References
Abumrad, N.A., el-Maghrabi, M.R., Amri, E.Z., Lopez, E., and Grimaldi,
P.A. (1993). Cloning of a rat adipocyte membrane protein implicated in
binding or transport of long-chain fatty acids that is induced during
preadipocyte differentiation. Homology with human CD36. J. Biol. Chem.
268: 17665–17668.
Abumrad, N.A., and Goldberg, I.J. (2016). CD36 actions in the heart:
Lipids, calcium, inflammation, repair and more? Biochim. Biophys. Acta
1861: 1442–1449.
Abumrad, N.A., and Moore, D.J. (2011). Parkin reinvents itself to
regulate fatty acid metabolism by tagging CD36. J. Clin. Invest. 121:
3389–3392.
Adrian, L., Lenski, M., Tödter, K., Heeren, J., Böhm, M., and Laufs, U.
(2017). AMPK Prevents Palmitic Acid-Induced Apoptosis and Lipid
Accumulation in Cardiomyocytes. Lipids 52: 737–750.
Agita, A., and Alsagaff, M.T. (2017). Inflammation, Immunity, and
Hypertension. Acta Med. Indones. 49: 158–165.
Albert, M.L., Pearce, S.F., Francisco, L.M., Sauter, B., Roy, P.,
Silverstein, R.L., et al. (1998). Immature dendritic cells phagocytose
apoptotic cells via alphavbeta5 and CD36, and cross-present antigens to
cytotoxic T lymphocytes. J. Exp. Med. 188: 1359–1368.
Alonso, N., Moliner, P., and Mauricio, D. (2018). Pathogenesis, Clinical
Features and Treatment of Diabetic Cardiomyopathy. Adv. Exp. Med. Biol.
1067: 197–217.
Angin, Y., Steinbusch, L.K.M., Simons, P.J., Greulich, S., Hoebers,
N.T.H., Douma, K., et al. (2012). CD36 inhibition prevents lipid
accumulation and contractile dysfunction in rat cardiomyocytes. Biochem.
J. 448: 43–53.
Asch, A.S., Liu, I., Briccetti, F.M., Barnwell, J.W., Kwakye-Berko, F.,
Dokun, A., et al. (1993). Analysis of CD36 binding domains: ligand
specificity controlled by dephosphorylation of an ectodomain. Science
262: 1436–1440.
Bessi, V.L., Labbe, S.M., Huynh, D.N., Menard, L., Jossart, C.,
Febbraio, M., et al. (2012). EP 80317, a selective CD36 ligand, shows
cardioprotective effects against post-ischaemic myocardial damage in
mice. Cardiovasc. Res. 96: 99–108.
Bjorkegren, J., Véniant, M., Kim, S.K., Withycombe, S.K., Wood, P.A.,
Hellerstein, M.K., et al. (2001). Lipoprotein secretion and triglyceride
stores in the heart. J. Biol. Chem. 276: 38511–38517.
Broderick, T.L., Cusimano, F.A., Carlson, C., and Babu, J.R. (2018).
Biosynthesis of the Essential Fatty Acid Oxidation Cofactor Carnitine Is
Stimulated in Heart and Liver after a Single Bout of Exercise in Mice.
J. Nutr. Metab. 2018: 2785090.
Carley, A.N., and Severson, D.L. (2008). What are the biochemical
mechanisms responsible for enhanced fatty acid utilization by perfused
hearts from type 2 diabetic db/db mice? Cardiovasc. Drugs Ther. 22:
83–89.
Carpentier, A.C. (2018). Abnormal Myocardial Dietary Fatty Acid
Metabolism and Diabetic Cardiomyopathy. Can. J. Cardiol. 34: 605–614.
Cera, M., Salerno, A., Fragasso, G., Montanaro, C., Gardini, C.,
Marinosci, G., et al. (2010). Beneficial electrophysiological effects of
trimetazidine in patients with postischemic chronic heart failure. J.
Cardiovasc. Pharmacol. Ther. 15: 24–30.
Cheng, W., Wu, P., Du, Y., Wang, Y., Zhou, N., Ge, Y., et al. (2015).
