References
1. Sobol, I.M., Sensitivity estimates for nonlinear mathematical models. Mathematical modelling and computational experiments, 1993.1 (4): p. 407–414.
2. Brown, K.S. and J.P. Sethna, Statistical mechaniccl approaches to models with too many unknown parameters. Phys. Rev. E, 2003.68 : p. 021904.
3. Ghosh, A., A Heterogeneous and Multiscale Modeling Framework to Develop Patient-Specific Pharmacodynamic Systems Models in Cancer. PhD Thesis, University of Pennsylvania, 2019.
4. Alber, M., et al., Integrating machine learning and multiscale modeling—perspectives, challenges, and opportunities in the biological, biomedical, and behavioral sciences. npj Digital Medicine, 2019. 2 (1): p. 115.
5. van Kampen, N.G., Stochastic processes in physics and chemistry . 1992, Amsterdam: North-Holland.
6. Frenkel, D. and B. Smit, Understanding Molecular Simulations. From Algorithms to Applications . 1996, San Diego, CA: Academic Press.
7. Reed, T.M. and K.E. Gubbins, Applied Statistical Mechanics: Thermodynamic and Transport Properties of Fluids . 1991: Butterworth-Heinemann.
8. Cáceres, M.O. and A.K. Chattah, On the Schrödinger-Langevin picture and the master equation. Physica A: Statistical Mechanics and its Applications, 1996. 234 (1): p. 322-340.
9. Jackson, J.D., Classical electrodynamics . 1999: Third edition. New York : Wiley, [1999] ©1999.
10. Chapman, S. and T.G. Cowling, The Mathematical Theory of Non-uniform Gases . 1991: Cambridge Mathematical Library.
11. Zwanzig, R. and M. Bixon, Hydrodynamic Theory of the Velocity Correlation Function. Physical Review A, 1970. 2 (5): p. 2005-2012.
12. Landau, L.D. and E.M. Lifshits, Fluid mechanics . 1987: Pergamon Press.
13. Chandler, D., Introduction to modern statistical mechanics . 1987, New York, NY: Oxford University Press.
14. Chaikin, P.M. and T.C. Lubensky, Principles of condensed matter physics . 1995, Cambridge ; New York: Cambridge University Press. xx, 699 p.
15. Kubo, R., The fluctuation-dissipation theorem. Reports on Progress in Physics, 1966. 29 (1): p. 255-284.
16. Crooks, G.E., Excursions in statistical dynamics. PhD Thesis, Univetsity of California, Berkeley, 1999.
17. Balakrishnan, V., Elements of Nonequilibrium Statistical Mechanics . 2008: CRC Press.
18. Gooneie, A., S. Schuschnigg, and C. Holzer, A Review of Multiscale Computational Methods in Polymeric Materials. Polymers, 2017. 9 (1): p. 16.
19. Szabo, A. and N.S. Ostlund, Modern Quantum Chemistry . 1996, Mineola, New York: Dover Publications.
20. Parr, R.G. and W. Yang, Density-functional theory of atoms and molecules . International series of monographs on chemistry. 16. 1989, Oxford: Oxford University Press. ix, 333 p.
21. Karplus, M. and J. Kuriyan, Molecular dynamics and protein function. Proc Natl Acad Sci U S A, 2005. 102 (19): p. 6679-85.
22. Karplus, M., et al., Molecular dynamics: applications to proteins. Cold Spring Harb Symp Quant Biol, 1987. 52 : p. 381-90.
23. Berman, H.M., et al., The Protein Data Bank. Nucleic Acids Res., 2000. 28 : p. 235-242.
24. Glenn, J.M., J.T. Douglas, and L.K. Michael, Constant pressure molecular dynamics algorithms. The Journal of Chemical Physics, 1994.101 (5): p. 4177-4189.
25. Brooks, B.R., et al., Charmm - a Program for Macromolecular Energy, Minimization, and Dynamics Calculations. Journal of Computational Chemistry, 1983. 4 (2): p. 187-217.
26. Weiner, P.W. and P.A. Kollman, AMBER: assisted model building with energy refinement. J. Comput. Chem., 1981. 2 : p. 287-303.
27. Scott, W.R.P., The GROMOS biomolecular simulation program package. J. Phys. Chem. A, 1999. 103 : p. 3596-3607.
28. Phillips, J.C., et al., Scalable molecular dynamics with NAMD. Journal of Computational Chemistry, 2005. 26 : p. 1781-1802.
