References

Anelli, T., Alessio, M., Bachi, A., Bergamelli, L., Bertoli, G., Camerini, S., … Sitia, R. (2003). Thiol-mediated protein retention in the endoplasmic reticulum: the role of ERp44. The EMBO Journal, 22(19), 5015–5022.
Aurora, R., & Rosee, G. D. (1998). Helix capping. Protein Science, Vol. 7, pp. 21–38. https://doi.org/10.1002/pro.5560070103
Blatch, G. L., & Lässle, M. (1999). The tetratricopeptide repeat: a structural motif mediating protein-protein interaction. BioEssays: News and Reviews in Molecular, Cellular and Developmental Biology, 21(11), 932–939.
Bonifacino, J. S., & Glick, B. S. (2004). The Mechanisms of Vesicle Budding and Fusion. Cell, Vol. 116, pp. 153–166. https://doi.org/10.1016/s0092-8674(03)01079-1
Bonito-Oliva, A., Barbash, S., Sakmar, T. P., & Graham, W. V. (2017). Nucleobindin 1 binds to multiple types of pre-fibrillar amyloid and inhibits fibrillization.Scientific Reports, 7, 42880.
Branon, T. C., Bosch, J. A., Sanchez, A. D., Udeshi, N. D., Svinkina, T., Carr, S. A., … Ting, A. Y. (2020). Author Correction: Efficient proximity labeling in living cells and organisms with TurboID. Nature Biotechnology,38(1), 108.
Calakos, N., Bennett, M. K., Peterson, K. E., & Scheller, R. H. (1994). Protein-protein interactions contributing to the specificity of intracellular vesicular trafficking.Science, 263(5150), 1146–1149.
Chawade, A., Alexandersson, E., & Levander, F. (2014). Normalyzer: a tool for rapid evaluation of normalization methods for omics data sets. Journal of Proteome Research, 13(6), 3114–3120.
Croft, D., Mundo, A. F., Haw, R., Milacic, M., Weiser, J., Wu, G., … D’Eustachio, P. (2014). The Reactome pathway knowledgebase. Nucleic Acids Research,42(Database issue), D472–D477.
Doig, A. J., Stapley, B. J., Macarthur, M. W., & Thornton, J. M. (2008). Structures of N-termini of helices in proteins. Protein Science, Vol. 6, pp. 147–155. https://doi.org/10.1002/pro.5560060117
Dong, J.-M., Tay, F. P.-L., Swa, H. L.-F., Gunaratne, J., Leung, T., Burke, B., & Manser, E. (2016). Proximity biotinylation provides insight into the molecular composition of focal adhesions at the nanometer scale. Science Signaling, 9(432), rs4.
Feizi, A., Gatto, F., Uhlen, M., & Nielsen, J. (2017). Human protein secretory pathway genes are expressed in a tissue-specific pattern to match processing demands of the secretome. Npj Systems Biology and Applications, Vol. 3. https://doi.org/10.1038/s41540-017-0021-4
Ferris, S. P., Jaber, N. S., Molinari, M., Arvan, P., & Kaufman, R. J. (2013). UDP-glucose:glycoprotein glucosyltransferase (UGGT1) promotes substrate solubility in the endoplasmic reticulum. Molecular Biology of the Cell, 24(17), 2597–2608.
Ferris, S. P., Kodali, V. K., & Kaufman, R. J. (2014). Glycoprotein folding and quality-control mechanisms in protein-folding diseases. Disease Models & Mechanisms, 7(3), 331–341.
Firat-Karalar, E. N., & Stearns, T. (2015). Probing mammalian centrosome structure using BioID proximity-dependent biotinylation. Methods in Cell Biology,129, 153–170.
Gidalevitz, T., Stevens, F., & Argon, Y. (2013). Orchestration of secretory protein folding by ER chaperones. Biochimica et Biophysica Acta, 1833(11), 2410–2424.
Golovin, A., & Henrick, K. (2008). MSDmotif: exploring protein sites and motifs. BMC Bioinformatics, 9, 312.
