References
Ait-Mou, Y., Hsu, K., Farman, G.P., Kumar, M., Greaser, M.L., Irving,
T.C., et al. (2016). Titin strain contributes to the Frank-Starling law
of the heart by structural rearrangements of both thin- and
thick-filament proteins. Proc Natl Acad Sci U S A 113 :
2306–2311.
Aljaroudi, W., Alraies, M.C., Halley, C., Rodriguez, L., Grimm, R.A.,
Thomas, J.D., et al. (2012). Impact of progression of diastolic
dysfunction on mortality in patients with normal ejection fraction.
Circulation 125 : 782–788.
Ambrosy, A.P., Fonarow, G.C., Butler, J., Chioncel, O., Greene, S.J.,
Vaduganathan, M., et al. (2014). The global health and economic burden
of hospitalizations for heart failure: lessons learned from hospitalized
heart failure registries. J. Am. Coll. Cardiol. 63 : 1123–1133.
Anderson, R.L., Trivedi, D. V, Sarkar, S.S., Henze, M., Ma, W., Gong,
H., et al. (2018). Deciphering the super relaxed state of human
beta-cardiac myosin and the mode of action of mavacamten from myosin
molecules to muscle fibers. Proc. Natl. Acad. Sci. U. S. A. 115 :
E8143–E8152.
Blair, C.A., Haynes, P., Campbell, S.G., Chung, C., Mitov, M.I., Dennis,
D., et al. (2016). A Protocol for Collecting Human Cardiac Tissue for
Research. VAD J. J. Mech. Assist. Circ. Hear. Fail. 2 :.
Brandt, P.W., Lopez, E., Reuben, J.P., and Grundfest, H. (1967). The
relationship between myofilament packing density and sarcomere length in
frog striated muscle. J Cell Biol 33 : 255–263.
Brunello, E., Fusi, L., Ghisleni, A., Park-Holohan, S.J., Ovejero, J.G.,
Narayanan, T., et al. (2020). Myosin filament-based regulation of the
dynamics of contraction in heart muscle. Proc. Natl. Acad. Sci. U. S. A.117 : 8177–8186.
Campbell, K.B., Chandra, M., Kirkpatrick, R.D., Slinker, B.K., and
Hunter, W.C. (2004). Interpreting cardiac muscle force-length dynamics
using a novel functional model. Am J Physiol Hear. Circ Physiol.286 : H1535-H1545.
Campbell, K.S. (2017). Super-relaxation helps muscles work more
efficiently. J. Physiol. 595 : 1007–1008.
Campbell, K.S., Janssen, P.M.L., and Campbell, S.G. (2018).
Force-Dependent Recruitment from the Myosin Off State Contributes to
Length-Dependent Activation. Biophys. J. 115 : 543–553.
Cleland, J.G., Teerlink, J.R., Senior, R., Nifontov, E.M., Mc Murray,
J.J., Lang, C.C., et al. (2011). The effects of the cardiac myosin
activator, omecamtiv mecarbil, on cardiac function in systolic heart
failure: a double-blind, placebo-controlled, crossover, dose-ranging
phase 2 trial. Lancet 378 : 676–683.
Fusi, L., Brunello, E., Yan, Z., and Irving, M. (2016). Thick filament
mechano-sensing is a calcium-independent regulatory mechanism in
skeletal muscle. Nat. Commun. 7 : 13281.
Fusi, L., Percario, V., Brunello, E., Caremani, M., Bianco, P., Powers,
J.D., et al. (2017). Minimum number of myosin motors accounting for
shortening velocity under zero load in skeletal muscle. J. Physiol.595 : 1127–1142.
Godt, R.E., and Lindley, B.D. (1982). Influence of temperature upon
contractile activation and isometric force production in mechanically
skinned muscle fibers of the frog. J Gen Physiol 80 : 279–297.
Gollapudi, S.K., Reda, S.M., and Chandra, M. (2017). Omecamtiv Mecarbil
Abolishes Length-Mediated Increase in Guinea Pig Cardiac Myofiber Ca2+
Sensitivity. Biophys. J. 113 : 880–888.
Gordon, A.M., Homsher, E., and Regnier, M. (2000). Regulation of
contraction in striated muscle. Physiol. Rev. 80 : 853–924.
Green, E.M., Wakimoto, H., Anderson, R.L., Evanchik, M.J., Gorham, J.M.,
Harrison, B.C., et al. (2016). A small-molecule inhibitor of sarcomere
contractility suppresses hypertrophic cardiomyopathy in mice. Science
(80-. ). 351 : 617–621.
Grillo, M.P., Erve, J.C.L., Dick, R., Driscoll, J.P., Haste, N.,
Markova, S., et al. (2018). In vitro and in vivo pharmacokinetic
characterization of mavacamten, a first-in-class small molecule
allosteric modulator of beta cardiac myosin. Xenobiotica. 1–16.