29. Humphrey, W., A. Dalke, and K. Schulten, VMD - Visual Molecular Dynamics. Journal of Molecular Graphics, 1996. 14 : p. 33–38.
30. Allen, M.P. and D.J. Tildesley, Computer simulation of liquids . 1987, Oxford: Oxford science publications.
31. Caffarel, M. and P. Claverie, Development of a pure diffusion quantum Monte Carlo method using a full generalized Feynman–Kac formula. I. Formalism. The Journal of Chemical Physics, 1988.88 (2): p. 1088-1099.
32. Gillespie, D.T., Exact simulations of coupled chemical reactions. J. Phys. Chem., 1977. 81 : p. 2340-2361.
33. Rotne, J. and S. Prager, Variational Treatment of Hydrodynamic Interaction in Polymers. The Journal of Chemical Physics, 1969.50 (11): p. 4831-4837.
34. Yamakawa, H., Transport Properties of Polymer Chains in Dilute Solution: Hydrodynamic Interaction. The Journal of Chemical Physics, 1970. 53 (1): p. 436-443.
35. Brady, J.F. and G. Bossis, Stokesian dynamics. Ann. Rev. Fluid Mech., 1988. 20 : p. 111–157.
36. Noguchi, H., N. Kikuchi, and G. Gompper, Particle-based mesoscale hydrodynamic techniques. Europhys. Lett., 2007.78 (1): p. 10005.
37. Espafiol, P., Hydrodynamics from dissipative particle dynamics. Phys. Rev. E, 1995.
38. Groot, R.D. and P.B. Warren, Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation. J. Chem. Phys., 1997. 107 (11): p. 4423.
39. Warren, P.B., Dissipative particle dynamics. Curr Opin Colloid in, 1998. 3 (6): p. 620–624.
40. Gao, L., J. Shillcock, and R. Lipowsky, Improved dissipative particle dynamics simulations of lipid bilayers. J. Chem. Phys., 2007.126 (1): p. 015101.
41. Noguchi, H. and G. Gompper, Transport coefficients of dissipative particle dynamics with finite time step. Europhys. Lett., 2007. 79 : p. 36002.
42. Hu, H.H., N.A. Patankar, and M.Y. Zhu, Direct Numerical Simulations of Fluid–Solid Systems Using the Arbitrary Lagrangian–Eulerian Technique. J. Comp. Phys., 2001.169 (2): p. 427–462.
43. Chen, S. and G.D. Doolen, Lattice Boltzmann method for fluid flows. Annual Review of Fluid Mechanics, 1998. 30 : p. 329-364.
44. Dupin, M.M., I. Halliday, and C.M. Care, Multi-component lattice Boltzmann equation for mesoscale blood flow. J. Phys. A, 2003.36 : p. 8517.
45. Hauge, E.H. and A. Martin-Lñf, Fluctuating hydrodynamics and Brownian motion. Journal of Statistical Physics, 1973. 7 (3): p. 259-281.
46. Ramakrishnan, N., et al., Motion of a nano-ellipsoid in a cylindrical vessel flow: Brownian and hydrodynamic interactions.Journal of Fluid Mechanics, 2017. 821 : p. 117-152.
47. Asanovic, K., et al., A view of the parallel computing landscape. Commun. ACM, 2009. 52 (10): p. 56–67.
48. Dematté, L. and D. Prandi, GPU computing for systems biology.Briefings in Bioinformatics, 2010. 11 (3): p. 323-333.
49. Frenkel, D. and B. Smit, Understanding molecular simulation: from algorithms to applications . 2002, San Diego: Academic Press.
50. Heffelfinger, G.S. and M.E. Lewitt, A comparison between two massively parallel algorithms for Monte Carlo computer simulation: An investigation in the grand canonical ensemble. Journal of Computational Chemistry, 1996. 17 (2): p. 250-265.
51. Shimojo, F., et al., Embedded divide-and-conquer algorithm on hierarchical real-space grids: parallel molecular dynamics simulation based on linear-scaling density functional theory. Computer Physics Communications, 2005. 167 (3): p. 151-164.
52. McCammon, J.A. and S.C. Harvey, Dynamics of Proteins and Nucleic Acids . 1987, Cambridge, MA: Cambridge University Press.
