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Abstract

The hypothesis that feed ingredients could serve as vehicles for the transport and transmission of

viral  pathogens  was  first  validated  under  laboratory  conditions.  To bridge  the  gap from the

laboratory to the field, this current project tested whether three significant viruses of swine could

survive in feed ingredients during long-distance commercial transport across the continental US.

One-metric ton totes of soybean meal (organic and conventional) and complete feed were spiked

with  a  10  mL mixture  of  PRRSV 174,  PEDV,  and SVA and transported  for  23  days  in  a

commercial semi-trailer truck, crossing 29 states, and 10,183 km. Samples were tested for the
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presence of viral RNA by PCR, and for viable virus in soy-based samples by swine bioassay and

in complete feed samples by natural feeding. Viable PRRSV, PEDV, and SVA were detected in

both soy products and viable PEDV and SVA in complete feed. These results provide the first

evidence that viral pathogens of pigs can survive in representative volumes of feed and feed

ingredients during long-distance commercial transport across the continental US.

Introduction

In 2014, it  was first  reported that  pigs could become infected  with porcine epidemic

diarrhea virus (PEDV) following consumption of contaminated feed via natural feeding behavior

(Dee et al., 2014). Since that time, similar observations have been reported for Seneca virus A

(SVA), porcine reproductive and respiratory syndrome virus (PRRSV), and African swine fever

virus (ASFV) (Niederwerder et al., 2019, Dee et al., 2020,). These and other studies have also

confirmed that certain feed ingredients, i.e.,  soy-based products, are protective to viruses and

enhance their survival for extended periods under simulated conditions of transoceanic shipping.

(Dee et al., 2015, Dee et al., 2016, Dee et al., 2018, Stoian et al., 2019, Stoian et al., 2019).  

In support of these lab-based findings, a demonstration project was conducted to evaluate

survival of viruses in feed ingredients under real-world shipping conditions (Dee et al., 2020).

Thirty-gram samples of several feed ingredients feed were spiked with 2 mL mixture of PRRSV

174,  PEDV,  and SVA and transported  for  21  days  in  the  trailer  of  a  commercial  transport

vehicle, crossing 14 states and over 9741 km. While the study successfully demonstrated that

infectious PRRSV, PEDV, and SVA were present in both soy products, it possessed inherent

limitations  as  the  experimental  design  did  not  accurately  represent  the  commercial  trucking

industry or the commercial  feed industry, since it  utilized very small  volumes of feed (30g)
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which  did  not  accurately  portray  the  challenges  associated  with  testing  bulk  ingredients.  In

addition,  the 30g samples  were inoculated  with relatively  large volumes of  liquid (2mL per

sample),  and viral  viability  was only assessed via swine bioassay and an evaluation of viral

transmission via natural feeding behavior was not included.

To address these acknowledged limitations, we conducted a new study to better bridge

the  gap  between  the  laboratory  and the  field.  The  experimental  design  incorporated  several

characteristics of the commercial trucking and feed industries, i.e., the use of semi-trailer truck

and a commercial route of transit,  along with the use of larger volumes of feed, which were

sampled using a standardized method for the testing of bulk feed. In addition, a viral challenge

designed to simulate a “hot spot” of contamination, as seen with aflatoxin contamination of grain

was used, and both viability and transmission were assessed via bioassay and natural feeding

behavior. The study was based on the hypothesis that certain viruses can survive in select feed

and feed ingredients during long-distance commercial transport under real world conditions.

Materials and methods

Animal care and use

Pigs used in the study were housed in the Pipestone Applied Research biosafety level 2

facility  in  accordance  with the  institutional  animal  care  and use guidelines  approved by the

investigators ethical review board (Pipestone Applied Research IACUC trial number 2021-01).