Gupta, G. D., Coyaud, É., Gonçalves, J., Mojarad, B. A., Liu, Y., Wu, Q., … Pelletier, L. (2015). A Dynamic Protein Interaction Landscape of the Human Centrosome-Cilium Interface. Cell, 163(6), 1484–1499.
Gutierrez, J. M., Feizi, A., Li, S., Kallehauge, T. B., Hefzi, H., Grav, L. M., … Lewis, N. E. (2020). Genome-scale reconstructions of the mammalian secretory pathway predict metabolic costs and limitations of protein secretion.Nature Communications, 11(1), 68.
Hoffman, A. M., Chen, Q., Zheng, T., & Nicchitta, C. V. (2019). Heterogeneous translational landscape of the endoplasmic reticulum revealed by ribosome proximity labeling and transcriptome analysis. The Journal of Biological Chemistry, 294(22), 8942–8958.
Hornbeck, P. V., Zhang, B., Murray, B., Kornhauser, J. M., Latham, V., & Skrzypek, E. (2015). PhosphoSitePlus, 2014: mutations, PTMs and recalibrations. Nucleic Acids Research, 43(Database issue), D512–D520.
Hussain, H., Maldonado-Agurto, R., & Dickson, A. J. (2014). The endoplasmic reticulum and unfolded protein response in the control of mammalian recombinant protein production. Biotechnology Letters, 36(8), 1581–1593.
Ikawa, M., Wada, I., Kominami, K., Watanabe, D., Toshimori, K., Nishimune, Y., & Okabe, M. (1997). The putative chaperone calmegin is required for sperm fertility.Nature, 387(6633), 607–611.
Imperiali, B., Shannon, K. L., & Rickert, K. W. (1992). Role of peptide conformation in asparagine-linked glycosylation. Journal of the American Chemical Society, Vol. 114, pp. 7942–7944. https://doi.org/10.1021/ja00046a068
Imperiali, B., Shannon, K. L., Unno, M., & Rickert, K. W. (1992). Mechanistic proposal for asparagine-linked glycosylation. Journal of the American Chemical Society, Vol. 114, pp. 7944–7945. https://doi.org/10.1021/ja00046a069
Jenkins, N., Murphy, L., & Tyther, R. (2008). Post-translational Modifications of Recombinant Proteins: Significance for Biopharmaceuticals. Molecular Biotechnology, Vol. 39, pp. 113–118. https://doi.org/10.1007/s12033-008-9049-4
Kanehisa, M., Furumichi, M., Tanabe, M., Sato, Y., & Morishima, K. (2017). KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Research,45(D1), D353–D361.
Kim, D. I., Birendra, K. C., Zhu, W., Motamedchaboki, K., Doye, V., & Roux, K. J. (2014). Probing nuclear pore complex architecture with proximity-dependent biotinylation. Proceedings of the National Academy of Sciences of the United States of America, 111(24), E2453–E2461.
Kim, D. I., Jensen, S. C., Noble, K. A., Kc, B., Roux, K. H., Motamedchaboki, K., & Roux, K. J. (2016). An improved smaller biotin ligase for BioID proximity labeling.Molecular Biology of the Cell, 27(8), 1188–1196.
Kim, D. I., & Roux, K. J. (2016). Filling the Void: Proximity-Based Labeling of Proteins in Living Cells. Trends in Cell Biology, 26(11), 804–817.
Kittler, R., Heninger, A.-K., Franke, K., Habermann, B., & Buchholz, F. (2005). Production of endoribonuclease-prepared short interfering RNAs for gene silencing in mammalian cells. Nature Methods, 2(10), 779–784.
Kozlov, G., Määttänen, P., Thomas, D. Y., & Gehring, K. (2010). A structural overview of the PDI family of proteins. The FEBS Journal, 277(19), 3924–3936.
Liberzon, A., Subramanian, A., Pinchback, R., Thorvaldsdóttir, H., Tamayo, P., & Mesirov, J. P. (2011). Molecular signatures database (MSigDB) 3.0.Bioinformatics , 27(12), 1739–1740.
