References
Altermatt, F. (2010). Climatic warming increases voltinism in European butterflies and moths.Proc. R Soc. Lond. [Biol], 277, 1281–1287.
Bale, J. S. (2002). Insects and low temperatures: from molecular biology to distributions and abundance. Philos. Trans. R. Soc. B. , 357, 849-862
Bale, J. S., & Hayward, S. A. L. (2010). Insect overwintering in a changing climate. J. Exp. Biol. , 213, 980-994.
Barton, G. G., & Sandercock, B. K. (2018). Long-term changes in the seasonal timing of landbird migration on the Pacific Flyway. Condor, 120, 30-46.
Bates, D., Maechler, M., Bolker, B., & Walker, S. (2014). lme4: Linear mixed-effects models using Eigen and S4. R package version , 1, 1-23.
Both, C., Bouwhuis, S., Lessells, C. M., & Visser, M. E. (2006). Climate change and population declines in a long-distance migratory bird. Nature , 441, 81.
Breed, G. A., Stichter, S. & Crone, E. E. (2013). Climate-driven changes in northeastern US butterfly communities. Nat Clim Change, 3, 142–145.
Brereton, T. M., Botham, M. S., Middlebrook, I., Randle, Z., Noble, D., & Roy, D. B. (2014). United Kingdom butterfly monitoring scheme report for 2014. Centre for Ecology and Hydrology and Butterfly Conservation .
Brooks, S. J., Self, A., Toloni, F., & Sparks, T. (2014). Natural history museum collections provide information on phenological change in British butterflies since the late-nineteenth century. Int. J. Biometeorol. , 58, 1749-1758.
Cade, B. S. & Noon, B. R. (2003). A gentle introduction to quantile regression for ecologists.Front. Ecol. Envrion., 1, 412-420.
Chevin, L. M., & Lande, R. (2010). When do adaptive plasticity and genetic evolution prevent extinction of a density‐regulated population? Evolution,  64, 1143-1150.
Cleland, E.E., Allen J. M., Crimmins, T.M., Dunne, J.A., Pau, S., Traver, S.E., Zavaleta, E.S., Wolkovich, E.M. (2012). Phenological tracking enables positive species responses to climate change.Ecology, 93, 1765-1771.
Fric, Z. F., Rindoš, M., & Konvička, M. (2020). Phenology responses of temperate butterflies to latitude depend on ecological traits. Ecol. Lett. , 23, 172-180.
Forister, M. L., Shapiro, A. M. (2003). Climatic trends and advancing spring flight of butterflies in lowland California. Glob. Change Biol., 9, 1130–1135.
Forister M. L., Jahner J. P., Casner K. L., Wilson J. S., Shapiro A. M. (2011). The race is not to the swift: long-term data reveal pervasive declines in California’s low-elevation butterfly fauna. Ecology , 92, 2222–2235
Franklin, D. C. (1999). Evidence of disarray amongst granivorous bird assemblages in the savannas of northern Australia, a region of sparse human settlement. Biol. Cons., 90, 53–68.
Forrest, J., & Miller-Rushing, A. J. (2010). Introduction: Toward a synthetic understanding of the role of phenology in ecology and evolution. Philos. Trans. R. Soc. B. , 3101-3112.
Gallinat, A. S., Primack, R. B., & Wagner, D. L. (2015). Autumn, the neglected season in climate change research. Trends Ecol. Evolut. , 30, 169-176.
Gimesi, L., Homoródi, R., Hirka, A., Szaboki, C., & Hufnagel, L. (2012). The effect of climate change on the phenology of moth abundance and diversity. Appl. Ecol. Environ. Res., 10, 349-363.
Gordo, O., Tryjanowski, P., Kosicki, J. Z., & Fulín, M. (2013). Complex phenological changes and their consequences in the breeding success of a migratory bird, the white stork Ciconia ciconia. J. Anim. Ecol.,  82, 1072-1086.
Grace, J. B., Scheiner, S. M., & Schoolmaster Jr, D. R. (2015). Structural equation modeling: building and evaluating causal models: Chapter 8. (Ecological Statistics: Contemporary theory and application ) Oxford Scholarship Online, pp. 168-199.
Grevstad, F. S., & Coop, L. B. (2015). The consequences of photoperiodism for organisms in new climates. Ecol. Appl. , 25, 1506-1517.
Hulme, P. E. (2011). Contrasting impacts of climate‐driven flowering phenology on changes in alien and native plant species distributions. New Phytol. , 189, 272-281.
Inouye, D. W., Barr, B., Armitage, K. B., & Inouye, B. D. (2000). Climate change is affecting altitudinal migrants and hibernating species. PNAS , 97, 1630-1633.
Inouye, B. D., Ehrlén, J., & Underwood, N. (2019). Phenology as a process rather than an event: from individual reaction norms to community metrics. Ecol. Monograph , 89, e01352.
Karlsson, B. (2014). Extended season for northern butterflies. Int. J. Biometeorol. , 58, 691-701.
Kerr, N. Z., Wepprich, T., Grevstad, F., Dopman, E. B., Chew, F. S., Crone, E. E. (2020). Developmental trap or demographic bonanza? Opposing consequences of earlier phenology in a changing climate for a multivoltine butterfly. Glob. Change Biol., 26, 2014-2027.