Feed preparation

        Types of feed used in the study included conventional soybean meal, (1 to 2% fat and 46 to

47% protein), organic soybean meal, (6 to 7% fat and 44 to 45% protein) (Dee et al., 2016, Dee

et al., 2018) and complete grow-finish swine feed. These ingredients were added in bulk to new
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polypropylene bags, each with a capacity of 1.74 m3 (National Bulk Bag, Champlin, MN, US),

resulting in totes with a final volume of 1-metric ton per tote. For this study, two 1-metric ton

totes of conventional soybean meal, two 1-metric ton totes of organic soybean meal, and three

metric tons of complete feed, seven totes in total, were prepared. Totes were then delivered to a

dispatching point in Fridley, MN to prepare for embarkation. 

Tote inoculation

To  simulate  a  “hot  spot”  model  of  feed  contamination,  10  mL ice  cubes  containing  a

mixture  of PRRSV 174, PEDV, and SVA at  a total  dose of 1 x 105 TCID50 per virus were

prepared.  Each  virus  was  diluted  in  30  mL of  minimum  essential  medium  (MEM,  Sigma-

Aldrich, St. Louis, MO, USA) to a concentration of 1 x 105 TCID50/mL per virus and mixed

(three viruses for a total of 90 mL) followed by an addition of 210 mL MEM, to bring the total

volume to 300 mL. Ice cubes were prepared by freezing 10 mL aliquots of the mixture in 50 mL

conical centrifuge tubes (Corning Inc. Corning, NY, USA) at -800C. Six totes, two containing

conventional soybean meal, two containing organic soybean meal and two containing complete

feed were inoculated. The final tote of complete feed was used as a negative control. 

To inoculate the six designated totes, a previously filled tote was elevated using a forklift

and placed 15 cm directly above an empty tote, with its duffle top held open in a fixed position.

The spout bottom of the upper tote was then opened, allowing feed to flow via gravity into the

opening  of  the  empty  tote.  When  the  lower  tote  was  approximately  half-full,  an  ice  cube

containing the described viral mixture was blindly dropped into the lower tote. The remainder

from the upper tote was then added to the lower tote, burying the cube from sight, and the duffle

top was tied shut after the lower tote was filled to completion.
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Controls

For controls, twelve 30g allotments of feed (four conventional soybean meal samples, four

conventional organic soybean meal samples, and four complete feed samples) were weighed into

individual  50  mL  mini-bioreactor  tubes  with  vented  caps.  Six  of  the  twelve  samples  were

individually spiked with a 2 mL aliquot from the viral mixture described previously, to serve as

positive controls. The aliquot was injected directly into the center of each 30g ingredient sample

using a 3 mL syringe with an 18-gauge, 3.81 cm needle. The remaining six samples (30g feed,

no virus) served as negative controls. 

Details of transport

Transport vehicle

To transport the seven totes and control tubes, a commercial semi-trailer truck with a 15.8m

trailer was used (Csp Delivery, Fridley, MN, US). Totes on pallets were moved into the proximal

end of the trailer  using a forklift.  Control samples  were stored in a box on the trailer  floor,

surrounded by the totes.  To record temperature and relative humidity (% RH) level  in totes

during  the  trip,  a  data  logger  (RC-51H,  ELITech,  Paris,  FR)  was  placed  inside  one  of  the

conventional soybean meal totes and one of the organic soybean meal totes at the 50% point of

filling in the center of the tote. These instruments recorded temperature and % RH every 15

minutes during transit. In addition, a GPS system within the transport vehicle was used to track

location, time in transit, and distance travelled. 

Details of travel plan

The study utilized a route of delivery representative of the commercial  trucking industry

which involved travel through 29 US states. The goal of this route was to cover several regions

of  the  US and  expose  the  feed  ingredients  and  viruses  to  a  wide  variety  of  environmental
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conditions. The route was initiated in Minneapolis, Minnesota, and travelled through Iowa to

Kansas City, Missouri (overnight stay), across Kansas to Denver, Colorado (overnight stay), to

Albuquerque, New Mexico (overnight stay), to Fort Worth, Texas (overnight stay) and then to

