References
Ait-Mou, Y., Hsu, K., Farman, G.P., Kumar, M., Greaser, M.L., Irving, T.C., et al. (2016). Titin strain contributes to the Frank-Starling law of the heart by structural rearrangements of both thin- and thick-filament proteins. Proc Natl Acad Sci U S A 113 : 2306–2311.
Aljaroudi, W., Alraies, M.C., Halley, C., Rodriguez, L., Grimm, R.A., Thomas, J.D., et al. (2012). Impact of progression of diastolic dysfunction on mortality in patients with normal ejection fraction. Circulation 125 : 782–788.
Ambrosy, A.P., Fonarow, G.C., Butler, J., Chioncel, O., Greene, S.J., Vaduganathan, M., et al. (2014). The global health and economic burden of hospitalizations for heart failure: lessons learned from hospitalized heart failure registries. J. Am. Coll. Cardiol. 63 : 1123–1133.
Anderson, R.L., Trivedi, D. V, Sarkar, S.S., Henze, M., Ma, W., Gong, H., et al. (2018). Deciphering the super relaxed state of human beta-cardiac myosin and the mode of action of mavacamten from myosin molecules to muscle fibers. Proc. Natl. Acad. Sci. U. S. A. 115 : E8143–E8152.
Blair, C.A., Haynes, P., Campbell, S.G., Chung, C., Mitov, M.I., Dennis, D., et al. (2016). A Protocol for Collecting Human Cardiac Tissue for Research. VAD J. J. Mech. Assist. Circ. Hear. Fail. 2 :.
Brandt, P.W., Lopez, E., Reuben, J.P., and Grundfest, H. (1967). The relationship between myofilament packing density and sarcomere length in frog striated muscle. J Cell Biol 33 : 255–263.
Brunello, E., Fusi, L., Ghisleni, A., Park-Holohan, S.J., Ovejero, J.G., Narayanan, T., et al. (2020). Myosin filament-based regulation of the dynamics of contraction in heart muscle. Proc. Natl. Acad. Sci. U. S. A.117 : 8177–8186.
Campbell, K.B., Chandra, M., Kirkpatrick, R.D., Slinker, B.K., and Hunter, W.C. (2004). Interpreting cardiac muscle force-length dynamics using a novel functional model. Am J Physiol Hear. Circ Physiol.286 : H1535-H1545.
Campbell, K.S. (2017). Super-relaxation helps muscles work more efficiently. J. Physiol. 595 : 1007–1008.
Campbell, K.S., Janssen, P.M.L., and Campbell, S.G. (2018). Force-Dependent Recruitment from the Myosin Off State Contributes to Length-Dependent Activation. Biophys. J. 115 : 543–553.
Cleland, J.G., Teerlink, J.R., Senior, R., Nifontov, E.M., Mc Murray, J.J., Lang, C.C., et al. (2011). The effects of the cardiac myosin activator, omecamtiv mecarbil, on cardiac function in systolic heart failure: a double-blind, placebo-controlled, crossover, dose-ranging phase 2 trial. Lancet 378 : 676–683.
Fusi, L., Brunello, E., Yan, Z., and Irving, M. (2016). Thick filament mechano-sensing is a calcium-independent regulatory mechanism in skeletal muscle. Nat. Commun. 7 : 13281.
Fusi, L., Percario, V., Brunello, E., Caremani, M., Bianco, P., Powers, J.D., et al. (2017). Minimum number of myosin motors accounting for shortening velocity under zero load in skeletal muscle. J. Physiol.595 : 1127–1142.
Godt, R.E., and Lindley, B.D. (1982). Influence of temperature upon contractile activation and isometric force production in mechanically skinned muscle fibers of the frog. J Gen Physiol 80 : 279–297.
Gollapudi, S.K., Reda, S.M., and Chandra, M. (2017). Omecamtiv Mecarbil Abolishes Length-Mediated Increase in Guinea Pig Cardiac Myofiber Ca2+ Sensitivity. Biophys. J. 113 : 880–888.
Gordon, A.M., Homsher, E., and Regnier, M. (2000). Regulation of contraction in striated muscle. Physiol. Rev. 80 : 853–924.
Green, E.M., Wakimoto, H., Anderson, R.L., Evanchik, M.J., Gorham, J.M., Harrison, B.C., et al. (2016). A small-molecule inhibitor of sarcomere contractility suppresses hypertrophic cardiomyopathy in mice. Science (80-. ). 351 : 617–621.
Grillo, M.P., Erve, J.C.L., Dick, R., Driscoll, J.P., Haste, N., Markova, S., et al. (2018). In vitro and in vivo pharmacokinetic characterization of mavacamten, a first-in-class small molecule allosteric modulator of beta cardiac myosin. Xenobiotica. 1–16.
