References

Chandra, D., Morrison, C. J., Woo, J., Cramer, S., & Karande, P. (2013). Design of peptide affinity ligands for S-protein: A comparison of combinatorial and de novo design strategies. Molecular Diversity , 17 (2), 357–369. https://doi.org/10.1007/s11030-013-9436-z
Chandra, D., Timmick, S., Goodwine, C., Vecchiarello, N., Shastry, D. G., Mullerpatan, A., Trasatti, J. P., Cramer, S., & Karande, P. (2019). Design of peptide ligands for affinity purification of human growth hormone. Journal of Chemical Technology & Biotechnology . https://doi.org/10.1002/jctb.6029
Ejima, D., Yumioka, R., Tsumoto, K., & Arakawa, T. (2005). Effective elution of antibodies by arginine and arginine derivatives in affinity column chromatography. Analytical Biochemistry , 345 (2), 250–257. https://doi.org/10.1016/j.ab.2005.07.004
Fong, B. A., Wu, W.-Y., & Wood, D. W. (2009). Optimization of ELP-intein mediated protein purification by salt substitution.Protein Expression and Purification , 66 (2), 198–202. https://doi.org/10.1016/j.pep.2009.03.009
Gadagkar, S. R., & Call, G. B. (2015). Computational tools for fitting the Hill equation to dose–response curves. Journal of Pharmacological and Toxicological Methods , 71 , 68–76. https://doi.org/10.1016/j.vascn.2014.08.006
Heldt, C. L., Gurgel, P. V., Jaykus, L.-A., & Carbonell, R. G. (2008). Identification of Trimeric Peptides That Bind Porcine Parvovirus from Mixtures Containing Human Blood Plasma. Biotechnology Progress ,24 (3), 554–560. https://doi.org/10.1021/bp070412c
Holstein, M. A., Parimal, S., McCallum, S. A., & Cramer, S. M. (2012). Mobile phase modifier effects in multimodal cation exchange chromatography. Biotechnology and Bioengineering , 109 (1), 176–186. https://doi.org/10.1002/bit.23318
Hou, Y., & Cramer, S. M. (2011). Evaluation of selectivity in multimodal anion exchange systems: A priori prediction of protein retention and examination of mobile phase modifier effects.Journal of Chromatography A , 1218 (43), 7813–7820. https://doi.org/10.1016/j.chroma.2011.08.080
Hirano, A., Arakawa, T., & Kameda, T. (2014). Interaction of arginine with Capto MMC in multimodal chromatography. Journal of Chromatography A , 1338 , 58–66. https://doi.org/10.1016/j.chroma.2014.02.053
Huse, K., Böhme, H.-J., & Scholz, G. H. (2002). Purification of antibodies by affinity chromatography. Journal of Biochemical and Biophysical Methods , 51 (3), 217–231. https://doi.org/10.1016/S0165-022X(02)00017-9
Kelley, B. D., Tannatt, M., Magnusson, R., Hagelberg, S., & Booth, J. (2004). Development and validation of an affinity chromatography step using a peptide ligand for cGMP production of factor VIII.Biotechnology and Bioengineering , 87 (3), 400–412. https://doi.org/10.1002/bit.20124
Kish, W. S., Roach, M. K., Sachi, H., Naik, A. D., Menegatti, S., & Carbonell, R. G. (2018). Purification of human erythropoietin by affinity chromatography using cyclic peptide ligands. Journal of Chromatography B , 1085 , 1–12. https://doi.org/10.1016/j.jchromb.2018.03.039
Koide, S., Koide, A., & Lipovšek, D. (2012). Target-Binding Proteins Based on the 10th Human Fibronectin Type III Domain (10Fn3). InMethods in Enzymology (Vol. 503, pp. 135–156). Elsevier. http://linkinghub.elsevier.com/retrieve/pii/B9780123969620000069
Lee, W.-C., & Chen, C.-H. (2001). Predicting the elution behavior of proteins in affinity chromatography on non-porous particles.Journal of Biochemical and Biophysical Methods , 49 (1–3), 63–82. https://doi.org/10.1016/S0165-022X(01)00189-0
Lipovsek, D. (2011). Adnectins: Engineered target-binding protein therapeutics. Protein Engineering Design and Selection ,24 (1–2), 3–9. https://doi.org/10.1093/protein/gzq097
MacEwan, S. R., Hassouneh, W., & Chilkoti, A. (2014). Non-chromatographic purification of recombinant elastin-like polypeptides and their fusions with peptides and proteins from Escherichia coli. Journal of Visualized Experiments: JoVE ,88 . https://doi.org/10.3791/51583