Puerarin improves cardiac function through regulation of energy
metabolism in Streptozotocin-Nicotinamide induced diabetic mice after
myocardial infarction. Biochem. Biophys. Res. Commun. 463: 1108–1114.
Cheng, Y., Liu, G., Pan, Q., Guo, S., and Yang, X. (2011). Elevated
expression of liver X receptor alpha (LXRα) in myocardium of
streptozotocin-induced diabetic rats. Inflammation 34: 698–706.
Chistiakov, D.A., Orekhov, A.N., and Bobryshev, Y. V (2017). The impact
of FOXO-1 to cardiac pathology in diabetes mellitus and diabetes-related
metabolic abnormalities. Int. J. Cardiol. 245: 236–244.
Chu, L.-Y., and Silverstein, R.L. (2012). CD36 ectodomain
phosphorylation blocks thrombospondin-1 binding: structure-function
relationships and regulation by protein kinase C. Arterioscler. Thromb.
Vasc. Biol. 32: 760–767.
Coort, S.L.M., Hasselbaink, D.M., Koonen, D.P.Y., Willems, J., Coumans,
W.A., Chabowski, A., et al. (2004). Enhanced sarcolemmal FAT/CD36
content and triacylglycerol storage in cardiac myocytes from obese
zucker rats. Diabetes 53: 1655–1663.
Cortassa, S., Sollott, S.J., and Aon, M.A. (2017). Mitochondrial
respiration and ROS emission during β-oxidation in the heart: An
experimental-computational study. PLoS Comput. Biol. 13: e1005588.
Couturier, J., Nuotio-Antar, A.M., Agarwal, N., Wilkerson, G.K., Saha,
P., Kulkarni, V., et al. (2019). Lymphocytes upregulate CD36 in adipose
tissue and liver. Adipocyte 8: 154–163.
D’Souza, K., Nzirorera, C., and Kienesberger, P.C. (2016). Lipid
metabolism and signaling in cardiac lipotoxicity. Biochim. Biophys. Acta
1861: 1513–1524.
De, I., and Sadhukhan, S. (2018). Emerging Roles of DHHC-mediated
Protein S-palmitoylation in Physiological and Pathophysiological
Context. Eur. J. Cell Biol. 97: 319–338.
Deloux, R., Vitiello, D., Mougenot, N., Noirez, P., Li, Z., Mericskay,
M., et al. (2017). Voluntary Exercise Improves Cardiac Function and
Prevents Cardiac Remodeling in a Mouse Model of Dilated Cardiomyopathy.
Front. Physiol. 8: 899.
Dobrzyn, P., Pyrkowska, A., Duda, M.K., Bednarski, T., Maczewski, M.,
Langfort, J., et al. (2013). Expression of lipogenic genes is
upregulated in the heart with exercise training-induced but not pressure
overload-induced left ventricular hypertrophy. Am. J. Physiol.
Endocrinol. Metab. 304: E1348-58.
Evans, R.D., and Hauton, D. (2016). The role of triacylglycerol in
cardiac energy provision. Biochim. Biophys. Acta 1861: 1481–1491.
Frank, A.-C., Ebersberger, S., Fink, A.F., Lampe, S., Weigert, A.,
Schmid, T., et al. (2019). Apoptotic tumor cell-derived microRNA-375
uses CD36 to alter the tumor-associated macrophage phenotype. Nat.
Commun. 10: 1135.
Fukushima, A., Milner, K., Gupta, A., and Lopaschuk, G.D. (2015).
Myocardial Energy Substrate Metabolism in Heart Failure : from Pathways
to Therapeutic Targets. Curr. Pharm. Des. 21: 3654–3664.
Garcia-Rua, V., Otero, M.F., Lear, P.V., Rodriguez-Penas, D.,
Feijoo-Bandin, S., Noguera-Moreno, T., et al. (2012). Increased
expression of fatty-acid and calcium metabolism genes in failing human
heart. PLoS One 7: e37505.
Glatz, J.F.C., and Luiken, J.J.F.P. (2017). From fat to FAT
(CD36/SR-B2): Understanding the regulation of cellular fatty acid
uptake. Biochimie 136: 21–26.