Haynes, P., Nava, K.E., Lawson, B.A., Chung, C.S., Mitov, M.I., Campbell, S.G., et al. (2014). Transmural heterogeneity of cellular level power output is reduced in human heart failure. J Mol Cell Cardiol72 : 1–8.
Heitner, S.B., Jacoby, D., Lester, S.J., Owens, A., Wang, A., Zhang, D., et al. (2019). Mavacamten treatment for obstructive hypertrophic cardiomyopathy a clinical trial. Ann. Intern. Med. 170 : 741–748.
Henze, M., Ma, W., Wong, F., Gong, H., Anderson, R.L., Rio, C. del, et al. (2019). Length Dependent Activation in Porcine Cardiac Myofilaments is Modulated by Mavacamten. Circ. Res. 125 :.
Hooijman, P., Stewart, M.A., and Cooke, R. (2011). A new state of cardiac myosin with very slow ATP turnover: a potential cardioprotective mechanism in the heart. Biophys. J. 100 : 1969–1976.
Huxley, H., and Hanson, J. (1954). Changes in the Cross-striations of muscle during contraction and stretch and their structural interpretation. Nature 173 : 973–976.
Kampourakis, T., Sun, Y.-B., and Irving, M. (2016). Myosin light chain phosphorylation enhances contraction of heart muscle via structural changes in both thick and thin filaments. Proc. Natl. Acad. Sci. U. S. A. 113 : E3039–E3047.
Kawai, M., and Brandt, P. (1980). Sinusoidal analysis: a high resolution method for correlating biochemical reactions with physiological processes in activated skeletal muscles of rabbit, frog and crayfish. J Muscle Res Cell Motil 1 : 279–303.
Kawas, R.F.F., Anderson, R.L., Ingle, S.R.B.R.B., Song, Y., Sran, A.S.S., Rodriguez, H.M.M., et al. (2017). A small-molecule modulator of cardiac myosin acts on multiple stages of the myosin chemomechanical cycle. J. Biol. Chem. 292 : 16571–16577.
Klein, M.D., Lane, F.J., and Gorlin, R. (1965). Effect of left ventricular size and shape upon the hemodynamics of subaortic stenosis. Am. J. Cardiol. 15 : 773–81.
Lekavich, C.L., Barksdale, D.J., Neelon, V., and Wu, J.R. (2015). Heart failure preserved ejection fraction (HFpEF): an integrated and strategic review. Heart Fail. Rev. 20 : 643–653.
Linari, M., Brunello, E., Reconditi, M., Fusi, L., Caremani, M., Narayanan, T., et al. (2015). Force generation by skeletal muscle is controlled by mechanosensing in myosin filaments. Nature 528 : 276–279.
Liu, C., Kawana, M., Song, D., Ruppel, K.M., and Spudich, J.A. (2018). Controlling load-dependent kinetics of β-cardiac myosin at the single-molecule level. Nat. Struct. Mol. Biol. 25 : 505–514.
Lymn, R.W., and Taylor, E.W. (1971). Mechanism of adenosine triphosphate hydrolysis by actomyosin. Biochemistry 10 : 4617–4624.
Malik, F.I., Hartman, J.J., Elias, K.A., Morgan, B.P., Rodriguez, H., Brejc, K., et al. (2011). Cardiac myosin activation: a potential therapeutic approach for systolic heart failure. Science (80-. ).331 : 1439–1443.
Mamidi, R., Li, J., Doh, C.Y., Verma, S., and Stelzer, J.E. (2018). Impact of the Myosin Modulator Mavacamten on Force Generation and Cross-Bridge Behavior in a Murine Model of Hypercontractility. J. Am. Heart Assoc. 7 : e009627.
Maron, B.J., Gardin, J.M., Flack, J.M., Gidding, S.S., Kurosaki, T.T., and Bild, D.E. (1995). Prevalence of hypertrophic cardiomyopathy in a general population of young adults: Echocardiographic analysis of 4111 subjects in the CARDIA study. Circulation 92 : 785–789.
McNamara, J.W., Li, A., Lal, S., Bos, J.M., Harris, S.P., Velden, J. van der, et al. (2017). MYBPC3 mutations are associated with a reduced super-relaxed state in patients with hypertrophic cardiomyopathy. PLoS One 12 : e0180064.
McNamara, J.W., Li, A., Remedios, C.G. Dos, and Cooke, R. (2015). The role of super-relaxed myosin in skeletal and cardiac muscle. Biophys. Rev. 7 : 5–14.
Moore, J.R., Leinwand, L., and Warshaw, D.M. (2012). Understanding cardiomyopathy phenotypes based on the functional impact of mutations in the myosin motor. Circ Res 111 : 375–385.
