux, feed channel pressure drop and solute
passage. Journal of Membrane Science , 365 (1–2), 1–15.
Rajagopal, M. C., & Das, S. K. (2016). Analyses of drag on viscoelastic
liquid infused bio-inspired patterned surfaces. Journal of
Non-Newtonian Fluid Mechanics , 228 , 17–30.
Rubenstein, D., Yin, W., & Frame, M. D. (2015). Biofluid
mechanics: an introduction to fluid mechanics, macrocirculation, and
microcirculation . Academic Press.
Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair,
M., Pietzsch, T., … Schmid, B. (2012). Fiji: an open-source
platform for biological-image analysis. Nature Methods ,9 (7), 676.
Shaheen, M., Scott, C., & Ashbolt, N. J. (2019). Long-term persistence
of infectious Legionella with free-living amoebae in drinking water
biofilms. International Journal of Hygiene and Environmental
Health , 222 (4), 678–686.
Shaw, T., Winston, M., Rupp, C. J., Klapper, I., & Stoodley, P. (2004).
Commonality of elastic relaxation times in biofilms. Physical
Review Letters , 93 (9), 98102.
Shen, Y., Monroy, G. L., Derlon, N., Janjaroen, D., Huang, C.,
Morgenroth, E., … Nguyen, T. H. (2015). Role of biofilm roughness
and hydrodynamic conditions in Legionella pneumophila adhesion to and
detachment from simulated drinking water biofilms. Environmental
Science & Technology , 49 (7), 4274–4282.
Simões, M., Simões, L. C., & Vieira, M. J. (2009). Species association
increases biofilm resistance to chemical and mechanical treatments.Water Research , 43 (1), 229–237.
https://doi.org/10.1016/j.watres.2008.10.010
Stewart, P. S. (1993). A model of biofilm detachment.Biotechnology and Bioengineering , 41 (1), 111–117.
Stoodley, P, Cargo, R., Rupp, C. J., Wilson, S., & Klapper, I. (2002).
Biofilm material properties as related to shear-induced deformation and
detachment phenomena. Journal of Industrial Microbiology and
Biotechnology , 29 (6), 361–367.
https://doi.org/10.1038/sj.jim.7000282
Stoodley, Paul, Lewandowski, Z., Boyle, J. D., & Lappin‐Scott, H. M.
(1999). Structural deformation of bacterial biofilms caused by
short‐term fluctuations in fluid shear: An in situ investigation of
biofilm rheology. Biotechnology and Bioengineering , 65 (1),
83–92.
Sutherland, I. W. (2001). Biofilm exopolysaccharides: A strong and
sticky framework. Microbiology , 147 (1), 3–9.
https://doi.org/10.1099/00221287-147-1-3
Taherzadeh, D., Picioreanu, C., Küttler, U., Simone, A., Wall, W. A., &
Horn, H. (2010). Computational study of the drag and oscillatory
movement of biofilm streamers in fast flows. Biotechnology and
Bioengineering , 105 (3), 600–610.
https://doi.org/10.1002/bit.22551
Tallawi, M., Opitz, M., & Lieleg, O. (2017). Modulation of the
mechanical properties of bacterial biofilms in response to environmental
challenges. Biomater. Sci. https://doi.org/10.1039/C6BM00832A
Tierra, G., Pavissich, J. P., Nerenberg, R., Xu, Z., & Alber, M. S.
(2015). Multicomponent model of deformation and detachment of a biofilm
under fluid flow. Journal of The Royal Society Interface ,12 (106), 20150045.
Towler, B. W., Cunningham, A., Stoodley, P., & McKittrick, L. (2007). A
model of fluid–biofilm interaction using a Burger material law.Biotechnology and Bioengineering , 96 (2), 259–271.
Towler, B. W., Rupp, C. J., Cunningham, A. L. B., & Stoodley, P.
(2003). Viscoelastic properties of a mixed culture biofilm from
rheometer creep analysis. Biofouling , 19 (5), 279–285.
Wen, Y. H., Wang, Y., Bendersky, L. A., & Chen, L.-Q. (2000).
Microstructural evolution during the α2→ α2+ o transformation in
Ti–Al–Nb alloys: phase-field simulation and experimental validation.Acta Materialia , 48 (16), 4125–4135.
Wéry, N., Bru-Adan, V., Minervini, C., Delgénes, J.-P., Garrelly, L., &
Godon, J.-J. (2008). Dynamics of Legionella spp. and bacterial
populations during the proliferation of L. pneumophila in a cooling
tower facility. Appl. Environ. Microbiol. , 74 (10),
3030–3037.
Xavier, J. B., Picioreanu, C., Abdul Rani, S., van Loosdrecht, M. C. M.,
& Stewart, P. S. (2005). Biofilm-control strategies based on enzymic
disruption of the extracellular polymeric substance matrix - A modelling
study. Microbiology , 151 (12), 3817–3832.
https://doi.org/10.1099/mic.0.28165-0
Xavier, J. de B., Picioreanu, C., & van Loosdrecht, M. C. M. (2005). A
general description of detachment for multidimensional modelling of
biofilms. Biotechnology and Bioengineering , 91 (6),
651–669.
Yue, P., Zhou, C., Feng, J. J., & Hu, H. H. (2006). Phase-field
simulations of interfacial dynamics in viscoelastic fluids using finite
elements with adaptive meshing, 219 , 47–67.
https://doi.org/10.1016/j.jcp.2006.03.016
Zhang, T., Cogan, N. G., & Wang, Q. (2008a). Phase field models for
biofilms. I. Theory and one-dimensional simulations. SIAM Journal
on Applied Mathematics , 69 (3), 641–669.
Zhang, T., Cogan, N., & Wang, Q. (2008b). Phase field models for
biofilms. II. 2-D numerical simulations of biofilm-flow interaction.Commun. Comput. Phys , 4 (1), 72–101.
Zhang, Y., Wang, H., & Tang, T. (2010). Simulating two-phase
viscoelastic flows using moving finite element methods.Communications in Computational Physics , 7 (2), 333.
Zhao, J., Shen, Y., Haapasalo, M., Wang, Z., & Wang, Q. (2016). A 3D
numerical study of antimicrobial persistence in heterogeneous
multi-species biofilms. Journal of Theoretical Biology ,392 , 83–98.
Zheng, X., & Karniadakis, G. E. (2016). A phase-field/ALE method for
simulating fluid–structure interactions in two-phase flow.Computer Methods in Applied Mechanics and Engineering ,309 , 19–40.
Table 1. Parameters used in the model