References
Chandra, D., Morrison, C. J., Woo, J., Cramer, S., & Karande, P.
(2013). Design of peptide affinity ligands for S-protein: A comparison
of combinatorial and de novo design strategies. Molecular
Diversity , 17 (2), 357–369.
https://doi.org/10.1007/s11030-013-9436-z
Chandra, D., Timmick, S., Goodwine, C., Vecchiarello, N., Shastry, D.
G., Mullerpatan, A., Trasatti, J. P., Cramer, S., & Karande, P. (2019).
Design of peptide ligands for affinity purification of human growth
hormone. Journal of Chemical Technology & Biotechnology .
https://doi.org/10.1002/jctb.6029
Ejima, D., Yumioka, R., Tsumoto, K., & Arakawa, T. (2005). Effective
elution of antibodies by arginine and arginine derivatives in affinity
column chromatography. Analytical Biochemistry , 345 (2),
250–257. https://doi.org/10.1016/j.ab.2005.07.004
Fong, B. A., Wu, W.-Y., & Wood, D. W. (2009). Optimization of
ELP-intein mediated protein purification by salt substitution.Protein Expression and Purification , 66 (2), 198–202.
https://doi.org/10.1016/j.pep.2009.03.009
Gadagkar, S. R., & Call, G. B. (2015). Computational tools for fitting
the Hill equation to dose–response curves. Journal of
Pharmacological and Toxicological Methods , 71 , 68–76.
https://doi.org/10.1016/j.vascn.2014.08.006
Heldt, C. L., Gurgel, P. V., Jaykus, L.-A., & Carbonell, R. G. (2008).
Identification of Trimeric Peptides That Bind Porcine Parvovirus from
Mixtures Containing Human Blood Plasma. Biotechnology Progress ,24 (3), 554–560. https://doi.org/10.1021/bp070412c
Holstein, M. A., Parimal, S., McCallum, S. A., & Cramer, S. M. (2012).
Mobile phase modifier effects in multimodal cation exchange
chromatography. Biotechnology and Bioengineering , 109 (1),
176–186. https://doi.org/10.1002/bit.23318
Hou, Y., & Cramer, S. M. (2011). Evaluation of selectivity in
multimodal anion exchange systems: A priori prediction of protein
retention and examination of mobile phase modifier effects.Journal of Chromatography A , 1218 (43), 7813–7820.
https://doi.org/10.1016/j.chroma.2011.08.080
Hirano, A., Arakawa, T., & Kameda, T. (2014). Interaction of arginine
with Capto MMC in multimodal chromatography. Journal of
Chromatography A , 1338 , 58–66.
https://doi.org/10.1016/j.chroma.2014.02.053
Huse, K., Böhme, H.-J., & Scholz, G. H. (2002). Purification of
antibodies by affinity chromatography. Journal of Biochemical and
Biophysical Methods , 51 (3), 217–231.
https://doi.org/10.1016/S0165-022X(02)00017-9
Kelley, B. D., Tannatt, M., Magnusson, R., Hagelberg, S., & Booth, J.
(2004). Development and validation of an affinity chromatography step
using a peptide ligand for cGMP production of factor VIII.Biotechnology and Bioengineering , 87 (3), 400–412.
https://doi.org/10.1002/bit.20124
Kish, W. S., Roach, M. K., Sachi, H., Naik, A. D., Menegatti, S., &
Carbonell, R. G. (2018). Purification of human erythropoietin by
affinity chromatography using cyclic peptide ligands. Journal of
Chromatography B , 1085 , 1–12.
https://doi.org/10.1016/j.jchromb.2018.03.039
Koide, S., Koide, A., & Lipovšek, D. (2012). Target-Binding Proteins
Based on the 10th Human Fibronectin Type III Domain (10Fn3). InMethods in Enzymology (Vol. 503, pp. 135–156). Elsevier.
http://linkinghub.elsevier.com/retrieve/pii/B9780123969620000069
Lee, W.-C., & Chen, C.-H. (2001). Predicting the elution behavior of
proteins in affinity chromatography on non-porous particles.Journal of Biochemical and Biophysical Methods , 49 (1–3),
63–82. https://doi.org/10.1016/S0165-022X(01)00189-0
Lipovsek, D. (2011). Adnectins: Engineered target-binding protein
therapeutics. Protein Engineering Design and Selection ,24 (1–2), 3–9. https://doi.org/10.1093/protein/gzq097
MacEwan, S. R., Hassouneh, W., & Chilkoti, A. (2014).
