References
1. Sungnak W, Huang N, Bécavin C, et al. SARS-CoV-2 entry factors are
highly expressed in nasal epithelial cells together with innate immune
genes. Nat Med . 2020;26(5):681-687. doi:10.1038/s41591-020-0868-6
2. Xu Z, Shi L, Wang Y, et al. Pathological findings of COVID-19
associated with acute respiratory distress syndrome. Lancet Respir
Med . 2020;8(4):420-422. doi:10.1016/S2213-2600(20)30076-X
3. Chen L, Liu H, Liu W, et al. Analysis of clinical features of 29
patients with 2019 novel coronavirus pneumonia. Zhonghua Jie He He
Hu Xi Za Zhi . 2020;43(0):E005.
4. Huang C, Wang Y, Li X, et al. Clinical features of patients infected
with 2019 novel coronavirus in Wuhan, China. Lancet .
2020;395(10223):497-506. doi:10.1016/S0140-6736(20)30183-5
5. Tay MZ, Poh CM, Rénia L, MacAry PA, Ng LFP. The trinity of COVID-19:
immunity, inflammation and intervention. Nat Rev Immunol .
Published online April 28, 2020:1-12. doi:10.1038/s41577-020-0311-8
6. Ackermann M, Verleden SE, Kuehnel M, et al. Pulmonary Vascular
Endothelialitis, Thrombosis, and Angiogenesis in Covid-19. N Engl
J Med . Published online May 21, 2020:NEJMoa2015432.
doi:10.1056/NEJMoa2015432
7. Stephens TD, Bunde CJW, Fillmore BJ. Mechanism of action in
thalidomide teratogenesis. Biochem Pharmacol .
2000;59(12):1489-1499. doi:10.1016/S0006-2952(99)00388-3
8. Rehman W, Arfons LM, Lazarus HM. The rise, fall and subsequent
triumph of thalidomide: lessons learned in drug development. Ther
Adv Hematol . 2011;2(5):291-308. doi:10.1177/2040620711413165
9. Rismanbaf A. Potential Treatments for COVID-19; a Narrative
Literature Review. Arch Acad Emerg Med . 2020;8(1):e29. Accessed
May 21, 2020. http://www.ncbi.nlm.nih.gov/pubmed/32232214
10. Chen C, Qi F, Shi K, et al. Thalidomide Combined with Low-Dose
Glucocorticoid in the Treatment of COVID-19 Pneumonia . Preprints; 2020.
Accessed May 20, 2020. www.preprints.org
11. Wen H, Ma H, Cai Q, et al. Recurrent ECSIT mutation encoding V140A
triggers hyperinflammation and promotes hemophagocytic syndrome in
extranodal NK/T cell lymphoma. Nat Med . 2018;24(2):154-164.
doi:10.1038/nm.4456
12. Somogyi V, Chaudhuri N, Torrisi SE, Kahn N, Müller V, Kreuter M. The
therapy of idiopathic pulmonary fibrosis: what is next? Eur Respir
Rev . 2019;28(153):190021. doi:10.1183/16000617.0021-2019
13. Zhu H, Shi X, Ju D, Huang H, Wei W, Dong X. Anti-Inflammatory Effect
of Thalidomide on H1N1 Influenza Virus-Induced Pulmonary Injury in Mice.Inflammation . 2014;37(6):2091-2098. doi:10.1007/s10753-014-9943-9
14. Li D, Zhang X-W, Jiang X-Q, et al. Protective effects of thalidomide
on pulmonary injuries in a rat model of paraquat intoxication. J
Inflamm . 2015;12(1):46. doi:10.1186/s12950-015-0093-0
15. Subramanian A, Narayan R, Corsello SM, et al. A Next Generation
Connectivity Map: L1000 Platform and the First 1,000,000 Profiles.Cell . Published online 2017. doi:10.1016/j.cell.2017.10.049
16. Blanco-Melo D, Nilsson-Payant BE, Liu WC, et al. Imbalanced Host
Response to SARS-CoV-2 Drives Development of COVID-19. Cell .
