References
Anelli, T., Alessio, M.,
Bachi, A., Bergamelli, L., Bertoli, G., Camerini, S., … Sitia, R.
(2003). Thiol-mediated protein retention in the endoplasmic reticulum:
the role of ERp44. The EMBO Journal, 22(19), 5015–5022.
Aurora, R., & Rosee, G. D.
(1998). Helix capping. Protein Science, Vol. 7, pp. 21–38.
https://doi.org/10.1002/pro.5560070103
Blatch, G. L., & Lässle, M.
(1999). The tetratricopeptide repeat: a structural motif mediating
protein-protein interaction. BioEssays: News and Reviews in
Molecular, Cellular and Developmental Biology, 21(11),
932–939.
Bonifacino, J. S., & Glick,
B. S. (2004). The Mechanisms of Vesicle Budding and Fusion. Cell,
Vol. 116, pp. 153–166.
https://doi.org/10.1016/s0092-8674(03)01079-1
Bonito-Oliva, A., Barbash, S.,
Sakmar, T. P., & Graham, W. V. (2017). Nucleobindin 1 binds to multiple
types of pre-fibrillar amyloid and inhibits fibrillization.Scientific Reports, 7, 42880.
Branon, T. C., Bosch, J. A.,
Sanchez, A. D., Udeshi, N. D., Svinkina, T., Carr, S. A., … Ting,
A. Y. (2020). Author Correction: Efficient proximity labeling in living
cells and organisms with TurboID. Nature Biotechnology,38(1), 108.
Calakos, N., Bennett, M. K.,
Peterson, K. E., & Scheller, R. H. (1994). Protein-protein interactions
contributing to the specificity of intracellular vesicular trafficking.Science, 263(5150), 1146–1149.
Chawade, A., Alexandersson,
E., & Levander, F. (2014). Normalyzer: a tool for rapid evaluation of
normalization methods for omics data sets. Journal of Proteome
Research, 13(6), 3114–3120.
Croft, D., Mundo, A. F., Haw,
R., Milacic, M., Weiser, J., Wu, G., … D’Eustachio, P. (2014).
The Reactome pathway knowledgebase. Nucleic Acids Research,42(Database issue), D472–D477.
Doig, A. J., Stapley, B. J.,
Macarthur, M. W., & Thornton, J. M. (2008). Structures of N-termini of
helices in proteins. Protein Science, Vol. 6, pp. 147–155.
https://doi.org/10.1002/pro.5560060117
Dong, J.-M., Tay, F. P.-L.,
Swa, H. L.-F., Gunaratne, J., Leung, T., Burke, B., & Manser, E.
(2016). Proximity biotinylation provides insight into the molecular
composition of focal adhesions at the nanometer scale. Science
Signaling, 9(432), rs4.
Feizi, A., Gatto, F., Uhlen,
M., & Nielsen, J. (2017). Human protein secretory pathway genes are
expressed in a tissue-specific pattern to match processing demands of
the secretome. Npj Systems Biology and Applications, Vol. 3.
https://doi.org/10.1038/s41540-017-0021-4
Ferris, S. P., Jaber, N. S.,
Molinari, M., Arvan, P., & Kaufman, R. J. (2013).
UDP-glucose:glycoprotein glucosyltransferase (UGGT1) promotes substrate
solubility in the endoplasmic reticulum. Molecular Biology of the
Cell, 24(17), 2597–2608.
Ferris, S. P., Kodali, V. K.,
& Kaufman, R. J. (2014). Glycoprotein folding and quality-control
mechanisms in protein-folding diseases. Disease Models &
Mechanisms, 7(3), 331–341.
Firat-Karalar, E. N., &
Stearns, T. (2015). Probing mammalian centrosome structure using BioID
proximity-dependent biotinylation. Methods in Cell Biology,129, 153–170.
Gidalevitz, T., Stevens, F.,
& Argon, Y. (2013). Orchestration of secretory protein folding by ER
chaperones. Biochimica et Biophysica Acta, 1833(11),
2410–2424.
Golovin, A., & Henrick, K.
(2008). MSDmotif: exploring protein sites and motifs. BMC
Bioinformatics, 9, 312.
Gupta, G. D., Coyaud, É.,
Gonçalves, J., Mojarad, B. A., Liu, Y., Wu, Q., … Pelletier, L.
