References
Abramowitz, G.,, 2012: Towards a public, standardized, diagnostic
benchmarking system for land surface models. Geosci. Model Dev., 5,
819–827, doi:10.5194/gmd-5-819-2012.5, 819–827,
doi:10.5194/gmd-5-819-2012.
Best, M.J., Abramowitz, G., Johnson, H.R., Pitman, A.J., Balsamo, G.,
Boone, A., Cuntz, M., Decharme, B., Dirmeyer, P.A., Dong, J. and Ek, M.,
2015. The plumbing of land surface models: benchmarking model
performance. Journal of Hydrometeorology , 16 (3),
1425-1442.
Beven,
K J, 2006, A manifesto for the equifinality thesis, J. Hydrology ,
320, 18-36.
Beven, K J, 2007, Working towards integrated environmental models of
everywhere: uncertainty, data, and modelling as a learning process.Hydrology and Earth System Science, 11(1), 460-467.
Beven, K J, 2018, On hypothesis testing in hydrology: why falsification
of models is still a really good idea, WIRES Water, 5(3), e1278, DOI:
10.1002/wat2.1278.
Beven, K. J., 2019, Towards a methodology for testing models as
hypotheses in the inexact sciences, Proceedings Royal Society A, 475
(2224), 20180862, doi: 10.1098/rspa.2018.0862
Beven, K. J., 2020, Deep Learning, Hydrological Processes and the
Uniqueness of Place, Hydrological Processes, 34(16), 3608-3613,
doi: 10.1002/hyp.13805
Beven, K.J. and A.M. Binley (1992), The future of distributed models:
model calibration and uncertainty prediction, Hydrological
Processes , 6, 279-298.
Beven, K J and Freer, J, 2001 Equifinality, data assimilation, and
uncertainty estimation in mechanistic modelling of complex environmental
systems, J. Hydrology, 249, 11-29.
Beven, K., Smith, P. J., and Wood, A., 2011, On the colour and spin of
epistemic error (and what we might do about it), Hydrol. Earth Syst.
Sci., 15, 3123-3133, doi: 10.5194/hess-15-3123-2011.
Beven, K J and Westerberg, I, 2011, On red herrings and real herrings:
disinformation and information in hydrological inference,Hydrological Processes (HPToday) , 25 , 1676–1680,
DOI: 10.1002/hyp.7963.
Beven, K. J. and Alcock, R., 2012, Modelling everything everywhere: a
new approach to decision making for water management under
uncertainty, Freshwater Biology, 56, 124-132,
doi:10.1111/j.1365-2427.2011.02592.x
Beven, K. J., and Smith, P. J., 2015, Concepts of Information Content
and Likelihood in Parameter Calibration for Hydrological Simulation
Models, ASCE J. Hydrol. Eng ., 20 (1), p.A4014010, doi:
10.1061/(ASCE)HE.1943-5584.0000991.
Beven, K. J. and Lane, S., 2019, Invalidation of models and
fitness-for-purpose: a rejectionist approach, Chapter 6 in: Beisbart, C.
& Saam, N. J. (eds.), Computer Simulation Validation -
Fundamental Concepts, Methodological Frameworks, and Philosophical
Perspectives , Cham: Springer. 145-171.
Beven, K. J. and Lane, S., 2022. On (in)validating environmental models.
1. Principles for formulating a Turing-like Test for determining when a
model is fit-for purpose. Hydrological Processes , 36(10), e14704,https://doi.org/10.1002/hyp.14704.
Beven, K. J., Lane, S., Page, T., Hankin, B, Kretzschmar, A., Smith, P.
J., Chappell, N., 2022a, On (in)validating environmental models. 2.
Implementation of the Turing-like Test to modelling hydrological
processes, Hydrological Processes , 36(10), e14703,
https://doi.org/10.1002/hyp.14703.
Beven, K. J., Page, T., Hankin, B, Smith, P.J., Kretzschmar, A.,
Mindham, D., Chappell, N., 2022b, Deciding on fitness-for-purpose - of
models and of natural flood management, Hydrological Processes,
36 (11), e14752,
https://doi.org/10.1002/hyp.14752.
Birkel, C. and Soulsby, C., 2015. Advancing tracer‐aided
rainfall–runoff modelling: A review of progress, problems and
unrealised potential. Hydrological Processes , 29 (25),
5227-5240.
Brazier, R. E., Beven, K. J., Freer, J. and Rowan, J. S., 2000,
Equifinality and uncertainty in physically-based soil erosion models:
application of the GLUE methodology to WEPP, the Water Erosion
Prediction Project – for sites in the UK and USA, Earth Surf.
