References
1. Sobol, I.M., Sensitivity estimates for nonlinear mathematical
models. Mathematical modelling and computational experiments, 1993.1 (4): p. 407–414.
2. Brown, K.S. and J.P. Sethna, Statistical mechaniccl approaches
to models with too many unknown parameters. Phys. Rev. E, 2003.68 : p. 021904.
3. Ghosh, A., A Heterogeneous and Multiscale Modeling Framework to
Develop Patient-Specific Pharmacodynamic Systems Models in Cancer. PhD
Thesis, University of Pennsylvania, 2019.
4. Alber, M., et al., Integrating machine learning and multiscale
modeling—perspectives, challenges, and opportunities in the
biological, biomedical, and behavioral sciences. npj Digital Medicine,
2019. 2 (1): p. 115.
5. van Kampen, N.G., Stochastic processes in physics and
chemistry . 1992, Amsterdam: North-Holland.
6. Frenkel, D. and B. Smit, Understanding Molecular Simulations.
From Algorithms to Applications . 1996, San Diego, CA: Academic Press.
7. Reed, T.M. and K.E. Gubbins, Applied Statistical Mechanics:
Thermodynamic and Transport Properties of Fluids . 1991:
Butterworth-Heinemann.
8. Cáceres, M.O. and A.K. Chattah, On the Schrödinger-Langevin
picture and the master equation. Physica A: Statistical Mechanics and
its Applications, 1996. 234 (1): p. 322-340.
9. Jackson, J.D., Classical electrodynamics . 1999: Third edition.
New York : Wiley, [1999] ©1999.
10. Chapman, S. and T.G. Cowling, The Mathematical Theory of
Non-uniform Gases . 1991: Cambridge Mathematical Library.
11. Zwanzig, R. and M. Bixon, Hydrodynamic Theory of the Velocity
Correlation Function. Physical Review A, 1970. 2 (5): p.
2005-2012.
12. Landau, L.D. and E.M. Lifshits, Fluid mechanics . 1987:
Pergamon Press.
13. Chandler, D., Introduction to modern statistical mechanics .
1987, New York, NY: Oxford University Press.
14. Chaikin, P.M. and T.C. Lubensky, Principles of condensed
matter physics . 1995, Cambridge ; New York: Cambridge University Press.
xx, 699 p.
15. Kubo, R., The fluctuation-dissipation theorem. Reports on
Progress in Physics, 1966. 29 (1): p. 255-284.
16. Crooks, G.E., Excursions in statistical dynamics. PhD Thesis,
Univetsity of California, Berkeley, 1999.
17. Balakrishnan, V., Elements of Nonequilibrium Statistical
Mechanics . 2008: CRC Press.
18. Gooneie, A., S. Schuschnigg, and C. Holzer, A Review of
Multiscale Computational Methods in Polymeric Materials. Polymers,
2017. 9 (1): p. 16.
19. Szabo, A. and N.S. Ostlund, Modern Quantum Chemistry . 1996,
Mineola, New York: Dover Publications.
20. Parr, R.G. and W. Yang, Density-functional theory of atoms and
molecules . International series of monographs on chemistry. 16. 1989,
Oxford: Oxford University Press. ix, 333 p.
21. Karplus, M. and J. Kuriyan, Molecular dynamics and protein
function. Proc Natl Acad Sci U S A, 2005. 102 (19): p. 6679-85.
22. Karplus, M., et al., Molecular dynamics: applications to
proteins. Cold Spring Harb Symp Quant Biol, 1987. 52 : p.
381-90.
23. Berman, H.M., et al., The Protein Data Bank. Nucleic Acids
Res., 2000. 28 : p. 235-242.
24. Glenn, J.M., J.T. Douglas, and L.K. Michael, Constant pressure
molecular dynamics algorithms. The Journal of Chemical Physics, 1994.101 (5): p. 4177-4189.
25. Brooks, B.R., et al., Charmm - a Program for Macromolecular
Energy, Minimization, and Dynamics Calculations. Journal of
Computational Chemistry, 1983. 4 (2): p. 187-217.