Li, Q. (2004). A Syntaxin 1, G o, and N-Type Calcium Channel Complex at a Presynaptic Nerve Terminal: Analysis by Quantitative Immunocolocalization. Journal of Neuroscience, Vol. 24, pp. 4070–4081. https://doi.org/10.1523/jneurosci.0346-04.2004
Lund, A. M., Kaas, C. S., Brandl, J., Pedersen, L. E., Kildegaard, H. F., Kristensen, C., & Andersen, M. R. (2017). Network reconstruction of the mouse secretory pathway applied on CHO cell transcriptome data. BMC Systems Biology, Vol. 11. https://doi.org/10.1186/s12918-017-0414-4
Manders, E. M. M., Verbeek, F. J., & Aten, J. A. (1993). Measurement of co-localization of objects in dual-colour confocal images. Journal of Microscopy, Vol. 169, pp. 375–382. https://doi.org/10.1111/j.1365-2818.1993.tb03313.x
Matasci, M., Hacker, D. L., Baldi, L., & Wurm, F. M. (2008). Recombinant therapeutic protein production in cultivated mammalian cells: current status and future prospects. Drug Discovery Today. Technologies, 5(2-3), e37–e42.
Mathias, S., Wippermann, A., Raab, N., Zeh, N., Handrick, R., Gorr, I., … Otte, K. (2020). Unraveling what makes a monoclonal antibody difficult‐to‐express: From intracellular accumulation to incomplete folding and degradation via ERAD. Biotechnology and Bioengineering, Vol. 117, pp. 5–16. https://doi.org/10.1002/bit.27196
Mayer, M. P. (2010). Gymnastics of molecular chaperones. Molecular Cell, 39(3), 321–331.
McElreath, R. (2020).Statistical Rethinking: A Bayesian Course with Examples in R and STAN. CRC Press.
Mezghrani, A., Fassio, A., Benham, A., Simmen, T., Braakman, I., & Sitia, R. (2001). Manipulation of oxidative protein folding and PDI redox state in mammalian cells.The EMBO Journal, 20(22), 6288–6296.
Nauseef, W. M., McCormick, S. J., & Clark, R. A. (1995). Calreticulin functions as a molecular chaperone in the biosynthesis of myeloperoxidase. The Journal of Biological Chemistry, 270(9), 4741–4747.
Ng, D. T., Watowich, S. S., & Lamb, R. A. (1992). Analysis in vivo of GRP78-BiP/substrate interactions and their role in induction of the GRP78-BiP gene. Molecular Biology of the Cell, 3(2), 143–155.
Ninagawa, S., Okada, T., Sumitomo, Y., Kamiya, Y., Kato, K., Horimoto, S., … Mori, K. (2014). EDEM2 initiates mammalian glycoprotein ERAD by catalyzing the first mannose trimming step. The Journal of Cell Biology,206(3), 347–356.
Novick, P., Ferro, S., & Schekman, R. (1981). Order of events in the yeast secretory pathway.Cell, 25(2), 461–469.
Nyfeler, B., Michnick, S. W., & Hauri, H.-P. (2005). Capturing protein interactions in the secretory pathway of living cells. Proceedings of the National Academy of Sciences of the United States of America, 102(18), 6350–6355.
Pearl, L. H., & Prodromou, C. (2006). Structure and mechanism of the Hsp90 molecular chaperone machinery. Annual Review of Biochemistry, 75, 271–294.
Reynaud, E. G., & Simpson, J. C. (2002). Navigating the secretory pathway: conference on exocytosis membrane structure and dynamics. EMBO Reports, 3(9), 828–833.
Rhee, H.-W., Zou, P., Udeshi, N. D., Martell, J. D., Mootha, V. K., Carr, S. A., & Ting, A. Y. (2013). Proteomic mapping of mitochondria in living cells via spatially restricted enzymatic tagging. Science, 339(6125), 1328–1331.
Roux, K. J., Kim, D. I., Raida, M., & Burke, B. (2012). A promiscuous biotin ligase fusion protein identifies proximal and interacting proteins in mammalian cells.The Journal of Cell Biology, 196(6), 801–810.
Sakono, M., Seko, A., Takeda, Y., & Ito, Y. (2014). PDI family protein ERp29 forms 1:1 complex with lectin chaperone calreticulin. Biochemical and Biophysical Research Communications, 452(1), 27–31.