New Orleans, Louisiana (overnight stay). Travel continued along the Gulf Coast across the states

of Mississippi, Alabama, and Georgia into Jacksonville, Florida (overnight stay) and proceeded

up the eastern seaboard through South Carolina to Wilmington, North Carolina (overnight stay),

through Virginia, up to Baltimore, Maryland (overnight stay), through Delaware, New Jersey,

passing through New York City on the way to Connecticut, Massachusetts, and New Hampshire

and up to Portland, Maine (overnight stay). The truck then returned to the Midwest through New

Hampshire and Vermont, to Buffalo, New York (overnight stay), travelling through the states of

Pennsylvania,  Ohio,  Indiana to Chicago,  Illinois  (overnight  stay),  then through Wisconsin to

Minneapolis,  Minnesota,  finally  stopping in  Pipestone,  Minnesota.  Figure  1 provides  a  map

summarizing the route with the overnight cities highlighted.

Figure 1 legend: Map displaying the route travelled during the study.

Quality control and project oversight

Prior to the study, details of the project were relayed to the Food and Drug Administration

Center for Veterinary Medicine (FDA CVM), the United States Department of Agriculture, and

to the directors of the respective boards of animal health in states where the truck and trailer

were planning to stay overnight. Totes were labeled per FDA CVM instructions stating that feed

was “Not for human or animal consumption/for research use only” and a letter of approval from

the agency, co-signed by the PI with respective contact information, was carried by the driver

during the entire trip. Prior to departure, a barrier was inserted into the trailer to secure the totes

within the proximal  half  of the trailer  to  minimize  the risk of tote movement,  spillage,  etc.,
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during transport. Other than the seven totes and the controls, no other products were included on

the trailer.  The truck did not plan to stop anywhere during the transit  period,  other than for

refueling, meals, and hotel stays. 

Bulk sampling and processing

On day 0 and day 23 post-inoculation, the seven totes were sampled using a method based

on the  Association  of  American  Feed Control  Officials  (AAFCO) Feed Inspector's  Manual,

which had recently been validated for detection of PEDV in feed (Jones, Stewart, Woodworth,

Dritz, & Paulk, 2019). Totes were sampled using a 0.99 cm long stainless-steel grain probe with

an open handle and six openings (Seedburo Equipment Co., Des Plaines, IL, US). According to

protocol, 10 samples were collected from each tote using two “X” patterns (AAFCO, 2014) and

then mixed in a 1-liter plastic bag (Ziploc, S.C. Johnson & Son, Racine, WI, US) to create a

single composite sample (Figure 2). After each tote was sampled, feed dust was expelled from

the probe using forced air, sprayed with 70% ethanol, wiped with a clean cloth, and the ethanol

allowed to evaporate prior to the next sampling. Gloves were also changed between every tote.

Following  collection,  samples  from  the  four  soy-based  products  were  processed  to  prepare

inoculums for PCR and bioassay testing. Specifically, each soy-based bulk feed sample collected

from its respective tote was mixed with 1000 mL of sterile phosphate buffered saline in a 4-liter

metal can, the can sealed, inverted, shaken vigorously by hand, and then placed on a pneumatic

paint shaker (Astro pneumatic tool 4550, Astro pneumatic tool company, South el Monte, CA,

US). Each mixture was shaken for two minutes, the liquid decanted into 250 mL sterile plastic

tubes, centrifuged at 4000g for 10 minutes, supernatant decanted into 50 mL sterile plastic tubes,

and recentrifuged at 4000g for 10 minutes. The four samples were frozen at -800 C in preparation

for testing and inoculation. For testing of the positive control samples, each of the six samples
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was added into a 250 mL conical tube, followed by the addition of 60 mL of sterile saline. The

sample was then homogenized and centrifuged 4000g for 10 minutes, with supernatant decanted

into  a  clean  50 mL tube  and re-centrifuged at  4000g for  10 minutes.  Supernatant  was then

decanted into 10 mL tubes and frozen at -800 C, in preparation for testing and inoculation. 

Figure 2: Schematic of AAFCO protocol for sampling bulk ingredients used in the study.

Ten samples were collected from each tote using two “X” patterns resulting in a composite

sample per tote. 

