References
1. Zhang L, Pfister M, Meibohm B. Concepts and challenges in quantitative pharmacology and model-based drug development. AAPS J. 2008;10(4):552-559.
2. Standing JF. Understanding and applying pharmacometric modelling and simulation in clinical practice and research. Br J Clin Pharmacol. 2017;83(2):247-254.
3. van der Graaf PH, Benson N. Systems pharmacology: bridging systems biology and pharmacokinetics-pharmacodynamics (PKPD) in drug discovery and development. Pharm Res. 2011;28(7):1460-1464.
4. Benson N. Quantitative Systems Pharmacology and Empirical Models: Friends or Foes? CPT Pharmacometrics Syst Pharmacol.2019;8(3):135-137.
5. Birtwistle MR, Hansen J, Gallo JM, et al. Systems Pharmacology: An Overview. In: Mager DE, Kimko HHC, eds. Systems Pharmacology and Pharmacodynamics. Cham: Springer International Publishing; 2016:53-80.
6. Peterson MC, Riggs MM. FDA Advisory Meeting Clinical Pharmacology Review Utilizes a Quantitative Systems Pharmacology (QSP) Model: A Watershed Moment? CPT: pharmacometrics & systems pharmacology.2015;4(3):e00020-e00020.
7. Sorger PK, Allerheiligen SR, Abernethy DR, et al. Quantitative and systems pharmacology in the post-genomic era: new approaches to discovering drugs and understanding therapeutic mechanisms. Paper presented at: An NIH white paper by the QSP workshop group2011.
8. Benson N, Matsuura T, Smirnov S, et al. Systems pharmacology of the nerve growth factor pathway: use of a systems biology model for the identification of key drug targets using sensitivity analysis and the integration of physiology and pharmacology. Interface Focus.2013;3(2):20120071-20120071.
9. Barrett JS, Bucci-Rechtweg C, Amy Cheung SY, et al. Pediatric Extrapolation in Type 2 Diabetes: Future Implications of a Workshop.Clin Pharmacol Ther. 2020.
10. Lazarou G, Chelliah V, Small BG, Walker M, van der Graaf PH, Kierzek AM. Integration of Omics Data Sources to Inform Mechanistic Modeling of Immune-Oncology Therapies: A Tutorial for Clinical Pharmacologists.Clin Pharmacol Ther. 2020;107(4):858-870.
11. Milberg O, Gong C, Jafarnejad M, et al. A QSP Model for Predicting Clinical Responses to Monotherapy, Combination and Sequential Therapy Following CTLA-4, PD-1, and PD-L1 Checkpoint Blockade. Sci Rep.2019;9(1):11286.
12. Musante CJ, Ramanujan S, Schmidt BJ, Ghobrial OG, Lu J, Heatherington AC. Quantitative Systems Pharmacology: A Case for Disease Models. Clin Pharmacol Ther. 2017;101(1):24-27.
13. Chae D, Son M, Kim Y, Son H, Park K. Mechanistic Model for Blood Pressure and Heart Rate Changes Produced by Telmisartan in Human Beings.Basic Clin Pharmacol Toxicol. 2018;122(1):139-148.
14. Wajima T, Isbister GK, Duffull SB. A comprehensive model for the humoral coagulation network in humans. Clin Pharmacol Ther.2009;86(3):290-298.
15. Wanner G, Hairer E. Solving ordinary differential equations II. Springer Berlin Heidelberg; 1996.
16. Ribba B, Grimm HP, Agoram B, et al. Methodologies for Quantitative Systems Pharmacology (QSP) Models: Design and Estimation. CPT Pharmacometrics Syst Pharmacol. 2017;6(8):496-498.
17. Shivva V, Korell J, Tucker IG, Duffull SB. An approach for identifiability of population pharmacokinetic-pharmacodynamic models.CPT Pharmacometrics Syst Pharmacol. 2013;2:e49.
18. Hasegawa C, Duffull SB. Automated Scale Reduction of Nonlinear QSP Models With an Illustrative Application to a Bone Biology System.CPT Pharmacometrics Syst Pharmacol. 2018;7(9):562-572.
19. Hasegawa C, Duffull SB. Reusing Smaller Versions of Large Models: A Case Example of Reuse of a Simplified Bone Model. Clin Pharmacol Ther. 2019;106(6):1184-1186.
20. Ooi Q-X, Wright DFB, Isbister GK, Duffull SB. A factor VII-based method for the prediction of anticoagulant response to warfarin.Sci Rep. 2018;8(1):12041.
21. Jayachandran D, Rundell AE, Hannemann RE, Vik TA, Ramkrishna D. Optimal chemotherapy for leukemia: a model-based strategy for individualized treatment. PLoS One. 2014;9(10):e109623.
22. Gulati A, Isbister G, Duffull S. Scale Reduction of a Systems Coagulation Model With an Application to Modeling Pharmacokinetic–Pharmacodynamic Data. CPT: Pharmacometrics & Systems Pharmacology. 2014;3(1):90.
23. Gulati A, Faed JM, Isbister GK, Duffull SB. Development and evaluation of a prototype of a novel clotting time test to monitor enoxaparin. Pharm Res. 2012;29(1):225-235.
24. Biswal B, Sen S, Maka S. A structure preserving model order reduction method for calcium homeostatic system. Math Biosci.2019;312:8-22.
25. Prajapati AK, Prasad R. Model Order Reduction by Using the Balanced Truncation and Factor Division Methods. IETE J Res.2019;65(6):827-842.
