References
1.
Condit, R., Chisholm, R.A. & Hubbell, S.P. (2012). Thirty Years of
Forest Census at Barro Colorado and the Importance of Immigration in
Maintaining Diversity. PLOS ONE , 7, e49826.
2.
Condit, R. & Sukumar, R. (1998). Predicting population trends from size
distributions: a direct test in a tropical tree community.American Naturalist , 152, 495-509.
3.
Coomes, D.A., Duncan, R.P., Allen, R.B. & Truscott, J. (2003).
Disturbances prevent stem size-density distributions in natural forests
from following scaling relationships. Ecology Letters , 6,
980-989.
4.
Enquist, B.J. & Nicklas, K.J. (2001). Invariant scaling relations
across tree-dominated communities. Nature , 410, 655-660.
5.
Enquist, B.J., West, G.B. & Brown, J.H. (2009). Extensions and
evaluations of a general quantitative theory of forest structure and
dynamics. Proceedings of the National Academy of Sciences of the
United States of America , 106, 7046-7051.
6.
Farrior, C.E., Bohlman, S.A., Hubbell, S. & Pacala, S.W. (2016).
Dominance of the suppressed: Power-law size structure in tropical
forests. Science , 351, 155-157.
7.
Hara, T. (1984). A Stochastic Model and the Moment Dynamics of the
Growth and Size Distribution in Plant Populations. Journal of
Theoretical Biology , 109, 173-190.
8.
Kohyama, T. (1991). Simulating stationary size distribution of trees in
rain forests. Annals of Botany , 68, 173-180.
9.
Limpert, E., Stahel, W.A. & Abbt, M. (2001). Log-normal Distributions
across the Sciences: Keys and Clues: On the charms of statistics, and
how mechanical models resembling gambling machines offer a link to a
handy way to characterize log-normal distributions, which can provide
deeper insight into variability and probability—normal or log-normal:
That is the question. BioScience , 51, 341-352.
10.
Moore, J.R., Argles, A.P.K., Zhu, K., Huntingford, C. & Cox, P.M.
(2020). Validation of demographic equilibrium theory against tree-size
distributions and biomass density in Amazonia. Biogeosciences ,
17, 1013-1032.
11.
Muller-Landau, H.C., Condit, R.S., Chave, J., Thomas, S.C., Bohlman,
S.A., Bunyavejchewin, S. et al. (2006a). Testing metabolic
ecology theory for allometric scaling of tree size, growth and mortality
in tropical forests. Ecology Letters , 9, 575-588.
12.
Muller-Landau, H.C., Condit, R.S., Harms, K.E., Marks, C.O., Thomas,
S.C., Bunyavejchewin, S. et al. (2006b). Comparing tropical
forest tree size distributions with the predictions of metabolic ecology
and equilibrium models. Ecol Lett , 9, 589-602.
13.
Perkins, D.M., Perna, A., Adrian, R., Cermeno, P., Gaedke, U.,
Huete-Ortega, M. et al. (2019). Energetic equivalence underpins
the size structure of tree and phytoplankton communities. Nature
communications , 10, 255.
14.
Stegen, J.C. & White, E.P. (2008). On the relationship between mass and
diameter distributions in tree communities. Ecol Lett , 11,
1287-1293.
15.
Von Foerster, H. (1959). Some remarks on changing populations. In: The
Kinetics of Cellular Proliferation (ed. Stohlman, F. Jr). Grune and
Stratton, New York, NY,. 382-407.
16.
West, G.B., Enquist, B.J. & Brown, J.H. (2009). A general quantitative
theory of forest structure and dynamics. Proceedings of the
National Academy of Sciences of the United States of America , 106,
7040-7045.
17.
White, E.P., Enquist, B.J. & Green, J.L. (2008). ON ESTIMATING THE
EXPONENT OF POWER-LAW FREQUENCY DISTRIBUTIONS. Ecology , 89,
905-912.
18.
Zhou, J. & Lin, G. (2018). Will Forest Size Structure Follow the -2
Power-Law Distribution under Ideal Demographic Equilibrium State?J Theor Biol .