Kerr, N. Z., Crone, E. E., Chew, F. S. (2019). Life history trade‐offs are more pronounced for a noninvasive, native butterfly compared to its invasive, exotic congener. Pop. Ecol ., 62: 119– 133.
Koenker, R., Portnoy, S., Ng, P. T., Zeileis, A., Grosjean, P., & Ripley, B. D. (2019). Package ‘quantreg’.
Levy, R. C., Kozak, G. M., Wadsworth, C. B., Coates, B. S. & Dopman, E. B. (2015). Explaining the sawtooth: Latitudinal periodicity in a circadian gene correlates with shifts in generation number. J Evol. Biol., 28, 40–53.
Lindestad, O., Wheat, C.W., Nylin, S. and Gotthard, K., (2019). Local adaptation of photoperiodic plasticity maintains life cycle variation within latitudes in a butterfly. Ecology , 100, p.e02550.
Macgregor, C. J., Thomas, C. D., Roy, D. B., Beaumont, M. A., Bell, J. R., Brereton, et al. (2019). Climate-induced phenology shifts linked to range expansions in species with multiple reproductive cycles per year. Nature,  10, 1-10.
Melero, Y., Stefanescu, C., & Pino, J. (2016). General declines in Mediterranean butterflies over the last two decades are modulated by species traits. Biol. Cons.,  201, 336-342.
Mitton, J. B., & Ferrenberg, S. M. (2012). Mountain pine beetle develops an unprecedented summer generation in response to climate warming. Amer. Nat.,  179, 163-171.
Møller, A. P., Rubolini, D. & Lehikoinen, E. (2008). Populations of migratory bird species that did not show a phenological response to climate change are declining. PNAS, 105, 16195-16200.
Ozgul, A., Childs, D. Z., Oli, M. K., Armitage, K. B., Blumstein, D. T., Olson, L., et al. (2010). Coupled dynamics of body mass and population growth in response to environmental change. Nature,  466, 482-485.
Parmesan, C., Ryrholm, N., Stefanescu, C., Hill, J. K., Thomas, C. D., Descimon, H., et al. (1999). Poleward shifts in geographical ranges of butterfly species associated with regional warming. Nature,  399, 579-583.
Parmesan, C., & Yohe, G. (2003). A globally coherent fingerprint of climate change impacts across natural systems. Nature , 421, 37-42
Polgar, C. A., & Primack, R. B. (2011). Leaf‐out phenology of temperate woody plants: from trees to ecosystems. New phytol. , 191, 926-941.
Polgar, C. A., Primack, R. B., Williams, E. H., Stichter, S., & Hitchcock, C. (2013). Climate effects on the flight period of Lycaenid butterflies in Massachusetts. Biol. Cons.,  160, 25-31.
Pöyry, J., Luoto, M., Heikkinen, R. K., Kuussaari, M., & Saarinen, K. (2009). Species traits explain recent range shifts of Finnish butterflies. Glob. Change Biol.,  15, 732-743.
R Core Team (2019). R: A language and environment for statistical computing . R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/
Ramula, S. Johansson, J., Lindén, A. & Jonzén, N. (2015). Linking phenological shifts to demographic change. Clim. Res. , 63, 135-144.
Rathcke, B., & Lacey, E. P. (1985). Phenological patterns of terrestrial plants. Annu. Rev. Ecol. Evol. Syst. , 16, 179-214.
Roy D. B. & Sparks, T. H. (2000). Phenology of British Butterflies and climate change. Glob. Change Biol., 6, 76-81.
Saino, N., Ambrosini, R., Rubolini, D., von Hardenberg, J., Provenzale, A., Hüppop, K., et al. (2011). Climate warming, ecological mismatch at arrival and population decline in migratory birds. Proc R Soc Lond [Biol],  278, 835-842.
Stichter, S. (2015).Butterflies of Massachusetts . Available at: https://www.butterfliesofmassachusetts.net/index.htm. Last accessed 28 January 2020.
Szabo, J. K., Vesk, P. A., Baxter, P. W. J. & Possingham, H. P. (2010). Regional avian species declines estimated from volunteer-collected long-term data using List Length Analysis. Ecol. Appl., 20, 2157–2169.
Tobin, P. C., Nagarkatti, S., Loeb, G., & Saunders, M. C. (2008). Historical and projected interactions between climate change and insect voltinism in a multivoltine species. Glob. Change Biol. , 14, 951-95.
Van Dyck, H., Bonte, D., Puls, R., Gotthard, K., & Maes, D. (2015). The lost generation hypothesis: could climate change drive ectotherms into a developmental trap? Oikos , 124, 54-61.
Wepprich, T., Adrion, J. R., Ries, L., Wiedmann, J., & Haddad, N. M. (2019). Butterfly abundance declines over 20 years of systematic monitoring in Ohio, USA. PloS ONE , 14 e0216270.
Westwood, A. R., & Blair, D. (2010). Effect of regional climate warming on the phenology of butterflies in boreal forests in Manitoba, Canada. Environ. Entomol. , 39, 1122-1133.
Willis, C. G., Ruhfel, B., Primack, R. B., Miller-Rushing, A. J. & Davis, C. C. (2008). Phylogenetic patterns of species loss in Thoreau’s woods are driven by climate change. PNAS, 105, 17029–17033.
Zipf, L., Williams, E. H., Primack, R. B. & Stichter, S. (2017). Climate effects on late-season flight times of Massachusetts butterflies. Int. J. Biometeorol., 61, 1667–1673.