Non-chromatographic purification of recombinant elastin-like
polypeptides and their fusions with peptides and proteins from
Escherichia coli. Journal of Visualized Experiments: JoVE ,88 . https://doi.org/10.3791/51583
Madan, B., Chaudhary, G., Cramer, S. M., & Chen, W. (2013). ELP-z and
ELP-zz capturing scaffolds for the purification of immunoglobulins by
affinity precipitation. Journal of Biotechnology , 163 (1),
10–16. https://doi.org/10.1016/j.jbiotec.2012.10.007
Meyer, D. E., & Chilkoti, A. (1999). Purification of recombinant
proteins by fusion with thermally-responsive polypeptides. Nature
Biotechnology , 17 (11), 1112–1115. https://doi.org/10.1038/15100
Mitchell, T., Chao, G., Sitkoff, D., Lo, F., Monshizadegan, H., Meyers,
D., Low, S., Russo, K., DiBella, R., Denhez, F., Gao, M., Myers, J.,
Duke, G., Witmer, M., Miao, B., Ho, S. P., Khan, J., & Parker, R. A.
(2014). Pharmacologic Profile of the Adnectin BMS-962476, a Small
Protein Biologic Alternative to PCSK9 Antibodies for Low-Density
Lipoprotein Lowering. Journal of Pharmacology and Experimental
Therapeutics , 350 (2), 412–424.
https://doi.org/10.1124/jpet.114.214221
Mullerpatan, A., Chandra, D., Kane, E., Karande, P., & Cramer, S.
(2020). Purification of proteins using peptide-ELP based affinity
precipitation. Journal of Biotechnology , 309 , 59–67.
https://doi.org/10.1016/j.jbiotec.2019.12.012
Nascimento, A., Mullerpatan, A., Azevedo, A. M., Karande, P., & Cramer,
S. (2019). Development of phage biopanning strategies to identify
affinity peptide ligands for kappa light chain Fab fragments.Biotechnology Progress . https://doi.org/10.1002/btpr.2884
Nixon, A. E., Sexton, D. J., & Ladner, R. C. (2014). Drugs derived from
phage display: From candidate identification to clinical practice.MAbs , 6 (1), 73–85. https://doi.org/10.4161/mabs.27240
Sheth, R. D., Bhut, B. V., Jin, M., Li, Z., Chen, W., & Cramer, S. M.
(2014). Development of an ELP-Z based mAb affinity precipitation process
using scaled-down filtration techniques. Journal of
Biotechnology , 192 , 11–19.
https://doi.org/10.1016/j.jbiotec.2014.09.020
Sheth, R. D., Jin, M., Bhut, B. V., Li, Z., Chen, W., & Cramer, S. M.
(2014). Affinity precipitation of a monoclonal antibody from an
industrial harvest feedstock using an ELP-Z stimuli responsive
biopolymer: Affinity Precipitation of a Monoclonal Antibody.Biotechnology and Bioengineering , 111 (8), 1595–1603.
https://doi.org/10.1002/bit.25230
Sheth, R. D., Madan, B., Chen, W., & Cramer, S. M. (2013).
High-throughput screening for the development of a monoclonal antibody
affinity precipitation step using ELP-z stimuli responsive biopolymers:
HTS for Monoclonal Antibody Affinity Precipitation. Biotechnology
and Bioengineering , 110 (10), 2664–2676.
https://doi.org/10.1002/bit.24945
Shukla, D., Zamolo, L., Cavallotti, C., & Trout, B. L. (2011).
Understanding the Role of Arginine as an Eluent in Affinity
Chromatography via Molecular Computations. The Journal of Physical
Chemistry B , 115 (11), 2645–2654.
https://doi.org/10.1021/jp111156z
Tsumoto, K., Ejima, D., Senczuk, A. M., Kita, Y., & Arakawa, T. (2007).
Effects of salts on protein–surface interactions: Applications for
column chromatography. Journal of Pharmaceutical Sciences ,96 (7), 1677–1690. https://doi.org/10.1002/jps.20821
Wu, J., Park, J. P., Dooley, K., Cropek, D. M., West, A. C., & Banta,
S. (2011). Rapid Development of New Protein Biosensors Utilizing
Peptides Obtained via Phage Display. PLoS ONE , 6 (10),
e24948. https://doi.org/10.1371/journal.pone.0024948
Yang, H., Gurgel, P. V., & Carbonell, R. G. (2008). Hexamer peptide
affinity resins that bind the Fc region of human immunoglobulin G:
Fc-binding hexamer peptide resins. The Journal of Peptide
Research , 66 , 120–137.
https://doi.org/10.1111/j.1747-0285.2006.00342.x
Yeboah, A., Cohen, R. I., Rabolli, C., Yarmush, M. L., & Berthiaume, F.
(2016). Elastin-like polypeptides: A strategic fusion partner for
biologics: Elastin-Like Polypeptides. Biotechnology and
Bioengineering , 113 (8), 1617–1627.
https://doi.org/10.1002/bit.25998
Table 1: Peptide sequences, along
with their frequency of occurrence, obtained post 3 phage display
biopanning rounds.