26. San O, Maulik R, Ahmed M. An artificial neural network framework for reduced order modeling of transient flows. Communications in Nonlinear Science and Numerical Simulation. 2019;77:271-287.
27. Vallabhajosyula RR, Chickarmane V, Sauro HM. Conservation analysis of large biochemical networks. Bioinformatics.2006;22(3):346-353.
28. Snowden TJ, van der Graaf PH, Tindall MJ. Methods of Model Reduction for Large-Scale Biological Systems: A Survey of Current Methods and Trends. Bull Math Biol. 2017;79(7):1449-1486.
29. Snowden TJ, van der Graaf PH, Tindall MJ. Model reduction in mathematical pharmacology. J Pharmacokinet Pharmacodyn.2018;45(4):537-555.
30. Antoulas AC. Approximation of Large-Scale Dynamical Systems: An Overview. IFAC Proceedings Volumes. 2004;37(11):19-28.
31. Wei J, Kuo JCW. Lumping Analysis in Monomolecular Reaction Systems. Analysis of the Exactly Lumpable System. Industrial & Engineering Chemistry Fundamentals. 1969;8(1):114-123.
32. Dokoumetzidis A, Aarons L. Proper lumping in systems biology models.IET Syst Biol. 2009;3(1):40-51.
33. Vallabhajosyula RR, Sauro HM. Complexity Reduction of Biochemical Networks. Paper presented at: Proceedings of the 2006 Winter Simulation Conference; 3-6 Dec. 2006, 2006.
34. Reder C. Metabolic control theory: A structural approach. J Theor Biol. 1988;135(2):175-201.
35. Sauro HM, Ingalls B. Conservation analysis in biochemical networks: computational issues for software writers. Biophys Chem.2004;109(1):1-15.
36. Moore B. Principal component analysis in linear systems: Controllability, observability, and model reduction. IEEE Transactions on Automatic Control. 1981;26(1):17-32.
37. Hahn J, Edgar TF. An improved method for nonlinear model reduction using balancing of empirical gramians. Comput Chem Eng.2002;26(10):1379-1397.
38. Snowden TJ, van der Graaf PH, Tindall MJ. A combined model reduction algorithm for controlled biochemical systems. BMC Syst Biol.2017;11(1):17.
39. Peterson M, Riggs M. Predicting Nonlinear Changes in Bone Mineral Density Over Time Using a Multiscale Systems Pharmacology Model.CPT: Pharmacometrics & Systems Pharmacology. 2012;1(11):14.
40. Michaelis L, Menten M. Die kinetik der invertinwirkung Biochem Z 49: 333–369. Find this article online. 1913.
41. Briggs GE, Haldane JB. A Note on the Kinetics of Enzyme Action.The Biochemical journal. 1925;19(2):338-339.
42. Gibiansky L, Gibiansky E, Kakkar T, Ma P. Approximations of the target-mediated drug disposition model and identifiability of model parameters. J Pharmacokinet Pharmacodyn. 2008;35(5):573-591.
43. Holland DO, Krainak NC, Saucerman JJ. Graphical approach to model reduction for nonlinear biochemical networks. PLoS One.2011;6(8):e23795.
44. Zhang XY, Trame MN, Lesko LJ, Schmidt S. Sobol Sensitivity Analysis: A Tool to Guide the Development and Evaluation of Systems Pharmacology Models. CPT: pharmacometrics & systems pharmacology.2015;4(2):69-79.
45. Christopher Frey H, Patil SR. Identification and Review of Sensitivity Analysis Methods. Risk Anal. 2002;22(3):553-578.
46. Sobol′ IM. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Mathematics and Computers in Simulation. 2001;55(1):271-280.
47. Gueorguieva I, Nestorov IA, Rowland M. Reducing whole body physiologically based pharmacokinetic models using global sensitivity analysis: diazepam case study. J Pharmacokinet Pharmacodyn.2006;33(1):1-27.
48. Gulati A, Faed JM, Isbister GK, Duffull SB. Application of Adaptive DP-optimality to Design a Pilot Study for a Clotting Time Test for Enoxaparin. Pharm Res. 2015;32(10):3391-3402.
49. Dumont C, Mentre F, Gaynor C, Brendel K, Gesson C, Chenel M. Optimal sampling times for a drug and its metabolite using SIMCYP((R)) simulations as prior information. Clin Pharmacokinet.2013;52(1):43-57.
50. Hornik K. Approximation capabilities of multilayer feedforward networks. Neural Netw. 1991;4(2):251-257.
51. Rayas-Sánchez JE. Artificial Neural Networks and Space Mapping for EM-Based Modeling and Design of Microwave Circuits. In: Koziel S, Leifsson L, eds. Surrogate-Based Modeling and Optimization: Applications in Engineering. New York, NY: Springer New York; 2013:147-169.
52. Peterson MC, Riggs MM. A physiologically based mathematical model of integrated calcium homeostasis and bone remodeling. Bone.2010;46(1):49-63.
53. Pianosi F, Sarrazin F, Wagener T. A Matlab toolbox for Global Sensitivity Analysis. Environmental Modelling & Software.2015;70:80-85.
54. Hasegawa C, Duffull SB. Selection and Qualification of Simplified QSP Models When Using Model Order Reduction Techniques. AAPS J.2017;20(1):2.
55. Duffull SB, Wright DFB. What do we learn from repeated population analyses? Br J Clin Pharmacol. 2015;79(1):40-47.
56. Mentré F, Friberg LE, Duffull S, et al. Pharmacometrics and Systems Pharmacology 2030. Clin Pharmacol Ther. 2020;107(1):76-78.