26. Weiner, P.W. and P.A. Kollman, AMBER: assisted model building
with energy refinement. J. Comput. Chem., 1981. 2 : p. 287-303.
27. Scott, W.R.P., The GROMOS biomolecular simulation program
package. J. Phys. Chem. A, 1999. 103 : p. 3596-3607.
28. Phillips, J.C., et al., Scalable molecular dynamics with
NAMD. Journal of Computational Chemistry, 2005. 26 : p.
1781-1802.
29. Humphrey, W., A. Dalke, and K. Schulten, VMD - Visual
Molecular Dynamics. Journal of Molecular Graphics, 1996. 14 :
p. 33–38.
30. Allen, M.P. and D.J. Tildesley, Computer simulation of
liquids . 1987, Oxford: Oxford science publications.
31. Caffarel, M. and P. Claverie, Development of a pure diffusion
quantum Monte Carlo method using a full generalized Feynman–Kac
formula. I. Formalism. The Journal of Chemical Physics, 1988.88 (2): p. 1088-1099.
32. Gillespie, D.T., Exact simulations of coupled chemical
reactions. J. Phys. Chem., 1977. 81 : p. 2340-2361.
33. Rotne, J. and S. Prager, Variational Treatment of Hydrodynamic
Interaction in Polymers. The Journal of Chemical Physics, 1969.50 (11): p. 4831-4837.
34. Yamakawa, H., Transport Properties of Polymer Chains in Dilute
Solution: Hydrodynamic Interaction. The Journal of Chemical Physics,
1970. 53 (1): p. 436-443.
35. Brady, J.F. and G. Bossis, Stokesian dynamics. Ann. Rev.
Fluid Mech., 1988. 20 : p. 111–157.
36. Noguchi, H., N. Kikuchi, and G. Gompper, Particle-based
mesoscale hydrodynamic techniques. Europhys. Lett., 2007.78 (1): p. 10005.
37. Espafiol, P., Hydrodynamics from dissipative particle
dynamics. Phys. Rev. E, 1995.
38. Groot, R.D. and P.B. Warren, Dissipative particle dynamics:
Bridging the gap between atomistic and mesoscopic simulation. J. Chem.
Phys., 1997. 107 (11): p. 4423.
39. Warren, P.B., Dissipative particle dynamics. Curr Opin
Colloid in, 1998. 3 (6): p. 620–624.
40. Gao, L., J. Shillcock, and R. Lipowsky, Improved dissipative
particle dynamics simulations of lipid bilayers. J. Chem. Phys., 2007.126 (1): p. 015101.
41. Noguchi, H. and G. Gompper, Transport coefficients of
dissipative particle dynamics with finite time step. Europhys. Lett.,
2007. 79 : p. 36002.
42. Hu, H.H., N.A. Patankar, and M.Y. Zhu, Direct Numerical
Simulations of Fluid–Solid Systems Using the Arbitrary
Lagrangian–Eulerian Technique. J. Comp. Phys., 2001.169 (2): p. 427–462.
43. Chen, S. and G.D. Doolen, Lattice Boltzmann method for fluid
flows. Annual Review of Fluid Mechanics, 1998. 30 : p. 329-364.
44. Dupin, M.M., I. Halliday, and C.M. Care, Multi-component
lattice Boltzmann equation for mesoscale blood flow. J. Phys. A, 2003.36 : p. 8517.
45. Hauge, E.H. and A. Martin-Lñf, Fluctuating hydrodynamics and
Brownian motion. Journal of Statistical Physics, 1973. 7 (3):
p. 259-281.
46. Ramakrishnan, N., et al., Motion of a nano-ellipsoid in a
cylindrical vessel flow: Brownian and hydrodynamic interactions.Journal of Fluid Mechanics, 2017. 821 : p. 117-152.
47. Asanovic, K., et al., A view of the parallel computing
landscape. Commun. ACM, 2009. 52 (10): p. 56–67.
48. Dematté, L. and D. Prandi, GPU computing for systems biology.Briefings in Bioinformatics, 2010. 11 (3): p. 323-333.
49. Frenkel, D. and B. Smit, Understanding molecular simulation:
from algorithms to applications . 2002, San Diego: Academic Press.