(2015). A Dynamic Protein Interaction Landscape of the Human
Centrosome-Cilium Interface. Cell, 163(6), 1484–1499.
Gutierrez, J. M., Feizi, A.,
Li, S., Kallehauge, T. B., Hefzi, H., Grav, L. M., … Lewis, N. E.
(2020). Genome-scale reconstructions of the mammalian secretory pathway
predict metabolic costs and limitations of protein secretion.Nature Communications, 11(1), 68.
Hoffman, A. M., Chen, Q.,
Zheng, T., & Nicchitta, C. V. (2019). Heterogeneous translational
landscape of the endoplasmic reticulum revealed by ribosome proximity
labeling and transcriptome analysis. The Journal of Biological
Chemistry, 294(22), 8942–8958.
Hornbeck, P. V., Zhang, B.,
Murray, B., Kornhauser, J. M., Latham, V., & Skrzypek, E. (2015).
PhosphoSitePlus, 2014: mutations, PTMs and recalibrations. Nucleic
Acids Research, 43(Database issue), D512–D520.
Hussain, H., Maldonado-Agurto,
R., & Dickson, A. J. (2014). The endoplasmic reticulum and unfolded
protein response in the control of mammalian recombinant protein
production. Biotechnology Letters, 36(8), 1581–1593.
Ikawa, M., Wada, I., Kominami,
K., Watanabe, D., Toshimori, K., Nishimune, Y., & Okabe, M. (1997). The
putative chaperone calmegin is required for sperm fertility.Nature, 387(6633), 607–611.
Imperiali, B., Shannon, K. L.,
& Rickert, K. W. (1992). Role of peptide conformation in
asparagine-linked glycosylation. Journal of the American Chemical
Society, Vol. 114, pp. 7942–7944.
https://doi.org/10.1021/ja00046a068
Imperiali, B., Shannon, K. L.,
Unno, M., & Rickert, K. W. (1992). Mechanistic proposal for
asparagine-linked glycosylation. Journal of the American Chemical
Society, Vol. 114, pp. 7944–7945.
https://doi.org/10.1021/ja00046a069
Jenkins, N., Murphy, L., &
Tyther, R. (2008). Post-translational Modifications of Recombinant
Proteins: Significance for Biopharmaceuticals. Molecular
Biotechnology, Vol. 39, pp. 113–118.
https://doi.org/10.1007/s12033-008-9049-4
Kanehisa, M., Furumichi, M.,
Tanabe, M., Sato, Y., & Morishima, K. (2017). KEGG: new perspectives on
genomes, pathways, diseases and drugs. Nucleic Acids Research,45(D1), D353–D361.
Kim, D. I., Birendra, K. C.,
Zhu, W., Motamedchaboki, K., Doye, V., & Roux, K. J. (2014). Probing
nuclear pore complex architecture with proximity-dependent
biotinylation. Proceedings of the National Academy of Sciences of
the United States of America, 111(24), E2453–E2461.
Kim, D. I., Jensen, S. C.,
Noble, K. A., Kc, B., Roux, K. H., Motamedchaboki, K., & Roux, K. J.
(2016). An improved smaller biotin ligase for BioID proximity labeling.Molecular Biology of the Cell, 27(8), 1188–1196.
Kim, D. I., & Roux, K. J.
(2016). Filling the Void: Proximity-Based Labeling of Proteins in Living
Cells. Trends in Cell Biology, 26(11), 804–817.
Kittler, R., Heninger, A.-K.,
Franke, K., Habermann, B., & Buchholz, F. (2005). Production of
endoribonuclease-prepared short interfering RNAs for gene silencing in
mammalian cells. Nature Methods, 2(10), 779–784.
Kozlov, G., Määttänen, P.,
Thomas, D. Y., & Gehring, K. (2010). A structural overview of the PDI
family of proteins. The FEBS Journal, 277(19),
3924–3936.
Liberzon, A., Subramanian, A.,
Pinchback, R., Thorvaldsdóttir, H., Tamayo, P., & Mesirov, J. P.
(2011). Molecular signatures database (MSigDB) 3.0.Bioinformatics , 27(12), 1739–1740.
