References:
Aguilera, T., et al. (2012). Electronic nose based on independent component analysis combined with partial least squares and artificial neural networks for wine prediction. Sensors, 12(6): 8055-8072. doi: org/10.3390/s120608055.
AS, C. P. (2006). ”The Unscrambler Tutorials. On line at: http://www. camo. com/downloads U 9.
Bachinger, T. and C.-F. Mandenius (2000). Searching for process information in the aroma of cell cultures. Trends in biotechnology, 18(12): 494-500.
doi: org/10.1016/s0167-7799(00)01512-2.
Bachinger, T. and C. F. Mandenius (2001). Physiologically motivated monitoring of fermentation processes by means of an electronic nose. Engineering in life sciences, 1(1): 33-42. doi: org/10.1002/1618-2863(200107)1:13.0.CO;2-9.
De Deken, R. (1966). The Crabtree effect: a regulatory system in yeast. Microbiology 44(2): 149-156. doi: org/10.1099/00221287-44-2-149.
Buratti, S. and S. Benedetti (2016). Alcoholic Fermentation Using Electronic Nose and Electronic Tongue. Electronic noses and tongues in food science, Elsevier: 291-299.
Ghosh, S., B. Tudu, N. Bhattacharyya and R. Bandyopadhyay (2017). A recurrent Elman network in conjunction with an electronic nose for fast prediction of optimum fermentation time of black tea. Neural Computing and Applications 31(2): 1165-1171.
doi: org/10.1007/s00521-017-3072-y.
Hidayat, S. N., T. R. Nuringtyas and K. Triyana (2018). Electronic Nose Coupled with Chemometrics for Monitoring of Tempeh Fermentation Process. 2018 4th International Conference on Science and Technology (ICST), IEEE.
doi: org/10.1109/ICSTC.2018.8528580.
Jiang, H., H. Zhang, Q. Chen, C. Mei and G. Liu (2015). Recent advances in electronic nose techniques for monitoring of fermentation process. World Journal of Microbiology and Biotechnology 31(12): 1845-1852. doi: org/10.1007/s11274-015-1940-0.
Kiani, S., et al. (2016). A portable electronic nose as an expert system for aroma-based classification of saffron. Chemometrics and Intelligent Laboratory Systems 156: 148-156. doi: org/10.1016/j.chemolab.2016.05.013.
Lidén, H., C.-F. Mandenius, L. Gorton, N. Q. Meinander, I. Lundström and F. Winquist (1998). On-line monitoring of a cultivation using an electronic nose. Analytica chimica, acta 361(3): 223-231. doi: org/10.1016/S0003-2670(98)00035-X.
Li, G., L. Yuan, X. Wang, Y. Meng, J. Li, Y. Zhao and Y. Peng (2019). Rapid Quantification Analysis of Alcohol During the Green Jujube Wine Fermentation by Electronic Nose. IOP Conference Series: Earth and Environmental Science, IOP Publishing. doi: org/10.1088/1755-1315/330/5/052046.
Lin, B., Recke, B., Knudsen, J. K., & Jørgensen, S. B. (2007). A systematic approach for soft sensor development. Computers and Chemical Engineering 31: 419-425.
doi: org/10.1016/j.compchemeng.2006.05.030.
Madigan, M., K. Bender, D. Buckley, W. Sattley and D. Stahl (2017). Brock Biology of Microorganisms (15 ed.). Pearson, Essex, England.
Mandenius, C. F., et al. (1997). Sensor fusion with on‐line gas emission multisensor arrays and standard process measuring devices in baker’s yeast manufacturing process. Biotechnology and bioengineering, 55(2): 427-438.
doi: org/10.1002/(SICI)1097-0290(19970720)55:2<427::AID-BIT20>3.0.CO;2-C
Omatu, S. and M. Yano (2016). E-nose system by using neural networks. Neurocomputing 172: 394-398. doi: org/10.1016/j.neucom.2015.03.101
Otto. M (1999), Chemometrics: Statistics and Computer Application in Analytical
Chemistry.
Ödman, P., C. L. Johansen, L. Olsson, K. V. Gernaey and A. E. Lantz (2009). On-line estimation of biomass, glucose and ethanol in Saccharomyces cerevisiae cultivations using in-situ multi-wavelength fluorescence and software sensors. Journal of biotechnology, 144(2): 102-112. doi: org/10.1016/j.jbiotec.2009.08.018.
Paquet‐Durand, O., S. Assawarajuwan and B. Hitzmann (2017). Artificial neural network for bioprocess monitoring based on fluorescence measurements: Training without offline measurements. Engineering in Life Sciences 17(8): 874-880.
doi: org/10.1002/elsc.201700044
Paquet-Durand, O., T. Ladner, J. Büchs, B. Hitzmann (2017 a). Calibration of a chemometric model by using a mathematical process model instead of offline measurements in case of a H. polymorpha cultivation. Chemometrics and Intelligent Laboratory System 171: 74-79. doi: org/10.1016/j.chemolab.2017.10.003
Solle, D., D. Geissler, E. Stärk, T. Scheper and B. Hitzmann (2003). Chemometric modelling based on 2D-fluorescence spectra without a calibration measurement. Bioinformatics 19(2): 173-177. doi: 10.1093/bioinformatics/19.2.173.
Spinelle, L., M. Gerboles, G. Kok, S. Persijn and T. Sauerwald (2017). Review of portable and low-cost sensors for the ambient air monitoring of benzene and other volatile organic compounds. Sensors 17(7): 1520. doi: org/10.3390/s17071520.
Tan, C., D. Xie, Y. Liu, W. Peng, X. Li, L. Ai, C. Wu, C. Wen, X. Huang and J. Guo (2018). Identification of different bile species and fermentation times of bile arisaema based on an intelligent electronic nose and least squares support vector machine. Analytical chemistry 90(5): 3460-3466. doi: org/10.1021/acs.analchem.7b05189.
Tan, J., B. Balasubramanian, D. Sukha, S. Ramkissoon and P. Umaharan (2019). Sensing fermentation degree of cocoa (Theobroma cacao L.) beans by machine learning classification models based electronic nose system. Journal of Food Process Engineering 42(6): e13175. doi: org/10.1111/jfpe.13175.
Wang, G.-G., A. H. Gandomi, X.-S. Yang and A. H. Alavi (2014). A novel improved accelerated particle swarm optimization algorithm for global numerical optimization. Engineering Computations. doi: org/10.1108/EC-10-2012-0232.
Wild, R., D. Citterio, J. Spichiger and U. E. Spichiger (1996). Continuous monitoring of ethanol for bioprocess control by a chemical sensor. Journal of biotechnology 50(1): 37-46. doi.org/10.1016/0168-1656(96)01547-7.