Glatz, J.F.C., Nabben, M., Heather, L.C., Bonen, A., and Luiken,
J.J.F.P. (2016). Regulation of the subcellular trafficking of CD36, a
major determinant of cardiac fatty acid utilization. Biochim. Biophys.
Acta 1861: 1461–1471.
Gomez-Diaz, C., Bargeton, B., Abuin, L., Bukar, N., Reina, J.H., Bartoi,
T., et al. (2016). A CD36 ectodomain mediates insect pheromone detection
via a putative tunnelling mechanism. Nat. Commun. 7: 11866.
Greenwalt, D.E., Lipsky, R.H., Ockenhouse, C.F., Ikeda, H., Tandon,
N.N., and Jamieson, G.A. (1992). Membrane glycoprotein CD36: a review of
its roles in adherence, signal transduction, and transfusion medicine.
Blood 80: 1105–1115.
Griffin, E., Re, A., Hamel, N., Fu, C., Bush, H., McCaffrey, T., et al.
(2001). A link between diabetes and atherosclerosis: Glucose regulates
expression of CD36 at the level of translation. Nat. Med. 7: 840–846.
Guthmann, F., Maehl, P., Preiss, J., Kolleck, I., and Rustow, B. (2002).
Ectoprotein kinase-mediated phosphorylation of FAT/CD36 regulates
palmitate uptake by human platelets. Cell. Mol. Life Sci. 59:
1999–2003.
Hatmi, M., Gavaret, J.M., Elalamy, I., Vargaftig, B.B., and Jacquemin,
C. (1996). Evidence for cAMP-dependent platelet ectoprotein kinase
activity that phosphorylates platelet glycoprotein IV (CD36). J. Biol.
Chem. 271: 24776–24780.
He, C., Zhang, G., Ouyang, H., Zhang, P., Chen, Y., Wang, R., et al.
(2019). Effects of β2/aβ2 on oxLDL-induced CD36 activation in THP-1
macrophages. Life Sci. 239: 117000.
Heather, L.C., Pates, K.M., Atherton, H.J., Cole, M.A., Ball, D.R.,
Evans, R.D., et al. (2013). Differential translocation of the fatty acid
transporter, FAT/CD36, and the glucose transporter, GLUT4, coordinates
changes in cardiac substrate metabolism during ischemia and reperfusion.
Circ. Heart Fail. 6: 1058–1066.
Heier, C., and Haemmerle, G. (2016). Fat in the heart: The enzymatic
machinery regulating cardiac triacylglycerol metabolism. Biochim.
Biophys. Acta 1861: 1500–1512.
Ho, M., Hoang, H.L., Lee, K.M., Liu, N., MacRae, T., Montes, L., et al.
(2005). Ectophosphorylation of CD36 regulates cytoadherence of
Plasmodium falciparum to microvascular endothelium under flow
conditions. Infect. Immun. 73: 8179–8187.
Hoosdally, S.J., Andress, E.J., Wooding, C., Martin, C.A., and Linton,
K.J. (2009). The Human Scavenger Receptor CD36: glycosylation status and
its role in trafficking and function. J. Biol. Chem. 284: 16277–16288.
Hou, Y., Wu, M., Wei, J., Ren, Y., Du, C., Wu, H., et al. (2015). CD36
is involved in high glucose-induced epithelial to mesenchymal transition
in renal tubular epithelial cells. Biochem. Biophys. Res. Commun. 468:
281–286.
Huynh, D.N., Bessi, V.L., Menard, L., Piquereau, J., Proulx, C.,
Febbraio, M., et al. (2018). Adiponectin has a pivotal role in the
cardioprotective effect of CP-3(iv), a selective CD36 azapeptide ligand,
after transient coronary artery occlusion in mice. FASEB J. Off. Publ.
Fed. Am. Soc. Exp. Biol. 32: 807–818.
Iemitsu, M., Miyauchi, T., Maeda, S., Sakai, S., Fujii, N., Miyazaki,
H., et al. (2003). Cardiac hypertrophy by hypertension and exercise
training exhibits different gene expression of enzymes in energy
metabolism. Hypertens. Res. 26: 829–837.
Jay, A.G., Chen, A.N., Paz, M.A., Hung, J.P., and Hamilton, J.A. (2015).