Process. Landf. , 25, 825-845.
Buytaert, W and Beven, K J, 2009, Regionalisation as a learning process,Water Resour. Res. , 45, W11419, doi:10.1029/2008WR007359.
Cavadias, G. and Morin, G., 1986. The combination of simulated
discharges of hydrological models: Application to the WMO
intercomparison of conceptual models of snowmelt runoff. Hydrology
Research , 17 (1), 21-32.
Choi, H T and Beven, K J (2007) Multi-period and Multi-criteria Model
Conditioning to Reduce Prediction Uncertainty in Distributed
Rainfall-Runoff Modelling within GLUE framework, J. Hydrology,332 (3-4): 316-336
Clarke, R.T., 1999. Uncertainty in the estimation of mean annual flood
due to rating-curve indefinition. Journal of
Hydrology , 222 (1-4), 185-190
Costa, J.E. and Jarrett, R.D., 2008. An evaluation of selected
extraordinary floods in the United States reported by the US Geological
Survey and implications for future advancement of flood science (No.
2008-5164). US Geological Survey.
Coxon, G., Freer, J., Wagener, T., Odoni, N.A. and Clark, M., 2014.
Diagnostic evaluation of multiple hypotheses of hydrological behaviour
in a limits‐of‐acceptability framework for 24 UK
catchments. Hydrological Processes , 28 (25), 6135-6150.
Coxon, G., Freer, J., Westerberg, I.K., Wagener, T., Woods, R. and
Smith, P.J., 2015. A novel framework for discharge uncertainty
quantification applied to 500 UK gauging stations. Water resources
research , 51 (7), 5531-5546.
Crochemore, L., Perrin, C., Andréassian, V., Ehret, U., Seibert, S.P.,
Grimaldi, S., Gupta, H. and Paturel, J.E., 2015. Comparing expert
judgement and numerical criteria for hydrograph
evaluation. Hydrological sciences journal , 60 (3), 402-423.
Dean, S., Freer, J., Beven, K., Wade, A.J. and Butterfield, D., 2009.
Uncertainty assessment of a process-based integrated catchment model of
phosphorus. Stochastic Environmental Research and Risk
Assessment , 23 , 991-1010.
Delavau, C. J., Stadnyk, T., and Holmes, T., 2017, Examining the impacts
of precipitation isotope input
(δ 18Oppt) on distributed,
tracer-aided hydrological modelling, Hydrol. Earth Syst. Sci., 21,
2595–2614, https://doi.org/10.5194/hess-21-2595-2017.
Domeneghetti, A., Castellarin, A. and Brath, A., 2012. Assessing
rating-curve uncertainty and its effects on hydraulic model
calibration. Hydrology and Earth System Sciences , 16 (4),
1191-1202.
Environment Agency. (2010). Benchmarking of 2D hydraulic modelling
packages (Report No. SC080035/SR2), Environment Agency, Bristol, UK.
Environment Agency. (2013). Benchmarking the latest generation of 2D
hydraulic modelling packages (Final Technical Report Project SC120002).
Environment Agency, Bristol, UK.
Environment Agency. (2022). Flood Hydrology Roadmap. (Report No.
FRS18196/R1). Environment Agency, Bristol, UK.
Frame, J., Ullrich, P., Nearing, G., Gupta, H. and Kratzert, F., 2023.
On strictly enforced mass conservation constraints for modeling the
rainfall-runoff process. Hydrological Processes, 37(3), e14847,
https://doi.org/10.1002/hyp.14847
Gauch, M., Kratzert, F., Gilon, O., Gupta, H., Mai, J., Nearing, G.,
Tolson, B., Hochreiter, S. and Klotz, D., 2022. In Defense of Metrics:
Metrics Sufficiently Encode Typical Human Preferences Regarding
Hydrological Model Performance, eartharxiv,https://doi.org/10.31223/X52938
Georgakakos, K.P. and Smith, G.F., 1990. On improved hydrologic
forecasting—Results from a WMO real-time forecasting
experiment. Journal of Hydrology , 114 (1-2), 17-45.
Harmel, R. D., Smith, D. R., King, K. W., & Slade, R. M. (2009).
Estimating storm discharge and water quality data uncertainty: A
software tool for monitoring and modeling applications. Environmental
Modelling &Software, 24, 832e842.