Mozaffarian, D., Benjamin, E.J., Go, A.S., Arnett, D.K., Blaha, M.J., Cushman, M., et al. (2016). Heart disease and stroke statistics-2016 update a report from the American Heart Association.
Mulieri, L.A., Barnes, W.D., Leavett, B.J., Ittleman, F., LeWinter, M.M., Alpert, N.R., et al. (2002). Alterations of myocardial dynamic stiffness implicating abnormal crossbridge function in human mitral regurgitation heart failure. Circ Res 90 : 66–72.
Palmer, B.M., Suzuki, T., Wang, Y., Barnes, W.D., Miller, M.S., and Maughan, D.W. (2007). Two-state model of acto-myosin attachment-detachment predicts C-process of sinusoidal analysis. Biophys J 93 : 760–769.
Palmer, B.M., Wang, Y., and Miller, M.S. (2011). Distribution of myosin attachment times predicted from viscoelastic mechanics of striated muscle. J. Biomed. Biotechnol. 2011 : 592343.
Piazzesi, G., Caremani, M., Linari, M., Reconditi, M., and Lombardi, V. (2018). Thick Filament Mechano-Sensing in Skeletal and Cardiac Muscles: A Common Mechanism Able to Adapt the Energetic Cost of the Contraction to the Task. Front. Physiol. 9 : 736.
Reconditi, M., Caremani, M., Pinzauti, F., Powers, J.D., Narayanan, T., Stienen, G.J.M., et al. (2017). Myosin filament activation in the heart is tuned to the mechanical task. Proc. Natl. Acad. Sci. U. S. A.114 : 3240–3245.
Rohde, J.A., Roopnarine, O., Thomas, D.D., Muretta, J., and Hall, J. (2018). Mavacamten stabilizes an autoinhibited state of two-headed cardiac myosin. Proc. Natl. Acad. Sci. U. S. A. 115 : E7486–E7494.
Scellini, B., Piroddi, N., Dente, M., Ferrantini, C., Coppini, R., Poggesi, C., et al. (2020). Impact of Mavacamten on Force Generation in Single Myofibrils from Rabbit Psoas and Human Cardiac Muscle. Biophys. J. 118 : 7a.
Semsarian, C., Ingles, J., Maron, M.S., and Maron, B.J. (2015). New perspectives on the prevalence of hypertrophic cardiomyopathy. J. Am. Coll. Cardiol. 65 : 1249–1254.
Spudich, J.A. (2015). The myosin mesa and a possible unifying hypothesis for the molecular basis of human hypertrophic cardiomyopathy. Biochem. Soc. Trans. 43 : 64–72.
Stern, J.A., Markova, S., Ueda, Y., Kim, J.B., Pascoe, P.J., Evanchik, M.J., et al. (2016). A Small Molecule Inhibitor of Sarcomere Contractility Acutely Relieves Left Ventricular Outflow Tract Obstruction in Feline Hypertrophic Cardiomyopathy. PLoS One 11 : e0168407.
Stewart, S., Mason, D.T., and Braunwald, E. (1968). Impaired rate of left ventricular filling in idiopathic hypertrophic subaortic stenosis and valvular aortic stenosis. Circulation 37 : 8–14.
Teerlink, J.R., Felker, G.M., McMurray, J.J. V, Solomon, S.D., Adams, K.F., Cleland, J.G.F., et al. (2016). Chronic Oral Study of Myosin Activation to Increase Contractility in Heart Failure (COSMIC-HF): a phase 2, pharmacokinetic, randomised, placebo-controlled trial. Lancet388 : 2895–2903.
Toepfer, C.N., Sharma, A., Cicconet, M., Garfinkel, A.C., Mücke, M., Neyazi, M., et al. (2019a). SarcTrack. Circ. Res. 124 : 1172–1183.
Toepfer, C.N., Wakimoto, H., Garfinkel, A.C., McDonough, B., Liao, D., Jiang, J., et al. (2019b). Hypertrophic cardiomyopathy mutations in MYBPC3 dysregulate myosin. Sci. Transl. Med. 11 :.
Tuohy, C.V., Kaul, S., Song, H.K., Nazer, B., and Heitner, S.B. (2020). Hypertrophic cardiomyopathy: the future of treatment. Eur. J. Heart Fail. 22 : 228–240.
Wilson, W.S., Criley, J.M., and Ross, R.S. (1967). Dynamics of left ventricular emptying in hypertrophic subaortic stenosis. A cineangiographic and hemodynamic study. Am. Heart J. 73 : 4–16.
Zhang, X., Kampourakis, T., Yan, Z., Sevrieva, I., Irving, M., and Sun, Y.-B. (2017). Distinct contributions of the thin and thick filaments to length-dependent activation in heart muscle. Elife 6 : e24081.