Published online 2020. doi:10.1016/j.cell.2020.04.026
17. Xiong Y, Liu Y, Cao L, et al. Transcriptomic characteristics of
bronchoalveolar lavage fluid and peripheral blood mononuclear cells in
COVID-19 patients. Emerg Microbes Infect . 2020;9(1):761-770.
doi:10.1080/22221751.2020.1747363
18. Oon S, Monaghan K, Ng M, et al. A potential association between IL-3
and type I and III interferons in systemic lupus erythematosus.Clin Transl Immunol . 2019;8(12). doi:10.1002/cti2.1097
19. Lopez-Millan B, Diaz de la Guardia R, Roca-Ho H, et al. IMiDs
mobilize acute myeloid leukemia blasts to peripheral blood through
downregulation of CXCR4 but fail to potentiate AraC/Idarubicin activity
in preclinical models of non del5q/5q- AML. Oncoimmunology .
2018;7(9). doi:10.1080/2162402X.2018.1477460
20. Gopalakrishnan R, Matta H, Tolani B, Triche T, Chaudhary PM.
Immunomodulatory drugs target IKZF1-IRF4-MYC axis in primary effusion
lymphoma in a cereblon-dependent manner and display synergistic
cytotoxicity with BRD4 inhibitors. Oncogene .
2016;35(14):1797-1810. doi:10.1038/onc.2015.245
21. Reghunathan R, Jayapal M, Hsu LY, et al. Expression profile of
immune response genes in patients with severe acute respiratory
syndrome. BMC Immunol . 2005;6. doi:10.1186/1471-2172-6-2
22. Hagner PR, Man HW, Fontanillo C, et al. CC-122, a pleiotropic
pathway modifier, mimics an interferon response and has antitumor
activity in DLBCL. Blood . 2015;126(6):779-789.
doi:10.1182/blood-2015-02-628669
23. Smyth GK. Linear Models and Empirical Bayes Methods for Assessing
Differential Expression in Microarray Experiments. Stat Appl Genet
Mol Biol . 2004;3(1):1-25. doi:10.2202/1544-6115.1027
24. Trapnell C, Roberts A, Goff L, et al. Differential gene and
transcript expression analysis of RNA-seq experiments with TopHat and
Cufflinks. Nat Protoc . 2012;7(3):562-578.
doi:10.1038/nprot.2012.016
25. Love MI, Huber W, Anders S. Moderated estimation of fold change and
dispersion for RNA-seq data with DESeq2. Genome Biol .
2014;15(12):550. doi:10.1186/s13059-014-0550-8
26. Subramanian A, Tamayo P, Mootha VK, et al. Gene set enrichment
analysis: A knowledge-based approach for interpreting genome-wide
expression profiles. Proc Natl Acad Sci U S A .
2005;102(43):15545-15550. doi:10.1073/pnas.0506580102
27. Merico D, Isserlin R, Stueker O, Emili A, Bader GD. Enrichment Map:
A Network-Based Method for Gene-Set Enrichment Visualization and
Interpretation. Ravasi T, ed. PLoS One . 2010;5(11):e13984.
doi:10.1371/journal.pone.0013984
28. Shannon P, Markiel A, Ozier O, et al. Cytoscape: A software
Environment for integrated models of biomolecular interaction networks.Genome Res . 2003;13(11):2498-2504. doi:10.1101/gr.1239303
29. Kuleshov M V., Jones MR, Rouillard AD, et al. Enrichr: a
comprehensive gene set enrichment analysis web server 2016 update.Nucleic Acids Res . 2016;44(W1):W90-W97. doi:10.1093/nar/gkw377
30. Sundaresan L, Kumar P, Manivannan J, et al. Thalidomide and Its
Analogs Differentially Target Fibroblast Growth Factor Receptors:
Thalidomide Suppresses FGFR Gene Expression while Pomalidomide Dampens
FGFR2 Activity. Chem Res Toxicol . 2019;32(4):589-602.
doi:10.1021/acs.chemrestox.8b00286
31. Kaimal V, Bardes EE, Tabar SC, Jegga AG, Aronow BJ. ToppCluster: a
multiple gene list feature analyzer for comparative enrichment
clustering and network-based dissection of biological systems.Nucleic Acids Res . 2010;38(Web Server):W96-W102.
doi:10.1093/nar/gkq418
32. Liu X, Ouyang S, Yu B, et al. PharmMapper server: a web server for
potential drug target identification using pharmacophore mapping
approach. Nucleic Acids Res . 2010;38(suppl_2):W609-W614.
doi:10.1093/nar/gkq300
33. Huang H, Yan G, Su H, et al. Clinical Outcome of an Multicentre,
Randomized, Phase II Clinical Trial for Patients with Extranodal NK/T
Cell Lymphoma Treated By P-Gemox or Aspametdex. Blood .