53. McCammon, J.A., B.R. Gelin, and M. Karplus, Dynamics of Folded Proteins. Nature, 1977. 267 : p. 585-590.
54. Essmann, U., A smooth particle mesh Ewald method. J. Chem. Phys., 1995. 103 : p. 8577-8593.
55. Dongarra, J., S. Gottlieb, and W.T. Kramer, Race to Exascale.Computing in Science & Engineering, 2019. 21 (1): p. 4-5.
56. Gota, K., et al., Application of MDGRAPE-3, a special purpose board for molecular dynamics simulations, to periodic biomolecular systems. Journal of Computational Chemistry, 2009. 30 (1): p. 110-118.
57. Suenaga, A., et al., Molecular Dynamics Simulations Reveal that Tyr-317 Phosphorylation Reduces Shc Binding Affinity for Phosphotyrosyl Residues of Epidermal Growth Factor Receptor. 2009.96 (6): p. 2278-2288.
58. Shaw, D.E., et al., Anton, a special-purpose machine for molecular dynamics simulation. Communications of the Acm, 2008.51 (7): p. 91-97.
59. Shan, Y., et al., A conserved protonation-dependent switch controls drug binding in the Abl kinase. Proc Natl Acad Sci U S A, 2009. 106 (1): p. 139-44.
60. Friedrichs, M.S., et al., Accelerating molecular dynamic simulation on graphics processing units. J Comput Chem, 2009.30 (6): p. 864-72.
61. Stone, J.E., et al., Accelerating molecular modeling applications with graphics processors. J Comput Chem, 2007.28 (16): p. 2618-40.
62. Redondo, A. and R. LeSar, MODELING AND SIMULATION OF BIOMATERIALS. Annual Review of Materials Research, 2004.34 (1): p. 279-314.
63. Giuseppina, R. and G. Fabio, Understanding the Performance of Biomaterials through Molecular Modeling: Crossing the Bridge between their Intrinsic Properties and the Surface Adsorption of Proteins.Macromolecular Bioscience, 2007. 7 (5): p. 552-566.
64. E, W.N. and B. Engquist, Multiscale Modeling in Computation.Notices of the AMS, 2003. 50 (9): p. 1062-1070.
65. Dama, J.F., M. Parrinello, and G.A. Voth, Well-Tempered Metadynamics Converges Asymptotically. Physical Review Letters, 2014.112 (24): p. 240602.
66. Bolhuis, P.G., et al., Transition path sampling: Throwing ropes over rough mountain passes, in the dark. Annual Review of Physical Chemistry, 2002. 53 : p. 291-318.
67. Watanabe, M. and M. Karplus, Simulations of Macromolecules by Multiple Time-Step Methods. J. Phys. Chem., 1995. 99 : p. 5680-5697.
68. Press, W.H., et al., Numerical recipes in C (2nd ed.): the art of scientific computing . 1992: Cambridge University Press.
69. Kevrekidis, I.G., et al., Equation-free, coarse-grained multiscale computation: enabling microscopic simulators to perform system-level analysis. Communications in Mathematical Sciences, 2003.1 : p. 715-762.
70. Bindal, A., et al., Equation-free, coarse-grained computational optimization using timesteppers. Chemical Engineering Science, 2006. 61 (2): p. 779-793.
71. Bradley, R. and R. Radhakrishnan, Coarse-Grained Models for Protein-Cell Membrane Interactions. Polymers, 2013. 5 (3): p. 890-936.
72. Li, Y., et al., Challenges in Multiscale Modeling of Polymer Dynamics. Polymers, 2013. 5 (2): p. 751-832.
73. Klein, M.L. and W. Shinoda, Large-scale molecular dynamics simulations of self-assembling systems. Science, 2008.321 (5890): p. 798-800.
74. Ayton, G.S., E. Lyman, and G.A. Voth, Hierarchical coarse-graining strategy for protein-membrane systems to access mesoscopic scales. Faraday Discuss., 2010. 144 : p. 347.
75. Marrink, S.J., et al., The MARTINI force field: coarse grained model for biomolecular simulations. J Phys Chem B, 2007.111 (27): p. 7812-24.
76. Ahmadi, S., et al., Multiscale modeling of enzymes: QM-cluster, QM/MM, and QM/MM/MD: A tutorial review. International Journal of Quantum Chemistry, 2018. 118 (9): p. e25558.