Diagnostic testing

Following processing, samples were evaluated for the presence of viral RNA by PCR and

for virus viability by swine bioassay for soy-based products and by natural feeding behavior for 

complete feed. For PCR, samples were tested at the South Dakota State University Animal 

Disease Research and Diagnostic Laboratory (SDSU ADRDL) using published methods (Dee et 

al., 2014, Dee et al., 2015, Dee et al., 2016). For viability testing, pigs were housed in the 

Pipestone Research biosafety level 2 facility for a 21-day period. For testing of soy-based 

ingredients by swine bioassay, 24-five-week-old pigs, originating from a farm known to be naïve

for PRRSV, PEDV, and SVA were housed in a single room, four pigs per pen, across six pens. 

As the experimental unit for the study was the pen, pens were organized according to ingredient, 

specifically: pen 1 represented conventional soybean meal tote one, pen 2 represented 

conventional soybean meal tote two, pen 3 represented organic soybean meal tote one, pen 4 

represented organic soybean meal tote two, pen 5 represented positive control samples, while 

pen 6 represented negative control samples. Solid pen dividers were placed between pens to 

prevent nose-to-nose contact between groups and minimize cross-contamination. For the 

assessment of viable virus in conventional soybean meal tote one, the four pigs in pen one were 

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198



each inoculated with 2 mL via the intramuscular route, 2 mL via the oral route, and 2 mL via the 

intranasal route. For the assessment of viable virus in conventional soybean meal tote two, four 

pigs in pen two were each inoculated with 2 mL via the intramuscular route, 2 mL via the oral 

route, and 2 mL via the intranasal route. The same inoculation procedures were followed for 

samples of from organic soybean meal totes (pen 3 and pen 4). All six positive control samples 

(two samples from conventional soy totes, two samples from organic soy totes and two samples 

from complete feed totes) were pooled and the four pigs in pen 5 were inoculated as described. 

Finally, all six negative control samples were pooled, and pigs in pen 6 were inoculated as 

described. For the testing of complete feed for the presence of viable virus, the three totes of 

complete feed from the transport vehicle were loaded into a single feed bin and 18-100 kg pigs, 

originating from the same source as the bioassay pigs, were housed in a single room (six pens, 

three pigs per pen) and allowed to consume the complete feed via natural feeding behavior. 

During the 21-day period, a pen-based sampling protocol was employed to determine the status 

of each pen using oral fluid samples that were collected from each of the 12 pens on days 0, 7, 

and 14 post-inoculation. To support results from the oral fluid samples, clinically affected pigs 

were humanely euthanized, and tonsil tissue, rectal swabs, and blood samples collected. All 

samples were tested by PCR at the SDSU ADRDL.

Data analysis

     Temperature and % RH data from the two soybean meal totes collected during the transport

period were summarized using descriptive statistics. Differences in mean temperature and mean

% RH between the conventional soybean meal and the organic soybean meal were analyzed for

significance using a two-sample t-test.
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Results 

Summary of the transport period

The transport period took place over 23 days, from November 30, 2020 to December 22,

2020. The route covered 29 states, for a total of 100.2 hours in transit over 10,183 km (Figure 1).

The truck and its cargo travelled through the Midwest region, the Rocky Mountain region, the

Southwest region, the Gulf Coast, the Eastern Seaboard, the New England region, and the Great

Lakes region. No accidents, unexpected stops, or changes to the itinerary occurred throughout

the journey. 

Feed samples

The mean temperature of the conventional soybean meal and the mean temperature of the

organic soybean meal were significantly different (p < 0.0001) from one another, as were the

mean % RH of the conventional soybean meal and the mean % RH of the organic soybean meal

(p < 0.0001) (Table 1).  A total of 14 composite samples were collected across the seven totes,

seven samples on day 0 and seven samples of day 23. The mean weight per composite sample

was 1.04 kg, with a range of 0.91 kg to 1.4 kg.

Table 1: Temperature (T) and relative humidity (RH) data collected from probes placed 
inside two of the totes during the transport period.

