70. Seidel E, Walenda G, Messerschmidt C, et al. Generation and
characterization of a mitotane-resistant adrenocortical cell line.
Endocrinol Connect 2020; 9:
122-134.
71. Allolio B, Fassnacht M. CLINICAL REVIEW: Adrenocortical Carcinoma:
Clinical Update. J Clin Endocrinol Metab 2006; 91: 2027–2037.
72. Veytsman I, Nieman L, Fojo T. Management of Endocrine Manifestations
and the Use of Mitotane As a Chemotherapeutic Agent for Adrenocortical
Carcinoma. J Clin Oncol 2009; 27: 4619-4629.
73. Farooq AU, Amjad W, Kochar T, et al. Mitotane-induced dyspnoea: an
unusual side effect. BMJ Case Rep 2018.
74. Lund B, Bergman Â, Brandt I. Metabolic activation and toxicity of a
ddtmetabolite, 3-methylsulphonyl-dde, in the adrenal zona
fascicula ta in mice. Chem Biol Interact 1988; 65: 25–40.
https://doi.org/10.1016/0009-2797(88)90028-2
75. Asp V, Lindström V, Olsson JA, et al. Cytotoxicity and decreased
corticosterone production in adrenocortical Y-1 cells by
3-methylsulfonyl-DDE and structurally related molecules. Arch Toxicol
2009; 83: 389–396. https://doi.org/10.1007/s00204-008-0342-6
76. Hermansson V, Asp V, Bergman A, et al. Comparative CYP-dependent
binding of the adrenocortical toxicants 3-methylsulfonyl-DDE and
o,p′-DDD in Y-1 adrenal cells. Arch Toxicol 2007; 81: 793–801.
https://doi.org/10.1007/s00204-007-0206-5
77. Ulleras E, Ohlsson A, Oskarsson A. Secretion of cortisol and
aldosterone as a vulnerable target for adrenal endocrine disruption –
screening of 30 selected chemicals in the human H295R cell model. J Appl
Toxicol 2008; 28: 1045–1053. https://doi.org/10.1002/jat.1371
78. Lindhe Ö, Skogseid B. Mitotane Effects in a H295R Xenograft Model of
Adjuvant Treatment of Adrenocortical Cancer. Horm Metab Res 2010; 42:
725–730. https://doi.org/10.1055/s-0030-1261923
79. Asp V, Ullerås E, Lindström V, et al. Biphasic hormonal responses to
the adrenocorticolytic DDT metabolite 3-methylsulfonyl-DDE in human
cells. Toxicol Appl Pharmacol 2010; 242: 281–289.
https://doi.org/10.1016/j.taap.2009.10.018
80. Menaa F, Menaa B. Development of Mitotane Lipid Nanocarriers and
Enantiomers: Two-in-One Solution to Efficiently Treat Adreno-Cortical
Carcinoma. Curr Med Chem 2012; 19: 5854–5862.
https://doi.org/10.2174/092986712804143376
81. Lin Y, Chen Y, Wu T, et al. Enhancement of dissolution rate of
mitotane and warfarin prepared by using microemulsion systems. Colloids
Surf B Biointerfaces 2011; 85: 366–372.
https://doi.org/10.1016/j.colsurfb.2011.03.015
82. Attivi D, Ajana I, Astier A, et al. Development of microemulsion of
mitotane for improvement of oral bioavailability. Drug Dev Ind Pharm
2010; 36: 421–427. https://doi.org/10.3109/03639040903225083
83. Severino P, Souto EB, Pinho SC, et al. Hydrophilic coating of
mitotane-loaded lipid nanoparticles: Preliminary studies for mucosal
adhesion. Pharm Dev Technol 2013; 18: 577–581.
https://doi.org/10.3109/10837450.2011.614250
84. Nishiyama N, Kataoka K. Current state, achievements, and future
prospects of polymeric micelles as nanocarriers for drug and gene
delivery. Pharmacol Ther 2006; 112: 630-48.
85. Yadav
HKS,
Almokdad
AA,
Shaluf
SIM, et al. Nanocarriers for Drug Delivery: Nanoscience and
Nanotechnology in Drug Delivery. Amsterdam: Elsevier; 2019, Pages
531-556.
86. Haider MS, Schreiner J, Kendl S, et al. A Micellar Mitotane
Formulation with High Drug Loading and Solubility: Physico-Chemical
Characterization and Cytotoxicity Studies in 2D and 3D in Vitro Tumor
Models. Macromol Biosci 2020; 20: e1900178
Table 1 . Clinical trials on mitotane plus chemotherapy in
advanced ACC