References
1. Sungnak W, Huang N, Bécavin C, et al. SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes. Nat Med . 2020;26(5):681-687. doi:10.1038/s41591-020-0868-6
2. Xu Z, Shi L, Wang Y, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med . 2020;8(4):420-422. doi:10.1016/S2213-2600(20)30076-X
3. Chen L, Liu H, Liu W, et al. Analysis of clinical features of 29 patients with 2019 novel coronavirus pneumonia. Zhonghua Jie He He Hu Xi Za Zhi . 2020;43(0):E005.
4. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet . 2020;395(10223):497-506. doi:10.1016/S0140-6736(20)30183-5
5. Tay MZ, Poh CM, Rénia L, MacAry PA, Ng LFP. The trinity of COVID-19: immunity, inflammation and intervention. Nat Rev Immunol . Published online April 28, 2020:1-12. doi:10.1038/s41577-020-0311-8
6. Ackermann M, Verleden SE, Kuehnel M, et al. Pulmonary Vascular Endothelialitis, Thrombosis, and Angiogenesis in Covid-19. N Engl J Med . Published online May 21, 2020:NEJMoa2015432. doi:10.1056/NEJMoa2015432
7. Stephens TD, Bunde CJW, Fillmore BJ. Mechanism of action in thalidomide teratogenesis. Biochem Pharmacol . 2000;59(12):1489-1499. doi:10.1016/S0006-2952(99)00388-3
8. Rehman W, Arfons LM, Lazarus HM. The rise, fall and subsequent triumph of thalidomide: lessons learned in drug development. Ther Adv Hematol . 2011;2(5):291-308. doi:10.1177/2040620711413165
9. Rismanbaf A. Potential Treatments for COVID-19; a Narrative Literature Review. Arch Acad Emerg Med . 2020;8(1):e29. Accessed May 21, 2020. http://www.ncbi.nlm.nih.gov/pubmed/32232214
10. Chen C, Qi F, Shi K, et al. Thalidomide Combined with Low-Dose Glucocorticoid in the Treatment of COVID-19 Pneumonia . Preprints; 2020. Accessed May 20, 2020. www.preprints.org
11. Wen H, Ma H, Cai Q, et al. Recurrent ECSIT mutation encoding V140A triggers hyperinflammation and promotes hemophagocytic syndrome in extranodal NK/T cell lymphoma. Nat Med . 2018;24(2):154-164. doi:10.1038/nm.4456
12. Somogyi V, Chaudhuri N, Torrisi SE, Kahn N, Müller V, Kreuter M. The therapy of idiopathic pulmonary fibrosis: what is next? Eur Respir Rev . 2019;28(153):190021. doi:10.1183/16000617.0021-2019
13. Zhu H, Shi X, Ju D, Huang H, Wei W, Dong X. Anti-Inflammatory Effect of Thalidomide on H1N1 Influenza Virus-Induced Pulmonary Injury in Mice.Inflammation . 2014;37(6):2091-2098. doi:10.1007/s10753-014-9943-9
14. Li D, Zhang X-W, Jiang X-Q, et al. Protective effects of thalidomide on pulmonary injuries in a rat model of paraquat intoxication. J Inflamm . 2015;12(1):46. doi:10.1186/s12950-015-0093-0
15. Subramanian A, Narayan R, Corsello SM, et al. A Next Generation Connectivity Map: L1000 Platform and the First 1,000,000 Profiles.Cell . Published online 2017. doi:10.1016/j.cell.2017.10.049
16. Blanco-Melo D, Nilsson-Payant BE, Liu WC, et al. Imbalanced Host Response to SARS-CoV-2 Drives Development of COVID-19. Cell . Published online 2020. doi:10.1016/j.cell.2020.04.026
17. Xiong Y, Liu Y, Cao L, et al. Transcriptomic characteristics of bronchoalveolar lavage fluid and peripheral blood mononuclear cells in COVID-19 patients. Emerg Microbes Infect . 2020;9(1):761-770. doi:10.1080/22221751.2020.1747363
18. Oon S, Monaghan K, Ng M, et al. A potential association between IL-3 and type I and III interferons in systemic lupus erythematosus.Clin Transl Immunol . 2019;8(12). doi:10.1002/cti2.1097