Presence of viral nucleic acid in feed

The results of the PCR testing of samples from the totes are summarized in Table 2a. Across

the six inoculated totes and the three viruses in the inoculum, viral RNA was detected in 67%

(12/18) of the day 0 samples. Of the 12 positive samples, 50% (3/6) were positive for PEDV

RNA, 100% (6/6) were positive for SVA RNA, and 50% (3/6) were positive for PRRSV RNA.

On day 23 post-inoculation, viral RNA was detected in 50% (9/18) of inoculated tote samples
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with 50% (3/6) of the samples positive for PEDV RNA, 67% (4/6) of the samples positive for

SVA RNA, and 33% (2/6) of the positive for PRRSV RNA. All  samples from the negative

control complete feed tote were PCR negative at both sampling points. The percent detection in

soy-based products across all viruses was 83% (10/12 samples positive) on day 0 and 75% (8/12

samples positive) on day 23, with all samples from soybean meal organic tote one PCR negative.

In contrast, RNA detection in complete feed was 33% (2/6 samples positive) on day 0 and 17%

(1/6 of the samples positive) on day 23, with SVA the only virus detected. Regarding the positive

controls,  conventional  soybean  meal  samples  and organic  soybean meal  samples  were  PCR

positive across all three viruses on day 23. Control samples of complete feed were PCR positive

for PEDV RNA and SVA RNA and negative for PRRSV RNA on day 23. Finally, all negative

control samples were PCR negative (Table 2b).

Table 2a: PCR results from bulk ingredient sampling on day 0 and day 23 post-inoculation 

Table 2b: PCR results of positive and negative controls on day 23 post-inoculation

Presence of viable virus in feed

Prior to inoculation, all pigs were confirmed to be naïve to all three viruses via oral fluid

samples  collected on day 0. Following inoculation,  PRRSV, SVA, and PEDV infection was

confirmed by the presence of PCR-positive oral fluid samples detected across both conventional

soybean meal pens and one organic soybean meal pen (Table 2c). Similar results were obtained

from the  positive  control  pen,  while  samples  from the  negative  control  pen  were  negative.

Clinical  signs  suggestive  of  PRRSV  (dyspnea,  hyperthermia),  PEDV  (diarrhea),  and  SVA

(lameness) were observed in pens across both soy groups and the positive controls. In addition,

serum (PRRSV),  tonsil  tissue  (SVA),  and  rectal  swabs  (PEDV)  were  PCR positive  in  one

clinically affected pig from the conventional soybean meal pen, the organic soybean meal pen,
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and the positive control pen. Regarding pigs in the natural feeding behavior group, SVA and

PEDV infection was confirmed by the presence of PCR-positive oral fluid samples in two of six

pens. Clinical evidence of lameness, diarrhea and weight loss were observed in animals in these

pens and PEDV RNA and SVA RNA were detected in tissue samples from one pig in both pens.

All samples were negative for PRRSV RNA (Table 2c).

Table 2c: Pen-based oral fluid results by ingredient and virus following inoculation with

samples collected on day 23 of the transport period.

Discussion

The  ability  of  feed  and  feed  ingredients  to  serve  as  vehicles  for  the  transport  and

transmission of viral pathogens is a relatively new area of science. Since the initial description of

PEDV transmission in feed, an extensive amount of experimental evidence has been compiled, to

the  point  where  comprehensive  literature  reviews  can  now be  written  on the  topic  and risk

assessments can be conducted (Dee et al., 2019, Jones et al., 2019). Yet, to continue to challenge

the hypothesis regarding the risk of feed, studies must be performed outside of the laboratory,

utilizing experimental designs and conditions that re-create what happens every day in the field,

under real world conditions. This project was the first attempt to evaluate virus survival over

long distances  under  conditions  experienced  during  a  commercial  transport  event  across  the

continental US. It utilized an experimental design that incorporated real world elements, such as

the use of a commercial transport vehicle, a route of transit that crossed multiple regions of the