Schindelin, J., Rueden, C. T., Hiner, M. C., & Eliceiri, K. W. (2015). The ImageJ ecosystem: An open platform for biomedical image analysis. Molecular Reproduction and Development, 82(7-8), 518–529.
Schreiber, G., Haran, G., & Zhou, H.-X. (2009). Fundamental aspects of protein-protein association kinetics. Chemical Reviews, 109(3), 839–860.
Sears, R. M., May, D. G., & Roux, K. J. (2019). BioID as a Tool for Protein-Proximity Labeling in Living Cells. Methods in Molecular Biology , 2012, 299–313.
Shen, J. P., Zhao, D., Sasik, R., Luebeck, J., Birmingham, A., Bojorquez-Gomez, A., … Mali, P. (2017). Combinatorial CRISPR-Cas9 screens for de novo mapping of genetic interactions. Nature Methods, 14(6), 573–576.
Siegenthaler, K. D., Pareja, K. A., Wang, J., & Sevier, C. S. (2017). An unexpected role for the yeast nucleotide exchange factor Sil1 as a reductant acting on the molecular chaperone BiP. eLife, 6. https://doi.org/10.7554/eLife.24141
Smyth, G. K. (n.d.). limma: Linear Models for Microarray Data. Bioinformatics and Computational Biology Solutions Using R and Bioconductor, pp. 397–420. https://doi.org/10.1007/0-387-29362-0_23
Tannous, A., Pisoni, G. B., Hebert, D. N., & Molinari, M. (2015). N-linked sugar-regulated protein folding and quality control in the ER. Seminars in Cell & Developmental Biology, 41, 79–89.
Thul, P. J., Åkesson, L., Wiking, M., Mahdessian, D., Geladaki, A., Ait Blal, H., … Lundberg, E. (2017). A subcellular map of the human proteome.Science, 356(6340). https://doi.org/10.1126/science.aal3321
Tyanova, S., & Cox, J. (2018). Perseus: A Bioinformatics Platform for Integrative Analysis of Proteomics Data in Cancer Research. Methods in Molecular Biology, 1711, 133–148.
Tyanova, S., Temu, T., & Cox, J. (2016). The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nature Protocols,11(12), 2301–2319.
Tytgat, H. L. P., Schoofs, G., Driesen, M., Proost, P., Van Damme, E. J. M., Vanderleyden, J., & Lebeer, S. (2015). Endogenous biotin-binding proteins: an overlooked factor causing false positives in streptavidin-based protein detection.Microbial Biotechnology, 8(1), 164–168.
Varnaitė, R., & MacNeill, S. A. (2016). Meet the neighbors: Mapping local protein interactomes by proximity-dependent labeling with BioID. Proteomics,16(19), 2503–2518.
Watanabe, S., Amagai, Y., Sannino, S., Tempio, T., Anelli, T., Harayama, M., … Inaba, K. (2019). Zinc regulates ERp44-dependent protein quality control in the early secretory pathway. Nature Communications, 10(1), 603.
Young, C. L., Yuraszeck, T., & Robinson, A. S. (2011). Decreased Secretion and Unfolded Protein Response Upregulation. Methods in Enzymology, pp. 235–260. https://doi.org/10.1016/b978-0-12-385928-0.00014-6
Yu, M., Haslam, R. H., & Haslam, D. B. (2000). HEDJ, an Hsp40 co-chaperone localized to the endoplasmic reticulum of human cells. The Journal of Biological Chemistry, 275(32), 24984–24992.
Zhang, X., Smits, A. H., van Tilburg, G. B., Ovaa, H., Huber, W., & Vermeulen, M. (2018). Proteome-wide identification of ubiquitin interactions using UbIA-MS.Nature Protocols, 13(3), 530–550.
Zito, E. (2013). PRDX4, an endoplasmic reticulum-localized peroxiredoxin at the crossroads between enzymatic oxidative protein folding and nonenzymatic protein oxidation.Antioxidants & Redox Signaling, 18(13), 1666–1674.