19. Lopez-Millan B, Diaz de la Guardia R, Roca-Ho H, et al. IMiDs mobilize acute myeloid leukemia blasts to peripheral blood through downregulation of CXCR4 but fail to potentiate AraC/Idarubicin activity in preclinical models of non del5q/5q- AML. Oncoimmunology . 2018;7(9). doi:10.1080/2162402X.2018.1477460
20. Gopalakrishnan R, Matta H, Tolani B, Triche T, Chaudhary PM. Immunomodulatory drugs target IKZF1-IRF4-MYC axis in primary effusion lymphoma in a cereblon-dependent manner and display synergistic cytotoxicity with BRD4 inhibitors. Oncogene . 2016;35(14):1797-1810. doi:10.1038/onc.2015.245
21. Reghunathan R, Jayapal M, Hsu LY, et al. Expression profile of immune response genes in patients with severe acute respiratory syndrome. BMC Immunol . 2005;6. doi:10.1186/1471-2172-6-2
22. Hagner PR, Man HW, Fontanillo C, et al. CC-122, a pleiotropic pathway modifier, mimics an interferon response and has antitumor activity in DLBCL. Blood . 2015;126(6):779-789. doi:10.1182/blood-2015-02-628669
23. Smyth GK. Linear Models and Empirical Bayes Methods for Assessing Differential Expression in Microarray Experiments. Stat Appl Genet Mol Biol . 2004;3(1):1-25. doi:10.2202/1544-6115.1027
24. Trapnell C, Roberts A, Goff L, et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc . 2012;7(3):562-578. doi:10.1038/nprot.2012.016
25. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol . 2014;15(12):550. doi:10.1186/s13059-014-0550-8
26. Subramanian A, Tamayo P, Mootha VK, et al. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A . 2005;102(43):15545-15550. doi:10.1073/pnas.0506580102
27. Merico D, Isserlin R, Stueker O, Emili A, Bader GD. Enrichment Map: A Network-Based Method for Gene-Set Enrichment Visualization and Interpretation. Ravasi T, ed. PLoS One . 2010;5(11):e13984. doi:10.1371/journal.pone.0013984
28. Shannon P, Markiel A, Ozier O, et al. Cytoscape: A software Environment for integrated models of biomolecular interaction networks.Genome Res . 2003;13(11):2498-2504. doi:10.1101/gr.1239303
29. Kuleshov M V., Jones MR, Rouillard AD, et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update.Nucleic Acids Res . 2016;44(W1):W90-W97. doi:10.1093/nar/gkw377
30. Sundaresan L, Kumar P, Manivannan J, et al. Thalidomide and Its Analogs Differentially Target Fibroblast Growth Factor Receptors: Thalidomide Suppresses FGFR Gene Expression while Pomalidomide Dampens FGFR2 Activity. Chem Res Toxicol . 2019;32(4):589-602. doi:10.1021/acs.chemrestox.8b00286
31. Kaimal V, Bardes EE, Tabar SC, Jegga AG, Aronow BJ. ToppCluster: a multiple gene list feature analyzer for comparative enrichment clustering and network-based dissection of biological systems.Nucleic Acids Res . 2010;38(Web Server):W96-W102. doi:10.1093/nar/gkq418
32. Liu X, Ouyang S, Yu B, et al. PharmMapper server: a web server for potential drug target identification using pharmacophore mapping approach. Nucleic Acids Res . 2010;38(suppl_2):W609-W614. doi:10.1093/nar/gkq300
33. Huang H, Yan G, Su H, et al. Clinical Outcome of an Multicentre, Randomized, Phase II Clinical Trial for Patients with Extranodal NK/T Cell Lymphoma Treated By P-Gemox or Aspametdex. Blood . 2019;134(Supplement_1):1569-1569. doi:10.1182/blood-2019-123478
34. Phung TTB, Sugamata R, Uno K, et al. Key role of regulated upon activation normal T-cell expressed and secreted, nonstructural protein1 and myeloperoxidase in cytokine storm induced by influenza virus PR-8 (A/H1N1) infection in A549 bronchial epithelial cells. Microbiol Immunol . 2011;55(12):874-884. doi:10.1111/j.1348-0421.2011.00396.x