50. Heffelfinger, G.S. and M.E. Lewitt, A comparison between two
massively parallel algorithms for Monte Carlo computer simulation: An
investigation in the grand canonical ensemble. Journal of Computational
Chemistry, 1996. 17 (2): p. 250-265.
51. Shimojo, F., et al., Embedded divide-and-conquer algorithm on
hierarchical real-space grids: parallel molecular dynamics simulation
based on linear-scaling density functional theory. Computer Physics
Communications, 2005. 167 (3): p. 151-164.
52. McCammon, J.A. and S.C. Harvey, Dynamics of Proteins and
Nucleic Acids . 1987, Cambridge, MA: Cambridge University Press.
53. McCammon, J.A., B.R. Gelin, and M. Karplus, Dynamics of Folded
Proteins. Nature, 1977. 267 : p. 585-590.
54. Essmann, U., A smooth particle mesh Ewald method. J. Chem.
Phys., 1995. 103 : p. 8577-8593.
55. Dongarra, J., S. Gottlieb, and W.T. Kramer, Race to Exascale.Computing in Science & Engineering, 2019. 21 (1): p. 4-5.
56. Gota, K., et al., Application of MDGRAPE-3, a special purpose
board for molecular dynamics simulations, to periodic biomolecular
systems. Journal of Computational Chemistry, 2009. 30 (1): p.
110-118.
57. Suenaga, A., et al., Molecular Dynamics Simulations Reveal
that Tyr-317 Phosphorylation Reduces Shc Binding Affinity for
Phosphotyrosyl Residues of Epidermal Growth Factor Receptor. 2009.96 (6): p. 2278-2288.
58. Shaw, D.E., et al., Anton, a special-purpose machine for
molecular dynamics simulation. Communications of the Acm, 2008.51 (7): p. 91-97.
59. Shan, Y., et al., A conserved protonation-dependent switch
controls drug binding in the Abl kinase. Proc Natl Acad Sci U S A,
2009. 106 (1): p. 139-44.
60. Friedrichs, M.S., et al., Accelerating molecular dynamic
simulation on graphics processing units. J Comput Chem, 2009.30 (6): p. 864-72.
61. Stone, J.E., et al., Accelerating molecular modeling
applications with graphics processors. J Comput Chem, 2007.28 (16): p. 2618-40.
62. Redondo, A. and R. LeSar, MODELING AND SIMULATION OF
BIOMATERIALS. Annual Review of Materials Research, 2004.34 (1): p. 279-314.
63. Giuseppina, R. and G. Fabio, Understanding the Performance of
Biomaterials through Molecular Modeling: Crossing the Bridge between
their Intrinsic Properties and the Surface Adsorption of Proteins.Macromolecular Bioscience, 2007. 7 (5): p. 552-566.
64. E, W.N. and B. Engquist, Multiscale Modeling in Computation.Notices of the AMS, 2003. 50 (9): p. 1062-1070.
65. Dama, J.F., M. Parrinello, and G.A. Voth, Well-Tempered
Metadynamics Converges Asymptotically. Physical Review Letters, 2014.112 (24): p. 240602.
66. Bolhuis, P.G., et al., Transition path sampling: Throwing
ropes over rough mountain passes, in the dark. Annual Review of
Physical Chemistry, 2002. 53 : p. 291-318.
67. Watanabe, M. and M. Karplus, Simulations of Macromolecules by
Multiple Time-Step Methods. J. Phys. Chem., 1995. 99 : p.
5680-5697.
68. Press, W.H., et al., Numerical recipes in C (2nd ed.): the art
of scientific computing . 1992: Cambridge University Press.
69. Kevrekidis, I.G., et al., Equation-free, coarse-grained
multiscale computation: enabling microscopic simulators to perform
system-level analysis. Communications in Mathematical Sciences, 2003.1 : p. 715-762.
70. Bindal, A., et al., Equation-free, coarse-grained
computational optimization using timesteppers. Chemical Engineering
Science, 2006. 61 (2): p. 779-793.