Haynes, P., Nava, K.E., Lawson, B.A., Chung, C.S., Mitov, M.I.,
Campbell, S.G., et al. (2014). Transmural heterogeneity of cellular
level power output is reduced in human heart failure. J Mol Cell Cardiol72 : 1–8.
Heitner, S.B., Jacoby, D., Lester, S.J., Owens, A., Wang, A., Zhang, D.,
et al. (2019). Mavacamten treatment for obstructive hypertrophic
cardiomyopathy a clinical trial. Ann. Intern. Med. 170 : 741–748.
Henze, M., Ma, W., Wong, F., Gong, H., Anderson, R.L., Rio, C. del, et
al. (2019). Length Dependent Activation in Porcine Cardiac Myofilaments
is Modulated by Mavacamten. Circ. Res. 125 :.
Hooijman, P., Stewart, M.A., and Cooke, R. (2011). A new state of
cardiac myosin with very slow ATP turnover: a potential cardioprotective
mechanism in the heart. Biophys. J. 100 : 1969–1976.
Huxley, H., and Hanson, J. (1954). Changes in the Cross-striations of
muscle during contraction and stretch and their structural
interpretation. Nature 173 : 973–976.
Kampourakis, T., Sun, Y.-B., and Irving, M. (2016). Myosin light chain
phosphorylation enhances contraction of heart muscle via structural
changes in both thick and thin filaments. Proc. Natl. Acad. Sci. U. S.
A. 113 : E3039–E3047.
Kawai, M., and Brandt, P. (1980). Sinusoidal analysis: a high resolution
method for correlating biochemical reactions with physiological
processes in activated skeletal muscles of rabbit, frog and crayfish. J
Muscle Res Cell Motil 1 : 279–303.
Kawas, R.F.F., Anderson, R.L., Ingle, S.R.B.R.B., Song, Y., Sran,
A.S.S., Rodriguez, H.M.M., et al. (2017). A small-molecule modulator of
cardiac myosin acts on multiple stages of the myosin chemomechanical
cycle. J. Biol. Chem. 292 : 16571–16577.
Klein, M.D., Lane, F.J., and Gorlin, R. (1965). Effect of left
ventricular size and shape upon the hemodynamics of subaortic stenosis.
Am. J. Cardiol. 15 : 773–81.
Lekavich, C.L., Barksdale, D.J., Neelon, V., and Wu, J.R. (2015). Heart
failure preserved ejection fraction (HFpEF): an integrated and strategic
review. Heart Fail. Rev. 20 : 643–653.
Linari, M., Brunello, E., Reconditi, M., Fusi, L., Caremani, M.,
Narayanan, T., et al. (2015). Force generation by skeletal muscle is
controlled by mechanosensing in myosin filaments. Nature 528 :
276–279.
Liu, C., Kawana, M., Song, D., Ruppel, K.M., and Spudich, J.A. (2018).
Controlling load-dependent kinetics of β-cardiac myosin at the
single-molecule level. Nat. Struct. Mol. Biol. 25 : 505–514.
Lymn, R.W., and Taylor, E.W. (1971). Mechanism of adenosine triphosphate
hydrolysis by actomyosin. Biochemistry 10 : 4617–4624.
Malik, F.I., Hartman, J.J., Elias, K.A., Morgan, B.P., Rodriguez, H.,
Brejc, K., et al. (2011). Cardiac myosin activation: a potential
therapeutic approach for systolic heart failure. Science (80-. ).331 : 1439–1443.
Mamidi, R., Li, J., Doh, C.Y., Verma, S., and Stelzer, J.E. (2018).
Impact of the Myosin Modulator Mavacamten on Force Generation and
Cross-Bridge Behavior in a Murine Model of Hypercontractility. J. Am.
Heart Assoc. 7 : e009627.
Maron, B.J., Gardin, J.M., Flack, J.M., Gidding, S.S., Kurosaki, T.T.,
and Bild, D.E. (1995). Prevalence of hypertrophic cardiomyopathy in a
general population of young adults: Echocardiographic analysis of 4111
subjects in the CARDIA study. Circulation 92 : 785–789.
McNamara, J.W., Li, A., Lal, S., Bos, J.M., Harris, S.P., Velden, J. van
der, et al. (2017). MYBPC3 mutations are associated with a reduced
super-relaxed state in patients with hypertrophic cardiomyopathy. PLoS
One 12 : e0180064.
McNamara, J.W., Li, A., Remedios, C.G. Dos, and Cooke, R. (2015). The
role of super-relaxed myosin in skeletal and cardiac muscle. Biophys.
Rev. 7 : 5–14.
Moore, J.R., Leinwand, L., and Warshaw, D.M. (2012). Understanding
cardiomyopathy phenotypes based on the functional impact of mutations in
the myosin motor. Circ Res 111 : 375–385.