35. Lin Y-C, Shun C-T, Wu M-S, Chen C-C. A Novel Anticancer Effect of Thalidomide: Inhibition of Intercellular Adhesion Molecule-1-Mediated Cell Invasion and Metastasis through Suppression of Nuclear Factor- B.Clin Cancer Res . 2006;12(23):7165-7173. doi:10.1158/1078-0432.CCR-06-1393
36. El-Aarag B, Kasai T, Masuda J, Agwa H, Zahran M, Seno M. Anticancer effects of novel thalidomide analogs in A549 cells through inhibition of vascular endothelial growth factor and matrix metalloproteinase-2.Biomed Pharmacother . 2017;85:549-555. doi:10.1016/j.biopha.2016.11.063
37. Sun X, Xu Y, Wang Y, Chen Q, Liu L, Bao Y. Synergistic Inhibition of Thalidomide and Icotinib on Human Non-Small Cell Lung Carcinomas Through ERK and AKT Signaling. Med Sci Monit . 2018;24:3193-3203. doi:10.12659/MSM.909977
38. Cheng L, Li L. Systematic Quality Control Analysis of LINCS Data.CPT Pharmacometrics Syst Pharmacol . 2016;5(11):588-598. doi:10.1002/psp4.12107
39. Vinciguerra M, Romiti S, Greco E. Atherosclerosis as Pathogenetic Substrate for Sars-Cov2 “‘Cytokine Storm.”’ Preprints . 2020;2020040430.
40. Guan W, Ni Z, Hu Y, et al. Clinical characteristics of 2019 novel coronavirus infection in China. N Engl J Med . Published online February 9, 2020:2020.02.06.20020974. doi:10.1101/2020.02.06.20020974
41. Steenblock C, Todorov V, Kanczkowski W, et al. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the neuroendocrine stress axis. Mol Psychiatry . Published online May 7, 2020:1. doi:10.1038/s41380-020-0758-9
42. Lv Q, Yang Q, Cui Y, et al. Effects of taurine on ACE, ACE2 and HSP70 expression of hypothalamic-pituitary-adrenal axis in stress-induced hypertensive rats. Adv Exp Med Biol . 2017;975:871-886. doi:10.1007/978-94-024-1079-2_69
43. Chrousos GP, Kaltsas G. Post-SARS sickness syndrome manifestations and endocrinopathy: How, why, and so what? Clin Endocrinol (Oxf) . 2005;63(4):363-365. doi:10.1111/j.1365-2265.2005.02361.x
44. Jung YJ, Tweedie D, Scerba MT, Greig NH. Neuroinflammation as a Factor of Neurodegenerative Disease: Thalidomide Analogs as Treatments.Front Cell Dev Biol . 2019;7. doi:10.3389/fcell.2019.00313
45. Vallet S, Palumbo A, Raje N, Boccadoro M, Anderson KC. Thalidomide and lenalidomide: Mechanism-based potential drug combinations.Leuk Lymphoma . 2008;49(7):1238-1245. doi:10.1080/10428190802005191
46. Felsenstein S, Herbert JA, McNamara PS, Hedrich CM. COVID-19: Immunology and treatment options. Clin Immunol . 2020;215:108448. doi:10.1016/j.clim.2020.108448
47. Spiegel M, Pichlmair A, Martínez-Sobrido L, et al. Inhibition of Beta Interferon Induction by Severe Acute Respiratory Syndrome Coronavirus Suggests a Two-Step Model for Activation of Interferon Regulatory Factor 3. J Virol . 2005;79(4):2079-2086. doi:10.1128/JVI.79.4.2079-2086.2005
48. Millrine D, Tei M, Gemechu Y, Kishimoto T. Rabex-5 is a lenalidomide target molecule that negatively regulates TLR-induced type 1 IFN production. Proc Natl Acad Sci U S A . 2016;113(38):10625-10630. doi:10.1073/pnas.1611751113
49. Millrine D, Miyata H, Tei M, et al. Immunomodulatory drugs inhibit TLR4-induced type-1 interferon production independently of Cereblonvia suppression of the TRIF/IRF3 pathway. Int Immunol . 2016;28(6):307-315. doi:10.1093/intimm/dxw005
50. Taccone FS, Gorham J, Vincent J-L. Hydroxychloroquine in the management of critically ill patients with COVID-19: the need for an evidence base. Lancet Respir Med . Published online April 2020. doi:10.1016/S2213-2600(20)30172-7