71. Bradley, R. and R. Radhakrishnan, Coarse-Grained Models for
Protein-Cell Membrane Interactions. Polymers, 2013. 5 (3): p.
890-936.
72. Li, Y., et al., Challenges in Multiscale Modeling of Polymer
Dynamics. Polymers, 2013. 5 (2): p. 751-832.
73. Klein, M.L. and W. Shinoda, Large-scale molecular dynamics
simulations of self-assembling systems. Science, 2008.321 (5890): p. 798-800.
74. Ayton, G.S., E. Lyman, and G.A. Voth, Hierarchical
coarse-graining strategy for protein-membrane systems to access
mesoscopic scales. Faraday Discuss., 2010. 144 : p. 347.
75. Marrink, S.J., et al., The MARTINI force field: coarse grained
model for biomolecular simulations. J Phys Chem B, 2007.111 (27): p. 7812-24.
76. Ahmadi, S., et al., Multiscale modeling of enzymes:
QM-cluster, QM/MM, and QM/MM/MD: A tutorial review. International
Journal of Quantum Chemistry, 2018. 118 (9): p. e25558.
77. Shi, Q., S. Izvekov, and G.A. Voth, Mixed Atomistic and
Coarse-Grained Molecular Dynamics: Simulation of a Membrane-Bound Ion
Channel. The Journal of Physical Chemistry B, 2006. 110 (31):
p. 15045-15048.
78. Yasuda, S. and R. Yamamoto, Multiscale modeling and simulation
for polymer melt flows between parallel plates. Physical Review e,
2010. 81 (3).
79. Ramakrishnan, N., et al., Biophysics of membrane curvature
remodeling at molecular and mesoscopic lengthscales. J Phys Condens
Matter, 2018. 30 (27): p. 273001.
80. Borgdorff, J., et al., Distributed multiscale computing with
MUSCLE 2, the Multiscale Coupling Library and Environment. Journal of
Computational Science, 2014. 5 (5): p. 719-731.
81. Wolstencroft, K., et al., The Taverna workflow suite:
designing and executing workflows of Web Services on the desktop, web or
in the cloud. Nucleic Acids Res, 2013. 41 (Web Server issue):
p. W557-61.
82. Jabeen, Z., et al., Rheology of colloidal suspensions in
confined flow: Treatment of hydrodynamic interactions in particle-based
simulations inspired by dynamical density functional theory. Physical
Review E, 2018. In Press .
83. Yu, H.-Y., et al., Microstructure of Flow-Driven Suspension of
Hardspheres in Cylindrical Confinement: A Dynamical Density Functional
Theory and Monte Carlo Study. Langmuir, 2017. 33 (42): p.
11332-11344.
84. Fredrikson, G., The Equilibrium Theory of Inhomogeneous
Polymers . 2006: Oxford University Press.
85. Ravi Radhakrishnan, H.-Y.Y., David M. Eckmann, Portovovo S.
Ayyaswamy, Computational Models for Nanoscale Fluid Dynamics and
Transport Inspired by Nonequilibrium Thermodynamics. J Heat Transfer,
2017. 39 : p. 033001.
86. Zwanzig, R.W., High-Temperature Equation of State by a
Perturbation Method. I. Nonpolar Gases. The Journal of Chemical
Physics, 1954. 22 (8): p. 1420-1426.
87. Beveridge, D.L. and F.M. DiCapua, Free energy via molecular
simulation: applications to chemical and biomolecular systems. Annu Rev
Biophys Biophys Chem, 1989. 18 : p. 431-92.
88. Chandler, D., Statistical mechanics of isomerization dynamics
in liquids and the transition state approximation. J. Chem. Phys.,
1978. 68 : p. 2959-2970.
89. Bartels, C. and M. Karplus, Probability distribution for
complex systems: Adaptive umbrella sampling of the potential energy. J.
Phys. Chem. B, 1998. 102 : p. 865-880.
90. Roux, B., The Calculation of the Potential of Mean Force Using
Computer-Simulations. Computer Physics Communications, 1995.91 (1-3): p. 275-282.
