References
[1] D. S. Sholl, R. P. Lively. Seven chemical separations to change the world. Nature ., 2016, 532 , 435-437.
[2] J. Shen, A. Dailly, M. Beckner. Natural gas sorption evaluation on microporous materials. Micropor. Mesopor. Mat ., 2016,235 , 170-177.
[3] S. Mater, L. F. Hatch. Chemistry of Petrochemical Processes 2nd edition; Gulf Publishing Company: 2001
[4] R. B. Eldridge. Olefin/paraffin separation technology: a review,Ind. Eng. Chem. Res ., 1993, 32 , 2208-2212.
[5] T. Ren, M. Patel, K. Blok. Olefins from conventional and heavy feedstocks: Energy use in steam cracking and alternative processes.Energy ., 2006, 31 (4), 425-451.
[6] D. M. Ruthven, Principles of adsorption and adsorption process. John Wiley $ Sons: 1984
[7] R. T. Yang, Adsorbents: fundamentals and applications. John Wiley & Sons: 2003
[8] S. Hosseinpour, S. Fatemi, Y. Mortazavi, et al. Performance of CaX zeolite for separation of C2H6, C2H4, and CH4 by adsorption process; Capacity, selectivity, and dynamic adsorption measurements. Sep. Sci. Technol ., 2010, 46 , 349-355.
[9] A.M. Avila, F. Yang, M. Shi, S.M. Kuznicki. Extraction of ethane from natural gas at high pressure by adsorption on Na-ETS-10.Chem. Eng. Sci ., 2011, 66 , 2991–2996.
[10] B. Li, Y. Cui, W. Zhou, G Qian, B. Chen. Emerging multifunctional metal–organic framework materials. Adv. Mater. , 2016, 28 , 8819-8860
[11] J. Y. Lee, O. K. Farha, J. Roberts, S. T. Nguyen, J. T. Hupp. Metal-organic frameworks as catalysts. Chem. Soc. Rev. , 2009,38 , 1450-1459
[12] H. Furukawa, K. E. Cordova, M. O’Keeffe, O. M. Yaghi. The chemistry and applications of metal-organic frameworks. Science. , 2013, 341, 1230444-(1 - 12)
[13] Z. Hu, B. J. Deibert, J. Li. Luminescent metal–organic frameworks for chemical sensing and explosive detection. Chem. Soc. Rev. , 2014, 43 , 5815-5840
[14] L. E. Kreno, K. Leong, O. K. Farha, J. T. Hupp. Metal–organic framework materials as chemical sensors. Chem. Rev. , 2012,112 , 1105-1125
[15] N. L. Rosi, J. Eckert, M. Eddaoudi, M. O’Keeffe, O. M. Yaghi. Hydrogen storage in microporous metal-organic frameworks.Science ., 2003, 300 , 1127-1129
[16] J. –R. Li, R. J. Kuppler, H. -C. Zhou. Selective gas adsorption and separation in metal–organic frameworks. Chem. Soc. Rev. , 2009, 38 , 1477-1504
[17] R. –B. Lin, S. Xiang, H. Xing, W. Zhou, B. Chen. Exploration of porous metal–organic frameworks for gas separation and purification.Coord. Chem. Rev. , 2019, 378 , 87-103
[18] Z. Zhou, C. Ma, J. Xiao, Q. Xia, Z. Li. A novel bimetallic MIL-101(Cr, Mg) with high CO2 adsorption capacity and CO2/N2 selectivity. Chem. Eng. Sci. , 2016, 147, 109-117
[19] Z. Zhang, Z. -Z. Yao, S. Xiang, B, Chen. Perspective of microporous metal–organic frameworks for CO2 capture and separation. Energy. Environ. Sci. , 2014, 7, 2868-2899
[20] W. Huang, X. Zhou, Q. Xia, J. Peng, H. Wang, Z. Li. Preparation and adsorption performance of GrO@Cu-BTC for separation of CO2/CH4. Ind. Eng. Chem. Res. , 2014, 53 , 11176−11184
[21] M. K. Taylor, T. Runčevski, J. Oktawiec, J. E. Bachman, J. R. Long. Near-perfect CO2/CH4 selectivity achieved through reversible guest templating in the flexible metal–organic framework Co(bdp). J. Am. Chem. Soc. , 2018,140 , 10324-10331
[22] Y. Ye, Z. Ma, R. -B. Lin, R. Krishna, W. Zhou, B. Chen. Pore Space partition within a metal–organic framework for highly efficient C2H2/CO2 separation.J. Am. Chem. Soc. , 2019, 141 , 4130-4136