Henderson-Sellers, A., K. McGuffie, and A. J. Pitman. ”The project for
intercomparison of land-surface parametrization schemes (PILPS): 1992 to
1995.” Climate Dynamics 12 (1996): 849-859.
Hollaway MJ, Beven KJ, Benskin C.McW.H., Collins, A.L., Evans, R.,
Falloon, P.D., Forber, K.J., Hiscock, K.M., Kahana, R., Macleod, C.J.A.,
Ockenden, M.C., Villamizar, M.L., Wearing, C., Withers, P.J.A., Zhou,
J.G., Barber, N. J. and Haygarth, P.M. 2018a, A method for uncertainty
constraint of catchment discharge and phosphorus load
estimates. Hydrological Processes . 32:2779- 2787.
https://doi.org/10.1002/hyp.13217
Hollaway, M.J., Beven, K.J., Benskin, C.McW.H., Collins, A.L., Evans,
R., Falloon, P.D., Forber, K.J., Hiscock, K.M., Kahana, R., Macleod,
C.J.A., Ockenden, M.C., Villamizar, M.L., Wearing, C., Withers, P.J.A.,
Zhou, J.G., Haygarth, P.M., 2018b, Evaluating a processed based water
quality model on a UK headwater catchment: what can we learn from a
‘limits of acceptability’ uncertainty framework?, J. Hydrology. 558: 607-624. Doi: 10.1016/j.jhydrol.2018.01.063.
Knoben, W.J., Freer, J.E. and Woods, R.A., 2019. Inherent benchmark or
not? Comparing Nash–Sutcliffe and Kling–Gupta efficiency
scores. Hydrology and Earth System Sciences , 23 (10),
4323-4331.
Kollet, S., Sulis, M., Maxwell, R.M., Paniconi, C., Putti, M., Bertoldi,
G., Coon, E.T., Cordano, E., Endrizzi, S., Kikinzon, E. and Mouche, E.,
2017. The integrated hydrologic model intercomparison project, IH‐MIP2:
A second set of benchmark results to diagnose integrated hydrology and
feedbacks. Water Resources Research , 53 (1), .867-890.
Krueger, T., Quinton, J.N., Freer, J., Macleod, C.J., Bilotta, G.S.,
Brazier, R.E., Butler, P. and Haygarth, P.M., 2009. Uncertainties in
data and models to describe event dynamics of agricultural sediment and
phosphorus transfer. Journal of Environmental
Quality , 38 (3), 1137-1148.
Lane, R.A., Coxon, G., Freer, J.E., Wagener, T., Johnes, P.J.,
Bloomfield, J.P., Greene, S., Macleod, C.J. and Reaney, S.M., 2019.
Benchmarking the predictive capability of hydrological models for river
flow and flood peak predictions across over 1000 catchments in Great
Britain. Hydrology and Earth System Sciences , 23 (10),
4011-4032.
Lees, T., Buechel, M., Anderson, B., Slater, L., Reece, S., Coxon, G.
and Dadson, S.J., 2021. Benchmarking data-driven rainfall–runoff models
in Great Britain: a comparison of long short-term memory (LSTM)-based
models with four lumped conceptual models. Hydrology and Earth
System Sciences , 25 (10),.5517-5534.
Liu, Y, Freer, JE, Beven, KJ and Matgen, P, 2009, Towards a limits of
acceptability approach to the calibration of hydrological models:
extending observation error, J. Hydrol. , 367:93-103,
doi:10.1016/j.jhydrol.2009.01.016.
Mai, J., Shen, H., Tolson, B.A., Gaborit, É., Arsenault, R., Craig,
J.R., Fortin, V., Fry, L.M., Gauch, M., Klotz, D. and Kratzert, F.,
2022. The Great Lakes Runoff Intercomparison Project Phase 4: the Great
Lakes (GRIP-GL). Hydrology and Earth System
Sciences , 26 (13), 3537-3572.
Maxwell, R.M., Putti, M., Meyerhoff, S., Delfs, J.O., Ferguson, I.M.,
Ivanov, V., Kim, J., Kolditz, O., Kollet, S.J., Kumar, M. and Lopez, S.,
2014. Surface‐subsurface model intercomparison: A first set of benchmark
results to diagnose integrated hydrology and feedbacks. Water
resources research , 50 (2), 1531-1549.
McMillan, H.K. and Westerberg, I.K., 2015. Rating curve estimation under
epistemic uncertainty. Hydrological Processes , 29 (7),
1873-1882.