2019;134(Supplement_1):1569-1569. doi:10.1182/blood-2019-123478
34. Phung TTB, Sugamata R, Uno K, et al. Key role of regulated upon
activation normal T-cell expressed and secreted, nonstructural protein1
and myeloperoxidase in cytokine storm induced by influenza virus PR-8
(A/H1N1) infection in A549 bronchial epithelial cells. Microbiol
Immunol . 2011;55(12):874-884. doi:10.1111/j.1348-0421.2011.00396.x
35. Lin Y-C, Shun C-T, Wu M-S, Chen C-C. A Novel Anticancer Effect of
Thalidomide: Inhibition of Intercellular Adhesion Molecule-1-Mediated
Cell Invasion and Metastasis through Suppression of Nuclear Factor- B.Clin Cancer Res . 2006;12(23):7165-7173.
doi:10.1158/1078-0432.CCR-06-1393
36. El-Aarag B, Kasai T, Masuda J, Agwa H, Zahran M, Seno M. Anticancer
effects of novel thalidomide analogs in A549 cells through inhibition of
vascular endothelial growth factor and matrix metalloproteinase-2.Biomed Pharmacother . 2017;85:549-555.
doi:10.1016/j.biopha.2016.11.063
37. Sun X, Xu Y, Wang Y, Chen Q, Liu L, Bao Y. Synergistic Inhibition of
Thalidomide and Icotinib on Human Non-Small Cell Lung Carcinomas Through
ERK and AKT Signaling. Med Sci Monit . 2018;24:3193-3203.
doi:10.12659/MSM.909977
38. Cheng L, Li L. Systematic Quality Control Analysis of LINCS Data.CPT Pharmacometrics Syst Pharmacol . 2016;5(11):588-598.
doi:10.1002/psp4.12107
39. Vinciguerra M, Romiti S, Greco E. Atherosclerosis as Pathogenetic
Substrate for Sars-Cov2 “‘Cytokine Storm.”’ Preprints .
2020;2020040430.
40. Guan W, Ni Z, Hu Y, et al. Clinical characteristics of 2019 novel
coronavirus infection in China. N Engl J Med . Published online
February 9, 2020:2020.02.06.20020974. doi:10.1101/2020.02.06.20020974
41. Steenblock C, Todorov V, Kanczkowski W, et al. Severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) and the neuroendocrine
stress axis. Mol Psychiatry . Published online May 7, 2020:1.
doi:10.1038/s41380-020-0758-9
42. Lv Q, Yang Q, Cui Y, et al. Effects of taurine on ACE, ACE2 and
HSP70 expression of hypothalamic-pituitary-adrenal axis in
stress-induced hypertensive rats. Adv Exp Med Biol .
2017;975:871-886. doi:10.1007/978-94-024-1079-2_69
43. Chrousos GP, Kaltsas G. Post-SARS sickness syndrome manifestations
and endocrinopathy: How, why, and so what? Clin Endocrinol (Oxf) .
2005;63(4):363-365. doi:10.1111/j.1365-2265.2005.02361.x
44. Jung YJ, Tweedie D, Scerba MT, Greig NH. Neuroinflammation as a
Factor of Neurodegenerative Disease: Thalidomide Analogs as Treatments.Front Cell Dev Biol . 2019;7. doi:10.3389/fcell.2019.00313
45. Vallet S, Palumbo A, Raje N, Boccadoro M, Anderson KC. Thalidomide
and lenalidomide: Mechanism-based potential drug combinations.Leuk Lymphoma . 2008;49(7):1238-1245.
doi:10.1080/10428190802005191
46. Felsenstein S, Herbert JA, McNamara PS, Hedrich CM. COVID-19:
Immunology and treatment options. Clin Immunol . 2020;215:108448.
doi:10.1016/j.clim.2020.108448
47. Spiegel M, Pichlmair A, Martínez-Sobrido L, et al. Inhibition of
Beta Interferon Induction by Severe Acute Respiratory Syndrome
Coronavirus Suggests a Two-Step Model for Activation of Interferon
Regulatory Factor 3. J Virol . 2005;79(4):2079-2086.
doi:10.1128/JVI.79.4.2079-2086.2005
48. Millrine D, Tei M, Gemechu Y, Kishimoto T. Rabex-5 is a lenalidomide
target molecule that negatively regulates TLR-induced type 1 IFN
production. Proc Natl Acad Sci U S A . 2016;113(38):10625-10630.
doi:10.1073/pnas.1611751113
49. Millrine D, Miyata H, Tei M, et al. Immunomodulatory drugs inhibit
TLR4-induced type-1 interferon production independently of Cereblonvia suppression of the TRIF/IRF3 pathway. Int Immunol .