Mozaffarian, D., Benjamin, E.J., Go, A.S., Arnett, D.K., Blaha, M.J.,
Cushman, M., et al. (2016). Heart disease and stroke statistics-2016
update a report from the American Heart Association.
Mulieri, L.A., Barnes, W.D., Leavett, B.J., Ittleman, F., LeWinter,
M.M., Alpert, N.R., et al. (2002). Alterations of myocardial dynamic
stiffness implicating abnormal crossbridge function in human mitral
regurgitation heart failure. Circ Res 90 : 66–72.
Palmer, B.M., Suzuki, T., Wang, Y., Barnes, W.D., Miller, M.S., and
Maughan, D.W. (2007). Two-state model of acto-myosin
attachment-detachment predicts C-process of sinusoidal analysis. Biophys
J 93 : 760–769.
Palmer, B.M., Wang, Y., and Miller, M.S. (2011). Distribution of myosin
attachment times predicted from viscoelastic mechanics of striated
muscle. J. Biomed. Biotechnol. 2011 : 592343.
Piazzesi, G., Caremani, M., Linari, M., Reconditi, M., and Lombardi, V.
(2018). Thick Filament Mechano-Sensing in Skeletal and Cardiac Muscles:
A Common Mechanism Able to Adapt the Energetic Cost of the Contraction
to the Task. Front. Physiol. 9 : 736.
Reconditi, M., Caremani, M., Pinzauti, F., Powers, J.D., Narayanan, T.,
Stienen, G.J.M., et al. (2017). Myosin filament activation in the heart
is tuned to the mechanical task. Proc. Natl. Acad. Sci. U. S. A.114 : 3240–3245.
Rohde, J.A., Roopnarine, O., Thomas, D.D., Muretta, J., and Hall, J.
(2018). Mavacamten stabilizes an autoinhibited state of two-headed
cardiac myosin. Proc. Natl. Acad. Sci. U. S. A. 115 :
E7486–E7494.
Scellini, B., Piroddi, N., Dente, M., Ferrantini, C., Coppini, R.,
Poggesi, C., et al. (2020). Impact of Mavacamten on Force Generation in
Single Myofibrils from Rabbit Psoas and Human Cardiac Muscle. Biophys.
J. 118 : 7a.
Semsarian, C., Ingles, J., Maron, M.S., and Maron, B.J. (2015). New
perspectives on the prevalence of hypertrophic cardiomyopathy. J. Am.
Coll. Cardiol. 65 : 1249–1254.
Spudich, J.A. (2015). The myosin mesa and a possible unifying hypothesis
for the molecular basis of human hypertrophic cardiomyopathy. Biochem.
Soc. Trans. 43 : 64–72.
Stern, J.A., Markova, S., Ueda, Y., Kim, J.B., Pascoe, P.J., Evanchik,
M.J., et al. (2016). A Small Molecule Inhibitor of Sarcomere
Contractility Acutely Relieves Left Ventricular Outflow Tract
Obstruction in Feline Hypertrophic Cardiomyopathy. PLoS One 11 :
e0168407.
Stewart, S., Mason, D.T., and Braunwald, E. (1968). Impaired rate of
left ventricular filling in idiopathic hypertrophic subaortic stenosis
and valvular aortic stenosis. Circulation 37 : 8–14.
Teerlink, J.R., Felker, G.M., McMurray, J.J. V, Solomon, S.D., Adams,
K.F., Cleland, J.G.F., et al. (2016). Chronic Oral Study of Myosin
Activation to Increase Contractility in Heart Failure (COSMIC-HF): a
phase 2, pharmacokinetic, randomised, placebo-controlled trial. Lancet388 : 2895–2903.
Toepfer, C.N., Sharma, A., Cicconet, M., Garfinkel, A.C., Mücke, M.,
Neyazi, M., et al. (2019a). SarcTrack. Circ. Res. 124 :
1172–1183.
Toepfer, C.N., Wakimoto, H., Garfinkel, A.C., McDonough, B., Liao, D.,
Jiang, J., et al. (2019b). Hypertrophic cardiomyopathy mutations in
MYBPC3 dysregulate myosin. Sci. Transl. Med. 11 :.
Tuohy, C.V., Kaul, S., Song, H.K., Nazer, B., and Heitner, S.B. (2020).
Hypertrophic cardiomyopathy: the future of treatment. Eur. J. Heart
Fail. 22 : 228–240.
Wilson, W.S., Criley, J.M., and Ross, R.S. (1967). Dynamics of left
ventricular emptying in hypertrophic subaortic stenosis. A
cineangiographic and hemodynamic study. Am. Heart J. 73 : 4–16.
Zhang, X., Kampourakis, T., Yan, Z., Sevrieva, I., Irving, M., and Sun,
Y.-B. (2017). Distinct contributions of the thin and thick filaments to
length-dependent activation in heart muscle. Elife 6 : e24081.