CD36 binds oxidized low density lipoprotein (LDL) in a mechanism
dependent upon fatty acid binding. J. Biol. Chem. 290: 4590–4603.
Jelenik, T., Flogel, U., Alvarez-Hernandez, E., Scheiber, D., Zweck, E.,
Ding, Z., et al. (2018). Insulin Resistance and Vulnerability to Cardiac
Ischemia. Diabetes 67: 2695–2702.
Jia, G., DeMarco, V.G., and Sowers, J.R. (2016). Insulin resistance and
hyperinsulinaemia in diabetic cardiomyopathy. Nat. Rev. Endocrinol. 12:
144–153.
Joubert, M., Manrique, A., Cariou, B., and Prieur, X. (2019).
Diabetes-related cardiomyopathy: The sweet story of glucose overload
from epidemiology to cellular pathways. Diabetes Metab. 45: 238–247.
Karam, C.N., Warren, C.M., Henze, M., Banke, N.H., Lewandowski, E.D.,
and Solaro, R.J. (2017). Peroxisome proliferator-activated receptor-α
expression induces alterations in cardiac myofilaments in a
pressure-overload model of hypertrophy. Am. J. Physiol. Heart Circ.
Physiol. 312: H681–H690.
Kim, K.-Y., Stevens, M. V, Akter, M.H., Rusk, S.E., Huang, R.J., Cohen,
A., et al. (2011). Parkin is a lipid-responsive regulator of fat uptake
in mice and mutant human cells. J. Clin. Invest. 121: 3701–3712.
Kim, T.T., and Dyck, J.R.B. (2016). The role of CD36 in the regulation
of myocardial lipid metabolism. Biochim. Biophys. Acta 1861: 1450–1460.
Ladanyi, A., Mukherjee, A., Kenny, H.A., Johnson, A., Mitra, A.K.,
Sundaresan, S., et al. (2018). Adipocyte-induced CD36 expression drives
ovarian cancer progression and metastasis. Oncogene 37: 2285–2301.
Lauzier, B., Merlen, C., Vaillant, F., McDuff, J., Bouchard, B., Beguin,
P.C., et al. (2011). Post-translational modifications, a key process in
CD36 function: lessons from the spontaneously hypertensive rat heart. J.
Mol. Cell. Cardiol. 51: 99–108.
Lee, B.-C., Lin, K.-H., Hu, C.-Y., and Lo, S.-C. (2019).
Thromboelastography characterized CD36 null subjects as slow clot
formation and indicative of hypocoagulability. Thromb. Res. 178: 79–84.
Lee, S., Eguchi, A., Sakamoto, K., Matsumura, S., Tsuzuki, S., Inoue,
K., et al. (2015). A role of CD36 in the perception of an oxidised
phospholipid species in mice. Biomed. Res. 36: 303–311.
Lejay, A., Fang, F., John, R., Van, J.A.D., Barr, M., Thaveau, F., et
al. (2016). Ischemia reperfusion injury, ischemic conditioning and
diabetes mellitus. J. Mol. Cell. Cardiol. 91: 11–22.
Lesnefsky, E.J., Chen, Q., Tandler, B., and Hoppel, C.L. (2017).
Mitochondrial Dysfunction and Myocardial Ischemia-Reperfusion:
Implications for Novel Therapies. Annu. Rev. Pharmacol. Toxicol. 57:
535–565.
Li, H., Fan, J., Zhao, Y., Zhang, X., Dai, B., Zhan, J., et al. (2019).
Nuclear miR-320 Mediates Diabetes-Induced Cardiac Dysfunction by
Activating Transcription of Fatty Acid Metabolic Genes to Cause
Lipotoxicity in the Heart. Circ. Res. 125: 1106–1120.
Lin, J., Wang, T., Li, Y., Wang, M., Li, H., Irwin, M.G., et al. (2016).
N-Acetylcysteine Restores Sevoflurane Postconditioning Cardioprotection
against Myocardial Ischemia-Reperfusion Injury in Diabetic Rats. J.
Diabetes Res. 2016: 9213034.
Liu, J., Yang, P., Zuo, G., He, S., Tan, W., Zhang, X., et al. (2018a).
