39. Shen H, Virtanen HE, Main KM, et al. Enantiomeric ratios as
an indicator of exposure processes for persistent pollutants in human
placentas. Chemosphere 2006; 62: 390–395. https://doi:
10.1016/j.chemosphere.2005.04.100
40. Cantillana T, Lindström V, Eriksson L, et al. Interindividual
differences in o,p′-DDD enantiomer kinetics examined in Göttingen
minipigs. Chemosphere 2009; 76: 167–172. https://doi:
10.1016/j.chemosphere.2009.03.050
41. Asp V, Cantillana T, Bergman Å, et al. Chiral effects in
adrenocorticolytic action of o,p′-DDD (mitotane) in human adrenal cells.
Xenobiotica 2010; 40: 177–183.
https://doi.org/10.3109/00498250903470230
42. Martz F, Straw JA. Metabolism and covalent binding of
1-(o-chlorophenyl)-1-(p-chlorophenyl)-2,2-dichloroethane (o,p′-DDD).
Correlation between adrenocorticolytic activity and metabolic activation
by adrenocortical mitochondria. Drug Metab Dispos 1980; 8: 127–130.
https://doi.org/10.1124/dmd.8.3.127
43. Germano A, Rapa I, Volante M, et al. RRM1 modulates mitotane
activity in adrenal cancer cells interfering with its metabolization.
Mol Cell Endocrinol 2015; 401: 105–110.
https://doi.org/10.1016/j.mce.2014.11.027
44. Martz F, Straw JA. The in vitro metabolism of
1-(o-chlorophenyl)-1-(p-chlorophenyl)-2,2-dichloroethane (o,p′-DDD) by
dog adrenal mitochondria and metabolite covalent binding to
mitochondrial macromolecules: a possible mechanism for the
adrenocorticolytic effect. Drug Metab Dispos 1977; 5: 482–486.
45. Lund BO, Bergman A, Brandt I. In vitro macromolecular binding of
2-{2-chlorophenyl}-2-{4-chlorophenyl}-i,i-dichloroethane (o,p′-DDD)
in the mouse lung and liver. Chem Biol Interact 1989; 70: 63–72.
https://doi.org/10.1016/0009-2797(89)90063-x
46. Lehmann TP, Wrzesiński T, Jagodziński PP. The effect of mitotane on
viability, steroidogenesis and gene expression in NCI‑H295R
adrenocortical cells. Mol Med Rep 2013; 7: 893–900.
https://doi.org/10.3892/mmr.2012.1244
47. Murtha TD, Brown TC, Rubinstein JC, et al. Overexpression of
cytochrome P450 2A6 in adrenocortical carcinoma. Surgery 2017; 161:
1667–1674. https://doi.org/10.1016/j.surg.2016.11.036
48. Ronchi CL, Sbiera S, Volante M, et al. CYP2W1 Is Highly Expressed in
Adrenal Glands and Is Positively Associated with the Response to
Mitotane in Adrenocortical Carcinoma. PloS One 2014; 9: e105855.
https://doi.org/10.1371/journal.pone.0105855
49. Altieri B, Herterich S, Sbiera S, et al. CYP2W1*6
polymorphism as a potential predictive marker of sensitivity to mitotane
treatment in adrenocortical carcinoma. Endoc Abstrac 2017;
49: EP161.
50. Kitamura S, Shimizu Y, Shiraga Y, et al. Reductive metabolism of p,
p-DDT and o, p-DDT by rat liver cytochrome p450. Drug Metab Dispos 2002;
30: 113–118. https://doi.org/10.1124/dmd.30.2.113
51. Noh K, Kang YR, Nepal NR, et al. Impact of gut
microbiota on drug metabolism: an update for safe and effective use of
drugs. Arch Pharm Res 2017; 40: 1345–1355.
https://doi.org/10.1007/s12272-017-0986-y
52. van Erp NP, Guchelaar HJ, Ploeger BA, et al. Mitotane has a strong
and a durable inducing effect on CYP3A4 activity. Eur J Endocrinol 2011;
164: 621–626. https://doi.org/10.1530/EJE-10-0956
53. Theile D, Haefeli WE, Weiss J. Effects of adrenolytic mitotane on
drug elimination pathways assessed in vitro. Endocrine 2015; 49:
842–853. https://doi.org/10.1007/s12020-014-0517-2
54. Nims RW, Lubet RA, Fox SD, et al. Comparative pharmacodynamics of
CYP2B induction by DDT, DDE, and DDD in male rat liver and cultured rat
hepatocytes. J Toxicol Environ Health 1998; 53: 455–477.
https://doi.org/10.1080/009841098159187
55. Reif VD, Sinsheimer JE. Metabolism of
1-(0-chlorophenyl)-1-(p-chlorophenyl)-2,2-dichloroethane (o,p′-DDD) in
rats. Drug Metab Dispos 1975; 3: 15–25.
56. Touitou Y, Bogdan A, Legrand JC, et al. Metabolism of o,p′-DDD
(mitotane) in human and animals. Actual notions and practical
deductions. Ann Endocrinol (Paris) 1977; 38: 13–25.
57. Lin CW, Chang YH, Pu HF. Mitotane exhibits dual effects on
steroidogenic enzymes gene transcription under basal and
cAMP-stimulating microenvironments in NCI-H295 cells. Toxicology 2012;
298: 14–23. https://doi.org/10.1016/j.tox.2012.04.007
58. Rone MB, Midzak AS, Issop L, et al. Papadopoulos, Identification of
a dynamic mitochondrial protein complex driving cholesterol import,
trafficking, and metabolism to steroid hormones. Mol Endocrinol 2012;
26: 1868–1882. https://doi.org/10.1210/me.2012-1159
59. Hescot S, Amazit L, Lhomme M, et al. Identifying mitotane-induced
mitochondria-associated membranes dysfunctions: metabolomic and
lipidomic approaches. Oncotarget 2017; 8: 109924–109940.https://doi.org/10.18632/oncotarget.18968
60. Cai W, Counsell RE, Schteingart DE, et al. Adrenal proteins bound by
a reactive intermediate of mitotane. Cancer Chemother Pharmacol 1997;
39: 537–540. https://doi.org/10.1007/s002800050610
61. Zsippai A, Szabó DR, Tömböl Z, et al. Effects of mitotane on gene
expression in the adrenocortical cell line NCI-H295R: a microarray
study. Pharmacogenomics 2012; 13: 1351–1361.
https://doi.org/10.2217/pgs.12.116
62. Sbiera S, Leich E, Liebisch G, et al. Mitotane Inhibits
Sterol-O-Acyl Transferase 1 Triggering Lipid-Mediated Endoplasmic
Reticulum Stress and Apoptosis in Adrenocortical Carcinoma Cells.
Endocrinology 2015; 156: 3895–3908.
https://doi.org/10.1210/en.2015-1367
63. Shawa H, Deniz F, Bazerbashi H, et al. Mitotane-Induced
Hyperlipidemia: A Retrospective Cohort Study. Int J Endocrinol 2013;
2013: 624962. https://doi.org/ 10.1155/2013/624962