91. Barducci, A., G. Bussi, and M. Parrinello, Well-Tempered
Metadynamics: A Smoothly Converging and Tunable Free-Energy Method.Physical Review Letters, 2008. 100 (2): p. 020603.
92. Weinan, E., W.Q. Ren, and E. Vanden-Eijnden, Transition
pathways in complex systems: Reaction coordinates, isocommittor
surfaces, and transition tubes. Chemical Physics Letters, 2005.413 (1-3): p. 242-247.
93. Elber, R., A. Ghosh, and A. Cardenas, Long time dynamics of
complex systems. Acc. Chem. Res., 2002. 35 : p. 396-403.
94. Elber, R., J. Meller, and R. Olender, Stochastic path approach
to compute atomically detailed trajectories: Application to the folding
of C peptide. J. Phys. Chem. B, 1999. 103 : p. 899-911.
95. Elber, R., et al., Bridging the gap between long time
trajectories and reaction pathways. Adv. Chem. Phys, 2003.126 : p. 93-129.
96. Henkelman, G. and H. Jonsson, Improved tangent estimate in the
nudged elastic band method for finding minimum energy paths and saddle
points. J. Chem. Phys., 2000. 113 : p. 9978.
97. Henkelman, G., B.P. Uberuaga, and H. Jonsson, A climbing image
nudged elastic band method for finding saddle points and minimum energy
paths. J. Chem. Phys., 2000. 113 : p. 9901.
98. Jonsson, H., G. Mills, and K.W. Jacobsen, Nudged elastic band
method for finding minimum energy paths of transitions . Classical and
quantum dynamics in condensed phase simulations. 1998: World Scientific.
99. E, W.N., W. Ren, and E. Vanden-Eijnden, Finite temperature
string method for the study of rare events. J. Phys. Chem. B, 2005.109 : p. 6688-6693.
100. Dellago, C., P.G. Bolhuis, and P.L. Geissler, Transition Path
Sampling. Adv. Chem. Phys, 2002. 123 : p. 1-81.
101. Bolhuis, P.G., C. Dellago, and D. Chandler, Sampling
ensembles of deterministic transition pathways. Faraday Discuss., 1998.110 : p. 421-436.
102. Nielsen, S.O. and M.L. Klein, A coarse grain model for lipid
monolayer and bilayer studies. Lecture notes in physics, 2002.605 : p. 27-63.
103. Izvekov, S. and G.A. Voth, Multiscale coarse graining of
liquid-state systems. Journal of Chemical Physics, 2005.123 (13): p. -.
104. Izvekov, S. and G.A. Voth, Multiscale coarse-graining method
for biomolecular systems. J. Phys. Chem. B, 2005. 109 : p.
2469-2473.
105. Izvekov, S., et al., Effective force fields for condensed
phase systems from ab initio molecular dynamics simulation: A new method
for force-matching. Journal of Chemical Physics, 2004.120 (23): p. 10896-10913.
106. Periole, X., et al., Combining an Elastic Network With a
Coarse-Grained Molecular Force Field: Structure, Dynamics, and
Intermolecular Recognition. Journal of Chemical Theory and Computation,
2009. 5 (9): p. 2531-2543.
107. Jensen, F., Introduction to Computational Chemistry . 2nd ed.
2007, Chichester: John wiley & sons.
108. Warshel, A. and W.W. Parson, Dynamics of Biochemical and
Biophysical Reactions: Insight from Computer Simulations. Quart. Rev.
Biophys., 2001. 34 : p. 563-679.
109. Warshel, A., Computer modeling of chemical reactions in
enzymes and solution . 1989, New York: John Wiley and Sons.
110. Shurki, A. and A. Warshel, Structure/function correlations of
proteins using MM, QM/MM, and related approaches: Methods, concepts,
pitfalls, and current progress. Protein Simulations, 2003. 66 :
p. 249-313.
111. Senn, H.M. and W. Thiel, QM/MM methods for biological
systems , in Atomistic Approaches in Modern Biology: from Quantum
Chemistry to Molecular Simulations . 2007, Springer-Verlag Berlin:
Berlin. p. 173-290.