Long-chain fatty acid activates hepatocytes through CD36 mediated
oxidative stress. Lipids Health Dis. 17: 153.
Liu, Y., Neumann, D., Glatz, J.F.C., and Luiken, J.J.F.P. (2018b).
Molecular mechanism of lipid-induced cardiac insulin resistance and
contractile dysfunction. Prostaglandins. Leukot. Essent. Fatty Acids
136: 131–141.
Luiken, J.J.F.P. (2009). Sarcolemmal fatty acid uptake vs. mitochondrial
beta-oxidation as target to regress cardiac insulin resistance. Appl.
Physiol. Nutr. Metab. = Physiol. Appl. Nutr. Metab. 34: 473–480.
Luiken, J.J.F.P., Chanda, D., Nabben, M., Neumann, D., and Glatz, J.F.C.
(2016). Post-translational modifications of CD36 (SR-B2): Implications
for regulation of myocellular fatty acid uptake. Biochim. Biophys. Acta
1862: 2253–2258.
Luiken, J.J.F.P., Koonen, D.P.Y., Willems, J., Zorzano, A., Becker, C.,
Fischer, Y., et al. (2002). Insulin stimulates long-chain fatty acid
utilization by rat cardiac myocytes through cellular redistribution of
FAT/CD36. Diabetes 51: 3113–3119.
Lynes, M., Narisawa, S., Millan, J.L., and Widmaier, E.P. (2011).
Interactions between CD36 and global intestinal alkaline phosphatase in
mouse small intestine and effects of high-fat diet. Am. J. Physiol.
Regul. Integr. Comp. Physiol. 301: R1738-47.
Madonna, R., Salerni, S., Schiavone, D., Glatz, J.F., Geng, Y.-J., and
Caterina, R. De (2011). Omega-3 fatty acids attenuate constitutive and
insulin-induced CD36 expression through a suppression of PPAR α/γ
activity in microvascular endothelial cells. Thromb. Haemost. 106:
500–510.
Magida, J.A., and Leinwand, L.A. (2014). Metabolic crosstalk between the
heart and liver impacts familial hypertrophic cardiomyopathy. EMBO Mol.
Med. 6: 482–495.
Mansor, L.S., Sousa Fialho, M. da L., Yea, G., Coumans, W.A., West,
J.A., Kerr, M., et al. (2017). Inhibition of sarcolemmal FAT/CD36 by
sulfo-N-succinimidyl oleate rapidly corrects metabolism and restores
function in the diabetic heart following hypoxia/reoxygenation.
Cardiovasc. Res. 113: 737–748.
McDonald, A.G., Tipton, K.F., and Davey, G.P. (2018). A mechanism for
bistability in glycosylation. PLoS Comput. Biol. 14: e1006348.
Meer, D.L.M. van der, Degenhardt, T., Väisänen, S., Groot, P.J. de,
Heinäniemi, M., Vries, S.C. de, et al. (2010). Profiling of promoter
occupancy by PPARalpha in human hepatoma cells via ChIP-chip analysis.
Nucleic Acids Res. 38: 2839–2850.
Meiler, S., Baumer, Y., Huang, Z., Hoffmann, F.W., Fredericks, G.J.,
Rose, A.H., et al. (2013). Selenoprotein K is required for
palmitoylation of CD36 in macrophages: implications in foam cell
formation and atherogenesis. J. Leukoc. Biol. 93: 771–780.
Meo, S. Di, Iossa, S., and Venditti, P. (2017). Skeletal muscle insulin
resistance: role of mitochondria and other ROS sources. J. Endocrinol.
233: R15–R42.
Mitra, N., Sinha, S., Ramya, T.N.C., and Surolia, A. (2006). N-linked
oligosaccharides as outfitters for glycoprotein folding, form and
function. Trends Biochem. Sci. 31: 156–163.
Monaco, C., Whitfield, J., Jain, S.S., Spriet, L.L., Bonen, A., and
Holloway, G.P. (2015). Activation of AMPKα2 Is Not Required for
Mitochondrial FAT/CD36 Accumulation during Exercise. PLoS One 10:
e0126122.
