REFERENCES
Bang J, Lee SY. (2018). Assimilation
of formic acid and CO2 by engineered Escherichia coli equipped with
reconstructed one-carbon assimilation pathways. Proceedings of the
National Academy of Sciences, 115(40):E9271-E9279.
https://doi.org/10.1073/pnas.1810386115
Bar-Even A. (2016). Formate
assimilation: The metabolic architecture of natural and synthetic
pathways. Biochemistry, 55(28):3851-3863.
https://doi.org/10.1021/acs.biochem.6b00495
Bar-Even A, Noor E, Lewis NE, Milo R.
(2010). Design and analysis of synthetic carbon fixation pathways.Proceedings of the National Academy of Sciences,107(19):8889-8894. https://doi.org/10.1073/pnas.0907176107
Bar-Even A, Noor E, Milo R. (2012). A
survey of carbon fixation pathways through a quantitative lens.Journal of experimental botany , 63(6):2325-2342.
https://doi.org/10.1093/jxb/err417
Cronan JE. (2016). Assembly of lipoic
acid on its cognate enzymes: an extraordinary and essential biosynthetic
pathway. Microbiol. Mol. Biol. Rev ., 80(2):429-450.
https://doi.org/10.1128/MMBR.00073-15
Cronan JE. (2018). Advances in
synthesis of biotin and assembly of lipoic acid. Current opinion
in chemical biology , 47:60-66.
https://doi.org/10.1016/j.cbpa.2018.08.004
Doring V, Darii E, Yishai O, Bar-Even
A, Bouzon M. (2018). Implementation of a reductive route of one-carbon
assimilation in Escherichia coli through directed evolution. ACS
synthetic biology , 7(9):2029-2036.
https://doi.org/10.1021/acssynbio.8b00167
Fernández-Suárez M, Baruah H,
Martínez-Hernández L, Xie KT, Baskin JM, Bertozzi CR, Ting AY. (2007).
Redirecting lipoic acid ligase for cell surface protein labeling with
small-molecule probes. Nature biotechnology , 25(12):1483-1487.
Fujiwara K, Maita N, Hosaka H,
Okamura-Ikeda K, Nakagawa A, Taniguchi H. (2010). Global conformational
change associated with the two-step reaction catalyzed by Escherichia
coli lipoate-protein ligase A. Journal of Biological Chemistry ,
285(13):9971-9980. https://doi.org/10.1074/jbc.M109.078717
Fujiwara K, Okamura-Ikeda K, Motokawa
Y. (1990). cDNA sequence, in vitro synthesis, and intramitochondrial
lipoylation of H-protein of the glycine cleavage system. Journal
of Biological Chemistry , 265(29):17463-17467.
Fujiwara K, Okamura-Ikeda K, Motokawa
Y. (1991). Lipoylation of H-protein of the glycine cleavage system The
effect of site-directed mutagenesis of amino acid residues around the
lipoyllysine residue on the lipoate attachment. FEBS letters ,
293(1-2):115-118. https://doi.org/10.1016/0014-5793(91)81164-4
Fujiwara K, Okamura-Ikeda K, Motokawa
Y. (1992). Expression of mature bovine H-protein of the glycine cleavage
system in Escherichia coli and in vitro lipoylation of the apoform.Journal of Biological Chemistry , 267(28):20011-20016.
Fujiwara K, Toma S, Okamura-Ikeda K,
Motokawa Y, Nakagawa A, Taniguchi H. (2005). Crystal structure of
Lipoate-protein ligase a from Escherichia coli determination of the
lipoic acid-binding site. Journal of Biological Chemistry ,
280(39):33645-33651. https://doi.org/10.1074/jbc.M505010200
Hong Y, Ren J, Zhang X, Wang W, Zeng
A-P. (2020). Quantitative analysis of glycine related metabolic pathways
for one-carbon synthetic biology. Current opinion in
biotechnology , 64:70-78.
https://doi.org/10.1016/j.copbio.2019.10.001
Macherel D, Bourguignon J, Forest E,
Faure M, Cohen‐Addad C, Douce R. (1996). Expression, lipoylation and
structure determination of recombinant pea H‐protein in Escherichia
coli. European journal of biochemistry , 236(1):27-33.
https://doi.org/10.1111/j.1432-1033.1996.00027.x
Morris TW, Reed KE, Cronan JE.
(1994). Identification of the gene encoding lipoate-protein ligase A of
Escherichia coli. Molecular cloning and characterization of the lplA
gene and gene product. Journal of Biological Chemistry,269(23):16091-16100.
Morris TW, Reed KE, Cronan JE.
(1995). Lipoic acid metabolism in Escherichia coli: the lplA and lipB
genes define redundant pathways for ligation of lipoyl groups to
apoprotein. Journal of bacteriology , 177(1):1-10.
https://doi.org/10.1128/jb.177.1.1-10.1995
Perham RN. (2000). Swinging arms and
swinging domains in multifunctional enzymes: catalytic machines for
multistep reactions. Annual review of biochemistry,69(1):961-1004. https://doi.org/10.1146/annurev.biochem.69.1.961
Solmonson A, DeBerardinis RJ. (2018).
Lipoic acid metabolism and mitochondrial redox regulation. Journal
of Biological Chemistry , 293(20):7522-7530.
https://doi.org/10.1074/jbc.TM117.000259
Tashiro Y, Hirano S, Matson MM,
Atsumi S, Kondo A. (2018). Electrical-biological hybrid system for CO2
reduction. Metabolic engineering , 47:211-218.
https://doi.org/10.1016/j.ymben.2018.03.015
Uttamapinant C, White KA, Baruah H,
Thompson S, Fernández-Suárez M, Puthenveetil S, Ting AY. (2010). A
fluorophore ligase for site-specific protein labeling inside living
cells. Proceedings of the National Academy of Sciences ,
107(24):10914-10919. https://doi.org/10.1073/pnas.0914067107
Yishai O, Bouzon M, Döring V,
Bar-Even A. (2018). In vivo assimilation of one-carbon via a synthetic
reductive glycine pathway in Escherichia coli. ACS synthetic
biology , 7(9):2023-2028.
https://doi.org/10.1021/acssynbio.8b00131
Zhang X, Li M, Xu Y, Ren J, Zeng A-P.
(2019). Quantitative study of H protein lipoylation of the glycine
cleavage system and a strategy to increase its activity by co-expression
of LplA. Journal of biological engineering , 13(1):32.
https://doi.org/10.1186/s13036-019-0164-5