112. Das, D., et al., Optimization of quantum mechanical molecular
mechanical partitioning schemes: Gaussian delocalization of molecular
mechanical charges and the double link atom method. Journal of Chemical
Physics, 2002. 117 (23): p. 10534-10547.
113. Reuter, N., et al., Frontier bonds in QM/MM methods: A
comparison of different approaches. Journal of Physical Chemistry A,
2000. 104 (8): p. 1720-1735.
114. Field, M.J., P.A. Bash, and M. Karplus, A combined quantum
mechanical and molecular mechanical potential for molecular dynamics
simulations. J. Comput. Chem., 2002. 11 : p. 700-733.
115. Zhang, Y. and W. Yang, A pesudobond approach to combining
quantum mechanical and molecular mechanical methods. J. Chem. Phys.,
1999. 110 : p. 46-54.
116. Garcia-Viloca, M. and J. Gao, Generalized Hybrid Orbital for
the treatment of boundary atoms in combined quantum mechanical and
molecular mechanical calculations using the semiempirical parameterized
model 3 method. Theoretical Chemistry Accounts, 2004. 111 : p.
280-286.
117. Pu, J., D.G. Truhlar, and J. Gao, The Generalized Hybrid
Orbital (GHO) method for ab initio combined QM/MM calculations. Journal
of Physical Chemistry A, 2004. 108 : p. 632-650.
118. Friesner, R.A., et al., How iron-containing proteins control
dioxygen chemistry: a detailed atomic level description via accurate
quantum chemical and mixed quantum mechanics/molecular mechanics
calculations. Coordination Chemistry Reviews, 2003. 238-239 :
p. 267-290.
119. Rega, N., et al., Hybrid ab initio empirical molecular
dynamics: combining the ONIOM scheme with the atom-centered density
matrix propagation (ADMP) approach. J. Phys. Chem. B, 2004.108 : p. 4210-4220.
120. Mulholland, A.J., Modelling enzyme reaction mechanisms,
specificity and catalysis. Drug Discovery Today, 2005. 10 (20):
p. 1393-1402.
121. Schmidt, M.W., et al., General Atomic and Molecular
Electronic-Structure System. Journal of Computational Chemistry, 1993.14 (11): p. 1347-1363.
122. Zhou, R. and B.J. Berne, A New Molecular Dynamics Method
Combining the Reference System Propagator Algorithm with a Fast
Multipole Method for Simulating Proteins and Other Complex Systems. J.
Chem. Phys., 1995. 103 : p. 9444-9459.
123. Car, R. and M. Parrinello, Unified Approach for
Molecular-Dynamics and Density-Functional Theory. Physical Review
Letters, 1985. 55 (22): p. 2471-2474.
124. Galli G. and P. A., First Principles Molecular Dynamics .
Computer Simulation in Chemical Physics, NATO ASI Series (Series C:
Mathematical and Physical Sciences), ed. M.P. Allen and D.J. Tildesley.
Vol. 397. 1993, Dordrecht: Springer.
125. Park, J.H. and A. Heyden, Solving the equations of motion for
mixed atomistic and coarse-grained systems. Molecular Simulation, 2009.35 (10-11): p. 962-973.
126. Wijesinghe, H.S. and N.G. Hadjiconstantinou, A hybrid
atomistic-continuum formulation for unsteady, viscous, incompressible
flows. Cmes-Computer Modeling in Engineering & Sciences, 2004.5 (6): p. 515-526.
127. Hadjiconstantinou, N.G., Hybrid atomistic-continuum
formulations and the moving contact-line problem. Journal of
Computational Physics, 1999. 154 : p. 245-265.
128. Vitoshkin, H., et al., Nanoparticle stochastic motion in the
inertial regime and hydrodynamic interactions close to a cylindrical
wall. Phys Rev Fluids, 2016. 1 .
129. Hsiu-Yu Yu, D.M.E., Portovovo S. Ayyaswamy, Ravi Radhakrishnan,Effect of wall-mediated hydrodynamic fluctuations on the kinetics
of a Brownian nanoparticle. Proceedings of the Royal Society of London.