Nagendran, J., Pulinilkunnil, T., Kienesberger, P.C., Sung, M.M., Fung,
D., Febbraio, M., et al. (2013). Cardiomyocyte-specific ablation of CD36
improves post-ischemic functional recovery. J. Mol. Cell. Cardiol. 63:
180–188.
Nakatani, K., Masuda, D., Kobayashi, T., Sairyo, M., Zhu, Y., Okada, T.,
et al. (2019). Pressure Overload Impairs Cardiac Function in Long-Chain
Fatty Acid Transporter CD36-Knockout Mice. Int. Heart J. 60: 159–167.
Neckar, J., Silhavy, J., Zidek, V., Landa, V., Mlejnek, P., Simakova,
M., et al. (2012). CD36 overexpression predisposes to arrhythmias but
reduces infarct size in spontaneously hypertensive rats: gene expression
profile analysis. Physiol. Genomics 44: 173–182.
Oka, S., Zhai, P., Yamamoto, T., Ikeda, Y., Byun, J., Hsu, C.-P., et al.
(2015). Peroxisome Proliferator Activated Receptor-α Association With
Silent Information Regulator 1 Suppresses Cardiac Fatty Acid Metabolism
in the Failing Heart. Circ. Heart Fail. 8: 1123–1132.
Oort, M.M. van, Drost, R., Janbetaen, L., Doorn, J.M. Van, Kerver, J.,
Horst, D.J. Van der, et al. (2014). Each of the four intracellular
cysteines of CD36 is essential for insulin- or AMP-activated protein
kinase-induced CD36 translocation. Arch. Physiol. Biochem. 120: 40–49.
Ouwens, D.M., Diamant, M., Fodor, M., Habets, D.D.J., Pelsers, M.M.A.L.,
Hasnaoui, M. El, et al. (2007). Cardiac contractile dysfunction in
insulin-resistant rats fed a high-fat diet is associated with elevated
CD36-mediated fatty acid uptake and esterification. Diabetologia 50:
1938–1948.
Paolillo, S., Marsico, F., Prastaro, M., Renga, F., Esposito, L.,
Martino, F. De, et al. (2019). Diabetic Cardiomyopathy: Definition,
Diagnosis, and Therapeutic Implications. Heart Fail. Clin. 15: 341–347.
Park, T.-S., Yamashita, H., Blaner, W.S., and Goldberg, I.J. (2007).
Lipids in the heart: a source of fuel and a source of toxins. Curr.
Opin. Lipidol. 18: 277–282.
Pepino, M.Y., Kuda, O., Samovski, D., and Abumrad, N.A. (2014).
Structure-function of CD36 and importance of fatty acid signal
transduction in fat metabolism. Annu. Rev. Nutr. 34: 281–303.
Petersen, M.C., and Shulman, G.I. (2017). Roles of Diacylglycerols and
Ceramides in Hepatic Insulin Resistance. Trends Pharmacol. Sci. 38:
649–665.
Popovic, D., Vucic, D., and Dikic, I. (2014). Ubiquitination in disease
pathogenesis and treatment. Nat. Med. 20: 1242–1253.
Samovski, D., Dhule, P., Pietka, T., Jacome-Sosa, M., Penrose, E., Son,
N.-H., et al. (2018). Regulation of Insulin Receptor Pathway and Glucose
Metabolism by CD36 Signaling. Diabetes 67: 1272–1284.
Santos, M.H.H., Higuchi, M. de L., Tucci, P.J.F., Garavelo, S.M., Reis,
M.M., Antonio, E.L., et al. (2016). Previous exercise training increases
levels of PPAR-α in long-term post-myocardial infarction in rats, which
is correlated with better inflammatory response. Clinics (Sao Paulo).
71: 163–168.
Sequeira, V., Bertero, E., and Maack, C. (2019). Energetic drain driving
hypertrophic cardiomyopathy. FEBS Lett. 593: 1616–1626.
Simantov, R., Febbraio, M., and Silverstein, R.L. (2005). The
antiangiogenic effect of thrombospondin-2 is mediated by CD36 and
modulated by histidine-rich glycoprotein. Matrix Biol. 24: 27–34.
Smith, J., Su, X., El-Maghrabi, R., Stahl, P.D., and Abumrad, N.A.