US, a standardized method of bulk feed sampling, and an evaluation of viral genome, viability,

and transmission. The design was further strengthened by a novel challenge model designed to

simulate a “hot spot” of contamination, the use of proper controls, environmental monitoring,

along with oversight and guidance from federal agencies.
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This holistic approach advanced knowledge in three specific areas: 1) information on the

temperature and % RH in feed totes during transit, 2) a better understanding of the strengths and

limitations of the bulk sampling process, and 3) further data supporting the ability of certain

viruses to survive in feed during real-world transport events. Regarding point number 1, we now

have preliminary insight into the levels of temperature and % RH present in feed totes during

transit across the continental US. Despite the small sample size, it was interesting to note the

significant difference in both the mean temperature and the mean % RH in the organic soybean

meal tote versus the conventional soybean meal tote. While this outcome is based on only two

totes, a large number (2132) of datapoints were collected from each tote, resulting in information

that  could  be used to  generate  new hypotheses  on why certain  ingredients  are  protective  to

certain viruses.  In the case of point number 2, it  is the opinion of the authors that the bulk

sampling protocol worked well overall, particularly since we were blinded to the location of the

“hot spot”.  It was interesting to note that once again, soy-based ingredients were protective to all

three viruses, stabilizing both viral genome and viable virus. In contrast, complete feed was not

as forgiving. For example, all complete feed samples were PEDV PCR negative at day 23 post-

inoculation; however, infection still occurred following natural feeding behavior, suggesting that

virus went undetected during sampling. Regarding SVA, RNA was detected in complete feed

totes and infection was documented post-feeding, once again demonstrating the ability of this

virus to survive for extended periods in feed.  In contrast,  PRRSV RNA was not detected in

samples from complete feed totes and infection did not take place following feeding, suggesting

that PRRSV did not survive in this feed matrix during long-distance transport, similar to what

had been reported under laboratory conditions (Dee et al., 2018). Finally, as it pertains to point

number 3, this study demonstrated the ability of all three viruses to survive and to be infectious
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to pigs following a 23 day period in commercial transit across the continental US. Based on this

outcome, we now have solid evidence that feed and feed ingredients can serve as vehicles for the

transport and transmission of three significant viral pathogens of veterinary significance under

real world conditions. 

Despite  these  advancements,  as  with  all  experiments  this  study  had  its  share  of

acknowledged  strengths  and  limitations.  Strengths  included  the  real-world  approach  of  the

experimental design, including a representative route of transit involving tons of feed, exposure

of viruses to the differing climates found in multiple regions across the US, a blinded “hot spot”

challenge model  that used a minimal  amount of liquid,  sampling of bulk feed using a grain

probe-based  methodology,  and  the  use  of  natural  feeding  behavior  to  assess  transmission.

Another strength was that biosecurity was maximized during transit,  since no other products

were included in the trailer, the seven totes were barricaded in the trailer to minimize movement

during transport, and no stops were made at agricultural sites. In addition, this project involved a

high level of state and federal input and oversight. Limitations centered primarily on sample size

constraints, i.e., only one replicate was conducted and only seven totes were sampled, with only

two samples collected per tote. Therefore, the results from the study cannot be used to predict the

frequency of any of the reported outcomes. While we acknowledge this limitation, to increase

sample size would have required a fleet of trucks and numerous totes, issues that would have

been both economically and logistically challenging. Finally, only a single viral concentration

was used to inoculate  totes and results may have been different at  higher or lower doses of

challenge. 

In closing, we now have for the first time, evidence of viral survival in representative

volumes of feed and fed ingredients during an actual long-distance commercial transport event
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across the continental US. It is hoped that the information from this study, in combination with

the current body of experimental evidence will help to unify opinions across the swine industry,

the veterinary profession, and governmental agencies regarding the significance of the risk of

feed for viral movement. Until we are united, we cannot make progress, and until that time, we

all are at risk.
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Table 1: Temperature (T) and % relative humidity (RH) data collected from probes placed
inside two of the totes during the transport period.

Key

Difference in superscripts (a/b) indicates a difference in significance of p < 0.05.

SBM-C/SBM-O: Conventional or organic soybean meal.

Inside filled tote: probe was inserted inside of the tote at the point when the tote was 50% filled.