Series A, 2016. 472 : p. 20160397.
130. Yu, H.-Y., et al., Composite generalized Langevin equation
for Brownian motion in different hydrodynamic and adhesion regimes.Physical Review E, 2015. 91 (5): p. 052303.
131. Farokhirad, S., et al., Stiffness can mediate balance between
hydrodynamic forces and avidity to impact the targeting of flexible
polymeric nanoparticles in flow. Nanoscale, 2019. 11 (14): p.
6916-6928.
132. Lee, M.J.a.A., S Ye and Gardino, Alexandra K and Heijink, Anne
Margriet and Sorger, Peter K and MacBeath, Gavin and Yaffe, Michael B,Sequential application of anticancer drugs enhances cell death by
rewiring apoptotic signaling networks. Cell, 2012. 149 (4): p.
780-794.
133. Janes, K.A., et al., A systems model of signaling identifies
a molecular basis set for cytokine-induced apoptosis. Science, 2005.310 (5754): p. 1646-53.
134. Janes, K.A., et al., A high-throughput quantitative multiplex
kinase assay for monitoring information flow in signaling networks:
application to sepsis-apoptosis. Mol Cell Proteomics, 2003.2 (7): p. 463-73.
135. Sachs, K., et al., Causal Protein-Signaling Networks Derived
from Multiparameter Single-Cell Data. Science, 2005.308 (5721): p. 523.
136. Jordan, E.J., et al., Computational algorithms for in silico
profiling of activating mutations in cancer. Cell Mol Life Sci, 2019.76 (14): p. 2663-2679.
137. Agajanian, S., O. Oluyemi, and G.M. Verkhivker, Integration
of Random Forest Classifiers and Deep Convolutional Neural Networks for
Classification and Biomolecular Modeling of Cancer Driver Mutations.Frontiers in Molecular Biosciences, 2019. 6 : p. 44.
138. Peskin, C.S. and D.M. McQueen, A 3-dimensional computational
method for blood-flow in the heart .1. Immersed elastic fibers in a
viscous incompressible fluid. Journal of Computational Physics, 1989.81 (2): p. 372-405.
139. Wu, X.L., et al., Adaptive nonlinear finite elements for
deformable body simulation using dynamic progressive meshes. Computer
Graphics Forum, 2001. 20 (3): p. C349-C358.
140. Tompson, J., et al., Accelerating Eulerian Fluid Simulation
With Convolutional Networks , in Proceedings of the 34 th
International Conference on Machine
Learning . 2017: Sydney, Australia.
141. Balaprakash, P., et al., Autotuning in High-Performance
Computing Applications. Proceedings of the IEEE, 2018.106 (11): p. 2068-2083.
142. Jordan, M.I. and T.M. Mitchell, Machine learning: Trends,
perspectives, and prospects. Science, 2015. 349 (6245): p.
255-60.
143. Carlson, J.M. and J. Doyle, Complexity and robustness. Proc
Natl Acad Sci U S A, 2002. 99 Suppl 1 : p. 2538-45.
144. Gelman, A., et al., Bayesian data analysis . 2013: Chapman
Hall.
145. Alber, M., et al., Integrating machine learning and
multiscale modeling-perspectives, challenges, and opportunities in the
biological, biomedical, and behavioral sciences. NPJ Digit Med, 2019.2 : p. 115.
146. runton, S., B. Noack, and P. Koumoutsakos, Machine learning
for fluid mechanics. arXiv preprint arXiv:1905.11075, 2019.
147. Lillicrap, T.P. and K.P. Kording, What does it mean to
understand a neural network? arXiv:1907.06374, 2019.
148. Raissi, M., P. Perdikaris, and G.E. Karniadakis,Physics-informed neural networks: A deep learning framework for
solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational Physics, 2019.378 : p. 686-707.
149. Hornik, K., M. Stinchcombe, and H. White, Multilayer
feedforward networks are universal approximators. Neural Networks,
1989. 2 (5): p. 359-366.