(2008). Opposite regulation of CD36 ubiquitination by fatty acids and
insulin: effects on fatty acid uptake. J. Biol. Chem. 283: 13578–13585.
Son, N.-H., Basu, D., Samovski, D., Pietka, T.A., Peche, V.S., Willecke,
F., et al. (2018). Endothelial cell CD36 optimizes tissue fatty acid
uptake. J. Clin. Invest. 128: 4329–4342.
Srikanthan, S., Li, W., Silverstein, R.L., and McIntyre, T.M. (2014).
Exosome poly-ubiquitin inhibits platelet activation, downregulates CD36
and inhibits pro-atherothombotic cellular functions. J. Thromb. Haemost.
12: 1906–1917.
Steinbusch, L.K.M., Wijnen, W., Schwenk, R.W., Coumans, W.A., Hoebers,
N.T.H., Ouwens, D.M., et al. (2010). Differential regulation of cardiac
glucose and fatty acid uptake by endosomal pH and actin filaments. Am.
J. Physiol. Cell Physiol. 298: C1549-59.
Sun, S., Tan, P., Huang, X., Zhang, W., Kong, C., Ren, F., et al.
(2018). Ubiquitinated CD36 sustains insulin-stimulated Akt activation by
stabilizing insulin receptor substrate 1 in myotubes. J. Biol. Chem.
293: 2383–2394.
Sung, H.K., Song, E., Jahng, J.W.S., Pantopoulos, K., and Sweeney, G.
(2019). Iron induces insulin resistance in cardiomyocytes via regulation
of oxidative stress. Sci. Rep. 9: 4668.
Sung, M.M., Byrne, N.J., Kim, T.T., Levasseur, J., Masson, G.,
Boisvenue, J.J., et al. (2017). Cardiomyocyte-specific ablation of CD36
accelerates the progression from compensated cardiac hypertrophy to
heart failure. Am. J. Physiol. Heart Circ. Physiol. 312: H552–H560.
Tanaka, T., Sohmiya, K., and Kawamura, K. (1997). Is CD36 deficiency an
etiology of hereditary hypertrophic cardiomyopathy? J. Mol. Cell.
Cardiol. 29: 121–127.
Tao, L., Bei, Y., Lin, S., Zhang, H., Zhou, Y., Jiang, J., et al.
(2015). Exercise Training Protects Against Acute Myocardial Infarction
via Improving Myocardial Energy Metabolism and Mitochondrial Biogenesis.
Cell. Physiol. Biochem. Int. J. Exp. Cell. Physiol. Biochem. Pharmacol.
37: 162–175.
Tham, Y.K., Bernardo, B.C., Ooi, J.Y.Y., Weeks, K.L., and McMullen, J.R.
(2015). Pathophysiology of cardiac hypertrophy and heart failure:
signaling pathways and novel therapeutic targets. Arch. Toxicol. 89:
1401–1438.
Thorne, R.F., Ralston, K.J., Bock, C.E. de, Mhaidat, N.M., Zhang, X.D.,
Boyd, A.W., et al. (2010). Palmitoylation of CD36/FAT regulates the rate
of its post-transcriptional processing in the endoplasmic reticulum.
Biochim. Biophys. Acta 1803: 1298–1307.
Tran, T.T.T., Poirier, H., Clement, L., Nassir, F., Pelsers, M.M.A.L.,
Petit, V., et al. (2011). Luminal lipid regulates CD36 levels and
downstream signaling to stimulate chylomicron synthesis. J. Biol. Chem.
286: 25201–25210.
Umbarawan, Y., Syamsunarno, M.R.A.A., Koitabashi, N., Obinata, H.,
Yamaguchi, A., Hanaoka, H., et al. (2018a). Myocardial fatty acid uptake
through CD36 is indispensable for sufficient bioenergetic metabolism to
prevent progression of pressure overload-induced heart failure. Sci.
Rep. 8: 12035.
Umbarawan, Y., Syamsunarno, M.R.A.A., Koitabashi, N., Yamaguchi, A.,
Hanaoka, H., Hishiki, T., et al. (2018b). Glucose is preferentially
utilized for biomass synthesis in pressure-overloaded hearts: evidence
from fatty acid-binding protein-4 and -5 knockout mice. Cardiovasc. Res.
