References:
[1] Y. Yurum, A. Taralp, and T. N. Veziroglu, Storage of hydrogen in nanostructured carbon materials, Int. J. Hydrog. Energy. 34 (09) 2009 3784–3798.
[2] R. M. A. Khalil, F. Hussain, A. M. Rana, and M. Imran, Thermodynamics and vibrational study of hydrogenated carbon nanotubes: A DFT study, Phys. B: Physics of Condens. Matt. 530 (2018) 307-311.
[3] P. Jena, Materials for Hydrogen Storage: Past, Present, and Future, J. Phys. Chem. Lett. 02(03) (2011) 206-209.
[4] R. M. A. Khalil, F. Hussain, M. Imran, A. M. Rana, and G. Murtaza, ab-initio study of the exo-hydrogenated single wall carbon nanotubes, Phys. B: Physics of Condens. Matt. 552, (2019) 124-129
[5] H. Wang, Phase transition and electronic properties of LiBH4 via first-principles Calculations, Adv. Mater. Res. 971-973 (2014) 119-122.
[6] M. J. V. Setten, V. A. Popa, G. A. de Wijs, and G. Brocks Electronic structure and optical properties of lightweight metal hydrides, Phys. Rev. B. 75, 035204 (2007).
[7] Mo. Xiaohua, W. Jiang, Dehydrogenation properties of LiBH4 modified by Mg from First-principles calculations, J. Alloys Compd. 735 (2018) 668-676.
[8] K. Miwa, N. Ohba, and Shin-ichi Towata, First-principles study on lithium borohydride LiBH4 Phys. Rev. B 69, 245120 (2004).
[9] T. A. Ikeshoji, E. Tsuchida, T. Morishita, K. Ikeda, M. Matsuo, Y. Kawazoe, S. Orimo, Fast-ionic conductivity of Li+ in LiBH4, Phys. Rev. B 83, 144301 (2011).
[10] Q. Song, Q. Zhao, Z. Jiang, Z. Zhang and Haiyan Zhu, A first-principles Simulation of the metal borohydride ammonia borane complex (LiBH4)2(NH3BH3) and the decomposition reaction pathway for Hydrogen storage, ‎Int. J. Hydrog. Energy 44 (2019) 20121-20132.
[11] H. Benzidi, M. Garara, M. Lakhal, M. Abdalaoui, A. Benyoussef, A. El kenz, M. Louilidi, M. Hamedoun, O. Mounkachi, Vibrational and thermodynamic properties of LiBH4 polymorphs from first-principles calculations, Int. J. Hydrog. Energy. 43 (2018) 6625-6631.
[12] R.M. A. Khalil, F. Hussain, M. Imran, U. Rasheed, A. M. Rana and G. Murtaza, An ab-initio study of spectroscopic and thermodynamic characteristics of MgH2 and TiC Systems, ‎Int. J. Hydrog. Energy 44 (2019) 6756-6762.
[13] T. Ghellab, Z. Charifi, H. Baaziz, K. Bouferrache and B. Hamad, Electronic structure and optical properties of complex hydrides LiBH4 and NaAlH4 compounds Energy Res. (2018) 1-15.
[14] S. J. Clark, M. D. Segall, C. J. Pickrd, P. J. Haspani, P. J. H. Matt, K. Refson, M. C. Pyne, First principles methods using CASTEP.  ‎Z. Kristallogr. Cryst. Mats 220, (2005) 567-570
[15] J. Vackar, M. Hytha, A. Simmunek, All-electron pseudopotentials. Phys Rev B 58, (1998) 12712.
[16] D.H. Hamann, M. Schluter, and C. Chiang, Norm-Conserving Pseudopotentials Phys. Rev 43 (1979) 1494-1497.
[17] D. R. Hamann, Generalized norm-conserving pseudopotentials Phys. Rev. B (1989) 2980.
[18] H. J. Monkhorst and J. D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B 13, (1976) 5188.
[19] B. G. Pfrommer, M. Cote, S. G. Louie, M. L. Cohen, J. Comput. Phys. 131 (1997) 133.

[20] R.P. Feynman, Forces in Molecules Phys. Rev. 56 (1939) 340.