Li, Q. (2004). A Syntaxin 1, G
o, and N-Type Calcium Channel Complex at a Presynaptic Nerve Terminal:
Analysis by Quantitative Immunocolocalization. Journal of
Neuroscience, Vol. 24, pp. 4070–4081.
https://doi.org/10.1523/jneurosci.0346-04.2004
Lund, A. M., Kaas, C. S.,
Brandl, J., Pedersen, L. E., Kildegaard, H. F., Kristensen, C., &
Andersen, M. R. (2017). Network reconstruction of the mouse secretory
pathway applied on CHO cell transcriptome data. BMC Systems
Biology, Vol. 11.
https://doi.org/10.1186/s12918-017-0414-4
Manders, E. M. M., Verbeek, F.
J., & Aten, J. A. (1993). Measurement of co-localization of objects in
dual-colour confocal images. Journal of Microscopy, Vol. 169, pp.
375–382.
https://doi.org/10.1111/j.1365-2818.1993.tb03313.x
Matasci, M., Hacker, D. L.,
Baldi, L., & Wurm, F. M. (2008). Recombinant therapeutic protein
production in cultivated mammalian cells: current status and future
prospects. Drug Discovery Today. Technologies, 5(2-3),
e37–e42.
Mathias, S., Wippermann, A.,
Raab, N., Zeh, N., Handrick, R., Gorr, I., … Otte, K. (2020).
Unraveling what makes a monoclonal antibody difficult‐to‐express: From
intracellular accumulation to incomplete folding and degradation via
ERAD. Biotechnology and Bioengineering, Vol. 117, pp. 5–16.
https://doi.org/10.1002/bit.27196
Mayer, M. P. (2010).
Gymnastics of molecular chaperones. Molecular Cell, 39(3),
321–331.
McElreath, R. (2020).Statistical Rethinking: A Bayesian Course with Examples in R and
STAN. CRC Press.
Mezghrani, A., Fassio, A.,
Benham, A., Simmen, T., Braakman, I., & Sitia, R. (2001). Manipulation
of oxidative protein folding and PDI redox state in mammalian cells.The EMBO Journal, 20(22), 6288–6296.
Nauseef, W. M., McCormick, S.
J., & Clark, R. A. (1995). Calreticulin functions as a molecular
chaperone in the biosynthesis of myeloperoxidase. The Journal of
Biological Chemistry, 270(9), 4741–4747.
Ng, D. T., Watowich, S. S., &
Lamb, R. A. (1992). Analysis in vivo of GRP78-BiP/substrate interactions
and their role in induction of the GRP78-BiP gene. Molecular
Biology of the Cell, 3(2), 143–155.
Ninagawa, S., Okada, T.,
Sumitomo, Y., Kamiya, Y., Kato, K., Horimoto, S., … Mori, K.
(2014). EDEM2 initiates mammalian glycoprotein ERAD by catalyzing the
first mannose trimming step. The Journal of Cell Biology,206(3), 347–356.
Novick, P., Ferro, S., &
Schekman, R. (1981). Order of events in the yeast secretory pathway.Cell, 25(2), 461–469.
Nyfeler, B., Michnick, S. W.,
& Hauri, H.-P. (2005). Capturing protein interactions in the secretory
pathway of living cells. Proceedings of the National Academy of
Sciences of the United States of America, 102(18), 6350–6355.
Pearl, L. H., & Prodromou, C.
(2006). Structure and mechanism of the Hsp90 molecular chaperone
machinery. Annual Review of Biochemistry, 75, 271–294.
Reynaud, E. G., & Simpson, J.
C. (2002). Navigating the secretory pathway: conference on exocytosis
membrane structure and dynamics. EMBO Reports, 3(9),
828–833.
Rhee, H.-W., Zou, P., Udeshi,
N. D., Martell, J. D., Mootha, V. K., Carr, S. A., & Ting, A. Y.
(2013). Proteomic mapping of mitochondria in living cells via spatially
restricted enzymatic tagging. Science, 339(6125),
1328–1331.
Roux, K. J., Kim, D. I.,
Raida, M., & Burke, B. (2012). A promiscuous biotin ligase fusion
protein identifies proximal and interacting proteins in mammalian cells.The Journal of Cell Biology, 196(6), 801–810.
Sakono, M., Seko, A., Takeda,
Y., & Ito, Y. (2014). PDI family protein ERp29 forms 1:1 complex with
lectin chaperone calreticulin. Biochemical and Biophysical
Research Communications, 452(1), 27–31.