McMillan, H.K., Westerberg, I.K. and Krueger, T., 2018. Hydrological
data uncertainty and its implications. Wiley Interdisciplinary
Reviews: Water , 5 (6), p.e1319.
Nearing, G.S., Mocko, D.M., Peters-Lidard, C.D., Kumar, S.V. and Xia,
Y., 2016. Benchmarking NLDAS-2 soil moisture and evapotranspiration to
separate uncertainty contributions. Journal of
hydrometeorology , 17 (3), 745-759.
Nearing, G.S., Ruddell, B.L., Clark, M.P., Nijssen, B. and
Peters-Lidard, C., 2018. Benchmarking and process diagnostics of land
models. Journal of Hydrometeorology , 19 (11), 1835-1852.
Nearing, G.S., Kratzert, F., Sampson, A.K., Pelissier, C.S., Klotz, D.,
Frame, J.M., Prieto, C. and Gupta, H.V., 2021. What role does
hydrological science play in the age of machine learning?. Water
Resources Research , 57 (3), p.e2020WR028091.
Newman, A.J., Mizukami, N., Clark, M.P., Wood, A.W., Nijssen, B. and
Nearing, G., 2017. Benchmarking of a physically based hydrologic
model. Journal of Hydrometeorology , 18 (8), 2215-2225.
Page, T., Beven, K.J. and Freer, J., 2007, Modelling the Chloride Signal
at the Plynlimon Catchments, Wales Using a Modified Dynamic TOPMODEL.Hydrological Processes, 21, 292-307.
Pappenberger, F., Ramos, M.H., Cloke, H.L., Wetterhall, F., Alfieri, L.,
Bogner, K., Mueller, A. and Salamon, P., 2015. How do I know if my
forecasts are better? Using benchmarks in hydrological ensemble
prediction. Journal of Hydrology , 522 , 697-713.
Perrin, C., Michel, C. and Andréassian, V., 2001. Does a large number of
parameters enhance model performance? Comparative assessment of common
catchment model structures on 429 catchments. Journal of
hydrology , 242 (3-4), 275-301.
Sittner, W.T., 1976. WMO project on intercomparison of conceptual models
used in hydrological forecasting. Hydrological Sciences
Journal , 21 (1), 203-213.
Smith, A., Tetzlaff, D., Kleine, L., Maneta, M. and Soulsby, C., 2021.
Quantifying the effects of land use and model scale on water
partitioning and water ages using tracer-aided ecohydrological
models. Hydrology and Earth System Sciences , 25 (4),
2239-2259.
Smith, M.B., Seo, D.J., Koren, V.I., Reed, S.M., Zhang, Z., Duan, Q.,
Moreda, F. and Cong, S., 2004. The distributed model intercomparison
project (DMIP): motivation and experiment design. Journal of
Hydrology , 298 (1-4), 4-26.
Smith, M.B., Koren, V., Reed, S., Zhang, Z., Zhang, Y., Moreda, F., Cui,
Z., Mizukami, N., Anderson, E.A. and Cosgrove, B.A., 2012. The
distributed model intercomparison project–Phase 2: Motivation and
design of the Oklahoma experiments. Journal of
Hydrology , 418 , 3-16.
Smith, M.B., Koren, V., Zhang, Z., Moreda, F., Cui, Z., Cosgrove, B.,
Mizukami, N., Kitzmiller, D., Ding, F., Reed, S. and Anderson, E., 2013.
The distributed model intercomparison project–Phase 2: Experiment
design and summary results of the western basin
experiments. Journal of Hydrology , 507 , 300-329.
Stevenson, J.L., Birkel, C., Neill, A.J., Tetzlaff, D. and Soulsby, C.,
2021. Effects of streamflow isotope sampling strategies on the
calibration of a tracer‐aided rainfall‐runoff model. Hydrological
Processes , 35 (6), p.e14223.
Westerberg, I., Guerrero, J.L., Seibert, J., Beven, K.J. and Halldin,
S., 2011. Stage‐discharge uncertainty derived with a non‐stationary
rating curve in the Choluteca River, Honduras. Hydrological
Processes , 25 (4), 603-613.
Westerberg, I.K., Sikorska-Senoner, A.E., Viviroli, D., Vis, M. and
Seibert, J., 2022. Hydrological model calibration with uncertain
discharge data. Hydrological Sciences Journal , 67 (16),
2441-2456.
Wi, S. and Steinschneider, S., 2022. Assessing the physical realism of
deep learning hydrologic model projections under climate
change. Water Resources Research , 58 (9), p.e2022WR032123.