114: 1132–1144.
Vinals, M., Xu, S., Vasile, E., and Krieger, M. (2003). Identification
of the N-linked glycosylation sites on the high density lipoprotein
(HDL) receptor SR-BI and assessment of their effects on HDL binding and
selective lipid uptake. J. Biol. Chem. 278: 5325–5332.
Wang, J., Hao, J.-W., Wang, X., Guo, H., Sun, H.-H., Lai, X.-Y., et al.
(2019). DHHC4 and DHHC5 Facilitate Fatty Acid Uptake by Palmitoylating
and Targeting CD36 to the Plasma Membrane. Cell Rep. 26: 209-221.e5.
Wang, J., and Li, Y. (2019). CD36 tango in cancer: signaling pathways
and functions. Theranostics 9: 4893–4908.
Wu, L., Wang, K., Wang, W., Wen, Z., Wang, P., Liu, L., et al. (2018).
Glucagon-like peptide-1 ameliorates cardiac lipotoxicity in diabetic
cardiomyopathy via the PPARα pathway. Aging Cell 17: e12763.
Xu, L., Chen, W., Ma, M., Chen, A., Tang, C., Zhang, C., et al. (2019).
Microarray profiling analysis identifies the mechanism of
miR-200b-3p/mRNA-CD36 affecting diabetic cardiomyopathy via peroxisome
proliferator activated receptor-gamma signaling pathway. J. Cell.
Biochem. 120: 5193–5206.
Yan, X., Chen, J., Zhang, C., Zhou, S., Zhang, Z., Chen, J., et al.
(2015). FGF21 deletion exacerbates diabetic cardiomyopathy by
aggravating cardiac lipid accumulation. J. Cell. Mol. Med. 19:
1557–1568.
Yang, J., Sambandam, N., Han, X., Gross, R.W., Courtois, M., Kovacs, A.,
et al. (2007). CD36 deficiency rescues lipotoxic cardiomyopathy. Circ.
Res. 100: 1208–1217.
Yang, M., Kholmukhamedov, A., Schulte, M.L., Cooley, B.C., Scoggins,
N.O., Wood, J.P., et al. (2018). Platelet CD36 signaling through ERK5
promotes caspase-dependent procoagulant activity and fibrin deposition
in vivo. Blood Adv. 2: 2848–2861.
Yu, M., Du, H., Wang, B., Chen, J., Lu, F., Peng, S., et al. (2020).
Exogenous H2S Induces Hrd1 S-sulfhydration and Prevents CD36
Translocation via VAMP3 Ubiquitylation in Diabetic Hearts. Aging Dis.
11: 286–300.
Zhang, F., Xia, X., Chai, R., Xu, R., Xu, Q., Liu, M., et al. (2020).
Inhibition of USP14 suppresses the formation of foam cell by promoting
CD36 degradation. J. Cell. Mol. Med. 24: 3292–3302.
Zhao, L., Zhang, C., Luo, X., Wang, P., Zhou, W., Zhong, S., et al.
(2018). CD36 palmitoylation disrupts free fatty acid metabolism and
promotes tissue inflammation in non-alcoholic steatohepatitis. J.
Hepatol. 69: 705–717.
Zheng, A., Cao, L., Qin, S., Chen, Y., Li, Y., and Zhang, D. (2017).
Exenatide Regulates Substrate Preferences Through the p38γ MAPK Pathway
After Ischaemia/Reperfusion Injury in a Rat Heart. Heart. Lung Circ. 26:
404–412.
Zhou, M., Wang, H., Zeng, X., Yin, P., Zhu, J., Chen, W., et al. (2019).
Mortality, morbidity, and risk factors in China and its provinces,
1990-2017: a systematic analysis for the Global Burden of Disease Study
2017. Lancet (London, England) 394: 1145–1158.
Zhou, X., Chang, B., and Gu, Y. (2018). MicroRNA-21 abrogates
palmitate-induced cardiomyocyte apoptosis through caspase-3/NF-κB signal
pathways. Anatol. J. Cardiol. 20: 336–346.