51. Schafer PH, Ye Y, Wu L, et al. Cereblon modulator iberdomide induces degradation of the transcription factors Ikaros and Aiolos: immunomodulation in healthy volunteers and relevance to SLE. Ann Rheum Dis . 2018;77(10):1516-1523. doi:10.1136/annrheumdis-2017-212916
52. Lonial S, van de Donk NWCJ, Popat R, et al. First clinical (phase 1b/2a) study of iberdomide (CC-220), a CELMoD, in combination with dexamethasone (DEX) in patients (pts) with relapsed/refractory multiple myeloma (RRMM). J Clin Oncol . 2019;37(15_suppl):8006-8006. doi:10.1200/JCO.2019.37.15_suppl.8006
53. Mazzurana L, Forkel M, Rao A, et al. Suppression of Aiolos and Ikaros expression by lenalidomide reduces human ILC3−ILC1/NK cell transdifferentiation. Eur J Immunol . 2019;49(9):1344-1355. doi:10.1002/eji.201848075
54. Palumbo A, Palladino C. Venous and arterial thrombotic risks with thalidomide: Evidence and practical guidance. Ther Adv Drug Saf . 2012;3(5):255-266. doi:10.1177/2042098612452291
55. Aue G, Njuguna N, Tian X, et al. Lenalidomide-induced upregulation of CD80 on tumor cells correlates with T-cell activation, the rapid onset of a cytokine release syndrome and leukemic cell clearance in chronic lymphocytic leukemia. Haematologica . 2009;94(9):1266-1273. doi:10.3324/haematol.2009.005835
Figure legends
Figure 1: Characteristics of SARS-coV-2 infected lungs and A549 cells. Gene Set Enrichment Analysis (GSEA) of genes modulated in A) SARS-coV-2 infected lung and B) A549 cells. C) Transcription factor enrichment of genes up-regulated in SARS-coV-2 infection. D) Genes activated in SARS-coV-2 overlapping with genes down-regulated upon kinase perturbations. Up-regulated genes mapped to their transcription factors and kinases in E) SARS-coV-2 lung and F) A549 cells.
Figure 2: Effect of Thalidomide and Lenalidomide on Immune System. GSEA network of gene expression profiles of A) thalidomide and B) lenalidomide treated A549 cells. C) Activities of kinase involved in immunomodulation and MAPK signaling in the presence of thalidomide D) Biological Pathways enriched by kinases affected by thalidomide.
Figure 3: Comparative Enrichment of Biological Process. A) GO Biological Process enrichment comparison of gene expression signatures B) SARS-coV-2 infected tissues B) Overexpression of immune response genes in SARS-coV-2 tissues and suppression by thalidomide and lenalidomide C) B cell receptor signaling activated in PBMC of SARS-coV-2 patient and T cell activation in SARS-coV-2 lungs D) Modulation of ERK1 and ERK2 cascade in SARS-coV2 lung and thalidomide in A549.
Figure 4: Activation of A) inflammation, B) TLR signaling, C) NOD-like signaling, D) Osteoblast differentiation and E) Cytokine signaling in SARS-coV-2 and genes targeted by thalidomide and lenalidomide in the signaling pathways.
Figure 5: Viral life cycle and defense response to virus. A) Up-regulation of pathways pertaining to viral entry, life cycle and antiviral response was observed in SARS-coV-2 infected lungs, PBMC, BALF and A549 cells and their modulation by thalidomide and lenalidomide. Overexpression of genes implicated in B) Interferon signaling and C) Type I interferon signaling in SARS-coV-2 infected lung and A549.
Figure 6: Enrichment of Disease-specific Phenotypes. A) Similarity of SARS-coV-2 signatures with disease-specific phenotypes. Differentially modulated genes in SARS-coV-2 and thalidomide treatment similar to profiles of B) lymphoma and D) Multiple Myeloma. C) Overlapping of SARS-coV-2 expression profile of SARS-coV-2 affected lung with systemic lupus erythematosus.