REFERENCES
Bang J, Lee SY. (2018). Assimilation of formic acid and CO2 by engineered Escherichia coli equipped with reconstructed one-carbon assimilation pathways. Proceedings of the National Academy of Sciences, 115(40):E9271-E9279. https://doi.org/10.1073/pnas.1810386115
Bar-Even A. (2016). Formate assimilation: The metabolic architecture of natural and synthetic pathways. Biochemistry, 55(28):3851-3863. https://doi.org/10.1021/acs.biochem.6b00495
Bar-Even A, Noor E, Lewis NE, Milo R. (2010). Design and analysis of synthetic carbon fixation pathways.Proceedings of the National Academy of Sciences,107(19):8889-8894. https://doi.org/10.1073/pnas.0907176107
Bar-Even A, Noor E, Milo R. (2012). A survey of carbon fixation pathways through a quantitative lens.Journal of experimental botany , 63(6):2325-2342. https://doi.org/10.1093/jxb/err417
Cronan JE. (2016). Assembly of lipoic acid on its cognate enzymes: an extraordinary and essential biosynthetic pathway. Microbiol. Mol. Biol. Rev ., 80(2):429-450. https://doi.org/10.1128/MMBR.00073-15
Cronan JE. (2018). Advances in synthesis of biotin and assembly of lipoic acid. Current opinion in chemical biology , 47:60-66. https://doi.org/10.1016/j.cbpa.2018.08.004
Doring V, Darii E, Yishai O, Bar-Even A, Bouzon M. (2018). Implementation of a reductive route of one-carbon assimilation in Escherichia coli through directed evolution. ACS synthetic biology , 7(9):2029-2036. https://doi.org/10.1021/acssynbio.8b00167
Fernández-Suárez M, Baruah H, Martínez-Hernández L, Xie KT, Baskin JM, Bertozzi CR, Ting AY. (2007). Redirecting lipoic acid ligase for cell surface protein labeling with small-molecule probes. Nature biotechnology , 25(12):1483-1487.
Fujiwara K, Maita N, Hosaka H, Okamura-Ikeda K, Nakagawa A, Taniguchi H. (2010). Global conformational change associated with the two-step reaction catalyzed by Escherichia coli lipoate-protein ligase A. Journal of Biological Chemistry , 285(13):9971-9980. https://doi.org/10.1074/jbc.M109.078717
Fujiwara K, Okamura-Ikeda K, Motokawa Y. (1990). cDNA sequence, in vitro synthesis, and intramitochondrial lipoylation of H-protein of the glycine cleavage system. Journal of Biological Chemistry , 265(29):17463-17467.
Fujiwara K, Okamura-Ikeda K, Motokawa Y. (1991). Lipoylation of H-protein of the glycine cleavage system The effect of site-directed mutagenesis of amino acid residues around the lipoyllysine residue on the lipoate attachment. FEBS letters , 293(1-2):115-118. https://doi.org/10.1016/0014-5793(91)81164-4
Fujiwara K, Okamura-Ikeda K, Motokawa Y. (1992). Expression of mature bovine H-protein of the glycine cleavage system in Escherichia coli and in vitro lipoylation of the apoform.Journal of Biological Chemistry , 267(28):20011-20016.
Fujiwara K, Toma S, Okamura-Ikeda K, Motokawa Y, Nakagawa A, Taniguchi H. (2005). Crystal structure of Lipoate-protein ligase a from Escherichia coli determination of the lipoic acid-binding site. Journal of Biological Chemistry , 280(39):33645-33651. https://doi.org/10.1074/jbc.M505010200
Hong Y, Ren J, Zhang X, Wang W, Zeng A-P. (2020). Quantitative analysis of glycine related metabolic pathways for one-carbon synthetic biology. Current opinion in biotechnology , 64:70-78. https://doi.org/10.1016/j.copbio.2019.10.001
Macherel D, Bourguignon J, Forest E, Faure M, Cohen‐Addad C, Douce R. (1996). Expression, lipoylation and structure determination of recombinant pea H‐protein in Escherichia coli. European journal of biochemistry , 236(1):27-33. https://doi.org/10.1111/j.1432-1033.1996.00027.x
Morris TW, Reed KE, Cronan JE. (1994). Identification of the gene encoding lipoate-protein ligase A of Escherichia coli. Molecular cloning and characterization of the lplA gene and gene product. Journal of Biological Chemistry,269(23):16091-16100.
Morris TW, Reed KE, Cronan JE. (1995). Lipoic acid metabolism in Escherichia coli: the lplA and lipB genes define redundant pathways for ligation of lipoyl groups to apoprotein. Journal of bacteriology , 177(1):1-10. https://doi.org/10.1128/jb.177.1.1-10.1995
Perham RN. (2000). Swinging arms and swinging domains in multifunctional enzymes: catalytic machines for multistep reactions. Annual review of biochemistry,69(1):961-1004. https://doi.org/10.1146/annurev.biochem.69.1.961
Solmonson A, DeBerardinis RJ. (2018). Lipoic acid metabolism and mitochondrial redox regulation. Journal of Biological Chemistry , 293(20):7522-7530. https://doi.org/10.1074/jbc.TM117.000259
Tashiro Y, Hirano S, Matson MM, Atsumi S, Kondo A. (2018). Electrical-biological hybrid system for CO2 reduction. Metabolic engineering , 47:211-218. https://doi.org/10.1016/j.ymben.2018.03.015
Uttamapinant C, White KA, Baruah H, Thompson S, Fernández-Suárez M, Puthenveetil S, Ting AY. (2010). A fluorophore ligase for site-specific protein labeling inside living cells. Proceedings of the National Academy of Sciences , 107(24):10914-10919. https://doi.org/10.1073/pnas.0914067107
Yishai O, Bouzon M, Döring V, Bar-Even A. (2018). In vivo assimilation of one-carbon via a synthetic reductive glycine pathway in Escherichia coli. ACS synthetic biology , 7(9):2023-2028. https://doi.org/10.1021/acssynbio.8b00131
Zhang X, Li M, Xu Y, Ren J, Zeng A-P. (2019). Quantitative study of H protein lipoylation of the glycine cleavage system and a strategy to increase its activity by co-expression of LplA. Journal of biological engineering , 13(1):32. https://doi.org/10.1186/s13036-019-0164-5