Location of probe # datapoints   Mean T   Max T    Min T Mean RH Max RH Min RH

SBM-C 

(inside filled tote)       2132    9.40Ca    17.00C     3.20C     66%a     68%

 

   38%

SBM-O

(inside filled tote)

 

      2132    7.90Cb    17.50C     1.00C     21%b    37%    20%
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Table 2a: PCR results from bulk ingredient sampling on day 0 and day 23 post- inoculation

Ingredienta DPIf PEDV Ct SVA Ct PRRSV Ct DPI PEDV Ct SVA Ct PRRSV Ct

SBM-C-1b 0 37.8 34.8 33.5 23 34.8 35.6 neg

SBM-C-2 0 37.2 33.2 32.6 23 34.4 35.7 34.9

SBM-O-1c 0 35.1 34.6 34.5 23 neg neg neg

SBM-O-2 0 neg 36.2 neg 23 37.6 35.3 34.1

CF-1d 0 neg 36.1 neg 23 neg neg neg

CF-2 0 neg 35.1 neg 23 neg 35.5 neg

CF (-) controle 0 neg neg neg 23 neg neg neg

Key

a: one metric ton tote batches.

b: conventional soybean meal tote 1 or 2 (inoculated).

c: organic soybean meal tote 1 or 2 (inoculated).

d: complete feed tote 1 or 2 (inoculated).

e: complete feed (uninoculated).

f: days post-inoculation
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Table 2b: PCR results of positive and negative control pools on day 23 post-inoculation

Ingredient DPI PEDV Ct SVA Ct PRRSV Ct

SBM-C-1-posa 23 27.8 27.1 25.5

SBM-C-2-pos 23 27.2 26.2 24.8

SBM-C neg 23 neg neg neg

SBM-O-1-posb 23 27.1 27.8 26.2

SBM-O-2-pos 23 27.2 27.7 25.8

SBM-O-neg 23 neg neg neg

CF-1-posc 23 35.1 27.4 34.0

CF-2-pos 23 36.2 27.7 35.7

CF neg 23 neg neg neg

Key
a: SBM-C-1/SBM-C-2: conventional soybean meal tote 1/ conventional soybean meal tote 2.
b: SBM-O-1/SBM-O-2: organic soybean meal batch 1/: organic soybean meal batch 2.
c: CF-1/CF-2: complete feed tote 1/complete feed tote 2.
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Table 2c: Pen-based oral fluid results by ingredient and virus following inoculation with

samples collected on day 23 of the transport period.

Ingredient Viability Assay     Pen PEDV SVA PRRSV

  Necropsy

Confirmation

SBM-C-1a bioassay       1 POSe POS NEG      YESg

SBM-C-2a bioassay       2 POS NEG POS      YES

SBM-O-1b bioassay       3 NEGf NEG NEG      NAh

SBM-O-2b bioassay       4 POS POS POS      YES

(+) controlsc bioassay       5 POS POS POS      NA

(-) controlsc bioassay       6 NEG NEG NEG      NA

 

Complete feedd natural feeding       7 POS POS

 

NEG     YES

Complete feed natural feeding       8 POS NEG

 

NEG     YES

Complete feed natural feeding       9 NEG

 

NEG NEG      NA

Complete feed natural feeding     10 NEG

 

NEG NEG

 

     NA

Complete feed natural feeding     11 NEG

 

NEG NEG      NA

Complete feed natural feeding     12 NEG

 

NEG NEG     NA

Key

a: conventional soybean meal (SBM-C) tote 1 or 2 

b: organic soybean meal (SBM-O) tote 1 or 2.

c: all six positive controls were pooled and all six negative controls were pooled

d: totes of complete feed were pooled into one feed bin to facilitate natural feeding behavior.

e: POS = positive detection of viral RNA in a pen-based oral fluid sample.

f: NEG = lack of detection of viral RNA in a pen-based oral fluid sample.

g: YES = necropsy results confirmed oral fluid results .

h: NA = necropsy confirmation not attempted.
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