2016;28(6):307-315. doi:10.1093/intimm/dxw005
50. Taccone FS, Gorham J, Vincent J-L. Hydroxychloroquine in the
management of critically ill patients with COVID-19: the need for an
evidence base. Lancet Respir Med . Published online April 2020.
doi:10.1016/S2213-2600(20)30172-7
51. Schafer PH, Ye Y, Wu L, et al. Cereblon modulator iberdomide induces
degradation of the transcription factors Ikaros and Aiolos:
immunomodulation in healthy volunteers and relevance to SLE. Ann
Rheum Dis . 2018;77(10):1516-1523. doi:10.1136/annrheumdis-2017-212916
52. Lonial S, van de Donk NWCJ, Popat R, et al. First clinical (phase
1b/2a) study of iberdomide (CC-220), a CELMoD, in combination with
dexamethasone (DEX) in patients (pts) with relapsed/refractory multiple
myeloma (RRMM). J Clin Oncol . 2019;37(15_suppl):8006-8006.
doi:10.1200/JCO.2019.37.15_suppl.8006
53. Mazzurana L, Forkel M, Rao A, et al. Suppression of Aiolos and
Ikaros expression by lenalidomide reduces human ILC3−ILC1/NK cell
transdifferentiation. Eur J Immunol . 2019;49(9):1344-1355.
doi:10.1002/eji.201848075
54. Palumbo A, Palladino C. Venous and arterial thrombotic risks with
thalidomide: Evidence and practical guidance. Ther Adv Drug Saf .
2012;3(5):255-266. doi:10.1177/2042098612452291
55. Aue G, Njuguna N, Tian X, et al. Lenalidomide-induced upregulation
of CD80 on tumor cells correlates with T-cell activation, the rapid
onset of a cytokine release syndrome and leukemic cell clearance in
chronic lymphocytic leukemia. Haematologica .
2009;94(9):1266-1273. doi:10.3324/haematol.2009.005835
Figure legends
Figure 1: Characteristics of SARS-coV-2 infected lungs and A549 cells.
Gene Set Enrichment Analysis (GSEA) of genes modulated in A) SARS-coV-2
infected lung and B) A549 cells. C) Transcription factor enrichment of
genes up-regulated in SARS-coV-2 infection. D) Genes activated in
SARS-coV-2 overlapping with genes down-regulated upon kinase
perturbations. Up-regulated genes mapped to their transcription factors
and kinases in E) SARS-coV-2 lung and F) A549 cells.
Figure 2: Effect of Thalidomide and Lenalidomide on Immune System. GSEA
network of gene expression profiles of A) thalidomide and B)
lenalidomide treated A549 cells. C) Activities of kinase involved in
immunomodulation and MAPK signaling in the presence of thalidomide D)
Biological Pathways enriched by kinases affected by thalidomide.
Figure 3: Comparative Enrichment
of Biological Process. A) GO Biological Process enrichment comparison of
gene expression signatures B) SARS-coV-2 infected tissues B)
Overexpression of immune response genes in SARS-coV-2 tissues and
suppression by thalidomide and lenalidomide C) B cell receptor signaling
activated in PBMC of SARS-coV-2 patient and T cell activation in
SARS-coV-2 lungs D) Modulation of ERK1 and ERK2 cascade in SARS-coV2
lung and thalidomide in A549.
Figure 4: Activation of A)
inflammation, B) TLR signaling, C) NOD-like signaling, D) Osteoblast
differentiation and E) Cytokine signaling in SARS-coV-2 and genes
targeted by thalidomide and lenalidomide in the signaling pathways.
Figure 5: Viral life cycle and defense response to virus. A)
Up-regulation of pathways pertaining to viral entry, life cycle and
antiviral response was observed in SARS-coV-2 infected lungs, PBMC, BALF
and A549 cells and their modulation by thalidomide and lenalidomide.
Overexpression of genes implicated in B) Interferon signaling and C)
Type I interferon signaling in SARS-coV-2 infected lung and A549.
Figure 6: Enrichment of
Disease-specific Phenotypes. A) Similarity of SARS-coV-2 signatures with
disease-specific phenotypes. Differentially modulated genes in
SARS-coV-2 and thalidomide treatment similar to profiles of B) lymphoma
and D) Multiple Myeloma. C) Overlapping of SARS-coV-2 expression profile
of SARS-coV-2 affected lung with systemic lupus erythematosus.