150. Baydin, A.G., et al., Automatic Differentiation in Machine
Learning: a Survey. Journal of Machine Learning, 2018.18 (153): p. 1-43.
151. Lachmann, A., et al., ARACNe-AP: gene network reverse
engineering through adaptive partitioning inference of mutual
information. Bioinformatics, 2016. 32 (14): p. 2233-5.
152. Margolin, A.A., et al., ARACNE: an algorithm for the
reconstruction of gene regulatory networks in a mammalian cellular
context. BMC Bioinformatics, 2006. 7 Suppl 1 : p. S7.
153. Cover, T.M., Elements of information theory . 2012: John
Wiley and Sons.
154. Watanabe, S., Algebraic geometry and statistical learning
theory . Vol. 25. 2009: Cambridge University Press.
155. Amari, S.-i., Information geometry and its applications .
Vol. 194. 2016: Springer.
156. Pratik Chaudhari, A.C., Stefano Soatto, Yann LeCun, Carlo Baldassi,
Christian Borgs, Jennifer Chayes, Levent and a.R.Z. Sagun,Entropy-SGD: biasing gradient descent into wide valleys. In Proc.
of International Conference of Learning and Representations,, 2016.
157. Pratik Chaudhari, A.O., Stanley Osher, Stefano Soatto, and Carlier
Guillame, Deep Relaxation: partial differential equations for
optimizing deep neural networks. Research in the Mathematical Sciences
arXiv:1704.04932, 2018.
158. Pratik Chaudhari, C.B., Riccardo Zecchina, Stefano Soatto, Ameet
Talwalkar, and Adam Oberman, Parle: parallelizing stochastic
gradient descent. arXiv:1707.00424, 2017.
159. Chmiela, S., et al., Towards exact molecular dynamics
simulations with machine-learned force fields. Nature Communications,
2018. 9 (1): p. 3887.
160. Batra, R. and S. Sankaranarayanan, Machine learning for
multi-fidelity scale bridging and dynamical simulations of materials.Journal of Physics: Materials, 2020. 3 (3): p. 031002.
161. Tuckerman, M.E., Machine learning transforms how microstates
are sampled. Science, 2019. 365 (6457): p. 982.
162. Rogal, J., E. Schneider, and M.E. Tuckerman,Neural-Network-Based Path Collective Variables for Enhanced
Sampling of Phase Transformations. Phys Rev Lett, 2019.123 (24): p. 245701.
163. Chiavazzo, E., et al., Intrinsic map dynamics exploration for
uncharted effective free-energy landscapes. Proc Natl Acad Sci U S A,
2017. 114 (28): p. E5494-E5503.
164. Zhang, J. and M. Chen, Unfolding Hidden Barriers by Active
Enhanced Sampling. Phys Rev Lett, 2018. 121 (1): p. 010601.
165. Sultan, M.M. and V.S. Pande, Automated design of collective
variables using supervised machine learning. The Journal of Chemical
Physics, 2018. 149 (9): p. 094106.
166. Alom, Z.M., et al., A State-of-the-Art Survey on Deep
Learning Theory and Architectures. Electronics, 2019. 8 (3).
167. Bonati, L., Y.-Y. Zhang, and M. Parrinello, Neural
networks-based variationally enhanced sampling. Proceedings of the
National Academy of Sciences, 2019. 116 (36): p. 17641.
168. Radhakrishnan, R. and T. Schlick, Biomolecular free energy
profiles by a shooting/umbrella sampling protocol, ”BOLAS”. J Chem
Phys, 2004. 121 (5): p. 2436-44.
169. Ma, H., M. Govoni, and G. Galli, Quantum simulations of
materials on near-term quantum computers. Cond. mat. Arxiv, 2020: p.
arXiv:2002.11173v1.
170. Sieck, G.C., Physiology in Perspective: Physiology is
Everywhere. Physiology (Bethesda), 2019. 34 (3): p. 167-168.
171. Ellis, G.F.R. and J. Kopel, The Dynamical Emergence of
Biology From Physics: Branching Causation via Biomolecules. Front
Physiol, 2018. 9 : p. 1966.