Madan, B., Chaudhary, G., Cramer, S. M., & Chen, W. (2013). ELP-z and ELP-zz capturing scaffolds for the purification of immunoglobulins by affinity precipitation. Journal of Biotechnology , 163 (1), 10–16. https://doi.org/10.1016/j.jbiotec.2012.10.007
Meyer, D. E., & Chilkoti, A. (1999). Purification of recombinant proteins by fusion with thermally-responsive polypeptides. Nature Biotechnology , 17 (11), 1112–1115. https://doi.org/10.1038/15100
Mitchell, T., Chao, G., Sitkoff, D., Lo, F., Monshizadegan, H., Meyers, D., Low, S., Russo, K., DiBella, R., Denhez, F., Gao, M., Myers, J., Duke, G., Witmer, M., Miao, B., Ho, S. P., Khan, J., & Parker, R. A. (2014). Pharmacologic Profile of the Adnectin BMS-962476, a Small Protein Biologic Alternative to PCSK9 Antibodies for Low-Density Lipoprotein Lowering. Journal of Pharmacology and Experimental Therapeutics , 350 (2), 412–424. https://doi.org/10.1124/jpet.114.214221
Mullerpatan, A., Chandra, D., Kane, E., Karande, P., & Cramer, S. (2020). Purification of proteins using peptide-ELP based affinity precipitation. Journal of Biotechnology , 309 , 59–67. https://doi.org/10.1016/j.jbiotec.2019.12.012
Nascimento, A., Mullerpatan, A., Azevedo, A. M., Karande, P., & Cramer, S. (2019). Development of phage biopanning strategies to identify affinity peptide ligands for kappa light chain Fab fragments.Biotechnology Progress . https://doi.org/10.1002/btpr.2884
Nixon, A. E., Sexton, D. J., & Ladner, R. C. (2014). Drugs derived from phage display: From candidate identification to clinical practice.MAbs , 6 (1), 73–85. https://doi.org/10.4161/mabs.27240
Sheth, R. D., Bhut, B. V., Jin, M., Li, Z., Chen, W., & Cramer, S. M. (2014). Development of an ELP-Z based mAb affinity precipitation process using scaled-down filtration techniques. Journal of Biotechnology , 192 , 11–19. https://doi.org/10.1016/j.jbiotec.2014.09.020
Sheth, R. D., Jin, M., Bhut, B. V., Li, Z., Chen, W., & Cramer, S. M. (2014). Affinity precipitation of a monoclonal antibody from an industrial harvest feedstock using an ELP-Z stimuli responsive biopolymer: Affinity Precipitation of a Monoclonal Antibody.Biotechnology and Bioengineering , 111 (8), 1595–1603. https://doi.org/10.1002/bit.25230
Sheth, R. D., Madan, B., Chen, W., & Cramer, S. M. (2013). High-throughput screening for the development of a monoclonal antibody affinity precipitation step using ELP-z stimuli responsive biopolymers: HTS for Monoclonal Antibody Affinity Precipitation. Biotechnology and Bioengineering , 110 (10), 2664–2676. https://doi.org/10.1002/bit.24945
Shukla, D., Zamolo, L., Cavallotti, C., & Trout, B. L. (2011). Understanding the Role of Arginine as an Eluent in Affinity Chromatography via Molecular Computations. The Journal of Physical Chemistry B , 115 (11), 2645–2654. https://doi.org/10.1021/jp111156z
Tsumoto, K., Ejima, D., Senczuk, A. M., Kita, Y., & Arakawa, T. (2007). Effects of salts on protein–surface interactions: Applications for column chromatography. Journal of Pharmaceutical Sciences ,96 (7), 1677–1690. https://doi.org/10.1002/jps.20821
Wu, J., Park, J. P., Dooley, K., Cropek, D. M., West, A. C., & Banta, S. (2011). Rapid Development of New Protein Biosensors Utilizing Peptides Obtained via Phage Display. PLoS ONE , 6 (10), e24948. https://doi.org/10.1371/journal.pone.0024948
Yang, H., Gurgel, P. V., & Carbonell, R. G. (2008). Hexamer peptide affinity resins that bind the Fc region of human immunoglobulin G: Fc-binding hexamer peptide resins. The Journal of Peptide Research , 66 , 120–137. https://doi.org/10.1111/j.1747-0285.2006.00342.x
Yeboah, A., Cohen, R. I., Rabolli, C., Yarmush, M. L., & Berthiaume, F. (2016). Elastin-like polypeptides: A strategic fusion partner for biologics: Elastin-Like Polypeptides. Biotechnology and Bioengineering , 113 (8), 1617–1627. https://doi.org/10.1002/bit.25998
Table 1: Peptide sequences, along with their frequency of occurrence, obtained post 3 phage display biopanning rounds.