[23] R. –B. Lin, L. Li, H. Wu, H. Arman, B. Li, W. Zhou, B. Chen. Optimized separation of acetylene from carbon dioxide and ethylene in a microporous material. J. Am. Chem. Soc. , 2017, 139 , 8022-8028
[24] P. -Q. Liao, W. -X. Zhang, J. -P. Zhang, X. -M. Chen. Efficient purification of ethene by an ethane-trapping metal-organic framework.Nat. Commun. , 2015, 6 , 8697-8705[25] W. Liang, F. Xu, X. Zhou, J. Xiao, Z. Li. Ethane selective adsorbent Ni(bdc)(ted)0.5 with high uptake and its significance in adsorption separation of ethane and ethylene. Chem. Eng. Sci. , 2016, 148 , 275-281
[26] Y. Wu, Y. Sun, J. Xiao, X. Wang, Zhong Li. Glycine-modified HKUST‑1 with simultaneously enhanced moisture stability and improved adsorption for light hydrocarbons separation. ACS Sustainable Chem. Eng. , 2019, 7 , 1557−1563
[27] S. Gao, C. G. Morris, Z. Lu, Y .Yan, K. M. Thomas, S. Yang, M. Schröder. Selective hysteretic sorption of light hydrocarbons in a flexible metal−organic framework material. Chem. Mater. , 2016,28 , 2331−2340
[28] Y. He, R. Krishna, B. Chen. Metal–organic frameworks with potential for energy-efficient adsorptive separation of light hydrocarbons. Energy Environ. Sci. , 2012, 5 , 9107-9120
[29] E. D. Bloch, W. L. Queen, R. Krishna, J. M. Zadrozny, C. M. Brown, J. R. Long. Hydrocarbon separations in a metal-organic framework with open iron(II) coordination sites. Science. , 2012,335 , 1606-1610
[30] X. Wang,  Z. Niu,  A. M. Al-Enizi, L. Wojtas, Y. -S. Chen,  Z. Li, S. Ma. Pore environment engineering in metal-organic frameworks for efficient ethane/ethylene separation. J. Mater. Chem. A. , 2019,7 , 13585-13590
[31] A. Hijazi, S. Floquet, J. Marrot, J. Fize, V. Artero. Tuning the electrocatalytic hydrogen evolution reaction promoted by [Mo2O2S2]-based molybdenum cycles in aqueous medium. Dalton Trans. , 2013,42 , 4848-4858
[32] W. Liang, H. Xiao, D. Lv, J. Xiao, Z. Li. Novel asphalt-based carbon adsorbents with super-high adsorption capacity and excellent selectivity for separation for light hydrocarbons. Sep. Purif. Technol. , 2018, 190 , 60-67
[33] L. Li, R. Krishna, Y. Wang, X. Wang, J. Yang, J. Li. Flexible metal–organic frameworks with discriminatory gate opening effect for the separation of acetylene from ethylene/acetylene mixtures. Eur. J. Inorg. Chem. , 2016 , 4457–4462
[34] Li L., Krishna R., Wang Y., J. Li. Exploiting the gate opening effect in a flexible MOF for selective adsorption of propyne from C1/C2/C3 hydrocarbons. Journal of Materials Chemistry A . 2016,4 (3), 751-755.
[35] C. Gücüyener, J. Bergh, J. Gascon, F. Kapteijn, Ethane/ethene separation turned on its Head: selective ethane adsorption on the metal-organic framework ZIF-7 through a gate-opening mechanism. J. Am. Chem. Soc. , 2010, 132 , 17704–17706
[36] Y. He, Z. Zhang, S. Xiang, B. Chen. A robust doubly interpenetrated metal-organic framework constructed from a novel aromatic tricarboxylate for highly selective separation of small hydrocarbons. Chem. Commun ., 2012, 48 , 6493-6495.
[37] He Y. P., Tan Y. X., Zhang J. Tuning a layer to a pillared-layer metal-organic framework for adsorption and separation of light hydrocarbons. Chem. Commun ., 2013, 49 , 11323-11325.
[38] F. -S. Tang, R. -B. Lin, R. -G. Lin, B. Chen. Separation of C2 hydrocarbons from methane in a microporous metal-organic framework.J. Solid. State. Chem ., 2018, 258 , 346-350.
[40] S. Du, Y. Wu, X. Wang, Q. Xia, J. Xiao, Z. Li. Facile synthesis of ultramicroporous carbon adsorbents with ultrahigh CH4 uptake by in situ ionic activation. AIChE J. 2020; e16231.