77. Shi, Q., S. Izvekov, and G.A. Voth, Mixed Atomistic and Coarse-Grained Molecular Dynamics:  Simulation of a Membrane-Bound Ion Channel. The Journal of Physical Chemistry B, 2006. 110 (31): p. 15045-15048.
78. Yasuda, S. and R. Yamamoto, Multiscale modeling and simulation for polymer melt flows between parallel plates. Physical Review e, 2010. 81 (3).
79. Ramakrishnan, N., et al., Biophysics of membrane curvature remodeling at molecular and mesoscopic lengthscales. J Phys Condens Matter, 2018. 30 (27): p. 273001.
80. Borgdorff, J., et al., Distributed multiscale computing with MUSCLE 2, the Multiscale Coupling Library and Environment. Journal of Computational Science, 2014. 5 (5): p. 719-731.
81. Wolstencroft, K., et al., The Taverna workflow suite: designing and executing workflows of Web Services on the desktop, web or in the cloud. Nucleic Acids Res, 2013. 41 (Web Server issue): p. W557-61.
82. Jabeen, Z., et al., Rheology of colloidal suspensions in confined flow: Treatment of hydrodynamic interactions in particle-based simulations inspired by dynamical density functional theory. Physical Review E, 2018. In Press .
83. Yu, H.-Y., et al., Microstructure of Flow-Driven Suspension of Hardspheres in Cylindrical Confinement: A Dynamical Density Functional Theory and Monte Carlo Study. Langmuir, 2017. 33 (42): p. 11332-11344.
84. Fredrikson, G., The Equilibrium Theory of Inhomogeneous Polymers . 2006: Oxford University Press.
85. Ravi Radhakrishnan, H.-Y.Y., David M. Eckmann, Portovovo S. Ayyaswamy, Computational Models for Nanoscale Fluid Dynamics and Transport Inspired by Nonequilibrium Thermodynamics. J Heat Transfer, 2017. 39 : p. 033001.
86. Zwanzig, R.W., High-Temperature Equation of State by a Perturbation Method. I. Nonpolar Gases. The Journal of Chemical Physics, 1954. 22 (8): p. 1420-1426.
87. Beveridge, D.L. and F.M. DiCapua, Free energy via molecular simulation: applications to chemical and biomolecular systems. Annu Rev Biophys Biophys Chem, 1989. 18 : p. 431-92.
88. Chandler, D., Statistical mechanics of isomerization dynamics in liquids and the transition state approximation. J. Chem. Phys., 1978. 68 : p. 2959-2970.
89. Bartels, C. and M. Karplus, Probability distribution for complex systems: Adaptive umbrella sampling of the potential energy. J. Phys. Chem. B, 1998. 102 : p. 865-880.
90. Roux, B., The Calculation of the Potential of Mean Force Using Computer-Simulations. Computer Physics Communications, 1995.91 (1-3): p. 275-282.
91. Barducci, A., G. Bussi, and M. Parrinello, Well-Tempered Metadynamics: A Smoothly Converging and Tunable Free-Energy Method.Physical Review Letters, 2008. 100 (2): p. 020603.
92. Weinan, E., W.Q. Ren, and E. Vanden-Eijnden, Transition pathways in complex systems: Reaction coordinates, isocommittor surfaces, and transition tubes. Chemical Physics Letters, 2005.413 (1-3): p. 242-247.
93. Elber, R., A. Ghosh, and A. Cardenas, Long time dynamics of complex systems. Acc. Chem. Res., 2002. 35 : p. 396-403.
94. Elber, R., J. Meller, and R. Olender, Stochastic path approach to compute atomically detailed trajectories: Application to the folding of C peptide. J. Phys. Chem. B, 1999. 103 : p. 899-911.
95. Elber, R., et al., Bridging the gap between long time trajectories and reaction pathways. Adv. Chem. Phys, 2003.126 : p. 93-129.
96. Henkelman, G. and H. Jonsson, Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys., 2000. 113 : p. 9978.
97. Henkelman, G., B.P. Uberuaga, and H. Jonsson, A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys., 2000. 113 : p. 9901.
98. Jonsson, H., G. Mills, and K.W. Jacobsen, Nudged elastic band method for finding minimum energy paths of transitions . Classical and quantum dynamics in condensed phase simulations. 1998: World Scientific.