Schindelin, J., Rueden, C. T.,
Hiner, M. C., & Eliceiri, K. W. (2015). The ImageJ ecosystem: An open
platform for biomedical image analysis. Molecular Reproduction and
Development, 82(7-8), 518–529.
Schreiber, G., Haran, G., &
Zhou, H.-X. (2009). Fundamental aspects of protein-protein association
kinetics. Chemical Reviews, 109(3), 839–860.
Sears, R. M., May, D. G., &
Roux, K. J. (2019). BioID as a Tool for Protein-Proximity Labeling in
Living Cells. Methods in Molecular Biology , 2012,
299–313.
Shen, J. P., Zhao, D., Sasik,
R., Luebeck, J., Birmingham, A., Bojorquez-Gomez, A., … Mali, P.
(2017). Combinatorial CRISPR-Cas9 screens for de novo mapping of genetic
interactions. Nature Methods, 14(6), 573–576.
Siegenthaler, K. D., Pareja,
K. A., Wang, J., & Sevier, C. S. (2017). An unexpected role for the
yeast nucleotide exchange factor Sil1 as a reductant acting on the
molecular chaperone BiP. eLife, 6.
https://doi.org/10.7554/eLife.24141
Smyth, G. K. (n.d.). limma:
Linear Models for Microarray Data. Bioinformatics and
Computational Biology Solutions Using R and Bioconductor, pp. 397–420.
https://doi.org/10.1007/0-387-29362-0_23
Tannous, A., Pisoni, G. B.,
Hebert, D. N., & Molinari, M. (2015). N-linked sugar-regulated protein
folding and quality control in the ER. Seminars in Cell &
Developmental Biology, 41, 79–89.
Thul, P. J., Åkesson, L.,
Wiking, M., Mahdessian, D., Geladaki, A., Ait Blal, H., …
Lundberg, E. (2017). A subcellular map of the human proteome.Science, 356(6340).
https://doi.org/10.1126/science.aal3321
Tyanova, S., & Cox, J.
(2018). Perseus: A Bioinformatics Platform for Integrative Analysis of
Proteomics Data in Cancer Research. Methods in Molecular Biology, 1711, 133–148.
Tyanova, S., Temu, T., & Cox,
J. (2016). The MaxQuant computational platform for mass
spectrometry-based shotgun proteomics. Nature Protocols,11(12), 2301–2319.
Tytgat, H. L. P., Schoofs, G.,
Driesen, M., Proost, P., Van Damme, E. J. M., Vanderleyden, J., &
Lebeer, S. (2015). Endogenous biotin-binding proteins: an overlooked
factor causing false positives in streptavidin-based protein detection.Microbial Biotechnology, 8(1), 164–168.
Varnaitė, R., & MacNeill, S.
A. (2016). Meet the neighbors: Mapping local protein interactomes by
proximity-dependent labeling with BioID. Proteomics,16(19), 2503–2518.
Watanabe, S., Amagai, Y.,
Sannino, S., Tempio, T., Anelli, T., Harayama, M., … Inaba, K.
(2019). Zinc regulates ERp44-dependent protein quality control in the
early secretory pathway. Nature Communications, 10(1),
603.
Young, C. L., Yuraszeck, T.,
& Robinson, A. S. (2011). Decreased Secretion and Unfolded Protein
Response Upregulation. Methods in Enzymology, pp. 235–260.
https://doi.org/10.1016/b978-0-12-385928-0.00014-6
Yu, M., Haslam, R. H., &
Haslam, D. B. (2000). HEDJ, an Hsp40 co-chaperone localized to the
endoplasmic reticulum of human cells. The Journal of Biological
Chemistry, 275(32), 24984–24992.
Zhang, X., Smits, A. H., van
Tilburg, G. B., Ovaa, H., Huber, W., & Vermeulen, M. (2018).
Proteome-wide identification of ubiquitin interactions using UbIA-MS.Nature Protocols, 13(3), 530–550.
Zito, E. (2013). PRDX4, an
endoplasmic reticulum-localized peroxiredoxin at the crossroads between
enzymatic oxidative protein folding and nonenzymatic protein oxidation.Antioxidants & Redox Signaling, 18(13), 1666–1674.