99. E, W.N., W. Ren, and E. Vanden-Eijnden, Finite temperature string method for the study of rare events. J. Phys. Chem. B, 2005.109 : p. 6688-6693.
100. Dellago, C., P.G. Bolhuis, and P.L. Geissler, Transition Path Sampling. Adv. Chem. Phys, 2002. 123 : p. 1-81.
101. Bolhuis, P.G., C. Dellago, and D. Chandler, Sampling ensembles of deterministic transition pathways. Faraday Discuss., 1998.110 : p. 421-436.
102. Nielsen, S.O. and M.L. Klein, A coarse grain model for lipid monolayer and bilayer studies. Lecture notes in physics, 2002.605 : p. 27-63.
103. Izvekov, S. and G.A. Voth, Multiscale coarse graining of liquid-state systems. Journal of Chemical Physics, 2005.123 (13): p. -.
104. Izvekov, S. and G.A. Voth, Multiscale coarse-graining method for biomolecular systems. J. Phys. Chem. B, 2005. 109 : p. 2469-2473.
105. Izvekov, S., et al., Effective force fields for condensed phase systems from ab initio molecular dynamics simulation: A new method for force-matching. Journal of Chemical Physics, 2004.120 (23): p. 10896-10913.
106. Periole, X., et al., Combining an Elastic Network With a Coarse-Grained Molecular Force Field: Structure, Dynamics, and Intermolecular Recognition. Journal of Chemical Theory and Computation, 2009. 5 (9): p. 2531-2543.
107. Jensen, F., Introduction to Computational Chemistry . 2nd ed. 2007, Chichester: John wiley & sons.
108. Warshel, A. and W.W. Parson, Dynamics of Biochemical and Biophysical Reactions: Insight from Computer Simulations. Quart. Rev. Biophys., 2001. 34 : p. 563-679.
109. Warshel, A., Computer modeling of chemical reactions in enzymes and solution . 1989, New York: John Wiley and Sons.
110. Shurki, A. and A. Warshel, Structure/function correlations of proteins using MM, QM/MM, and related approaches: Methods, concepts, pitfalls, and current progress. Protein Simulations, 2003. 66 : p. 249-313.
111. Senn, H.M. and W. Thiel, QM/MM methods for biological systems , in Atomistic Approaches in Modern Biology: from Quantum Chemistry to Molecular Simulations . 2007, Springer-Verlag Berlin: Berlin. p. 173-290.
112. Das, D., et al., Optimization of quantum mechanical molecular mechanical partitioning schemes: Gaussian delocalization of molecular mechanical charges and the double link atom method. Journal of Chemical Physics, 2002. 117 (23): p. 10534-10547.
113. Reuter, N., et al., Frontier bonds in QM/MM methods: A comparison of different approaches. Journal of Physical Chemistry A, 2000. 104 (8): p. 1720-1735.
114. Field, M.J., P.A. Bash, and M. Karplus, A combined quantum mechanical and molecular mechanical potential for molecular dynamics simulations. J. Comput. Chem., 2002. 11 : p. 700-733.
115. Zhang, Y. and W. Yang, A pesudobond approach to combining quantum mechanical and molecular mechanical methods. J. Chem. Phys., 1999. 110 : p. 46-54.
116. Garcia-Viloca, M. and J. Gao, Generalized Hybrid Orbital for the treatment of boundary atoms in combined quantum mechanical and molecular mechanical calculations using the semiempirical parameterized model 3 method. Theoretical Chemistry Accounts, 2004. 111 : p. 280-286.
117. Pu, J., D.G. Truhlar, and J. Gao, The Generalized Hybrid Orbital (GHO) method for ab initio combined QM/MM calculations. Journal of Physical Chemistry A, 2004. 108 : p. 632-650.
118. Friesner, R.A., et al., How iron-containing proteins control dioxygen chemistry: a detailed atomic level description via accurate quantum chemical and mixed quantum mechanics/molecular mechanics calculations. Coordination Chemistry Reviews, 2003. 238-239 : p. 267-290.
119. Rega, N., et al., Hybrid ab initio empirical molecular dynamics: combining the ONIOM scheme with the atom-centered density matrix propagation (ADMP) approach. J. Phys. Chem. B, 2004.108 : p. 4210-4220.
120. Mulholland, A.J., Modelling enzyme reaction mechanisms, specificity and catalysis. Drug Discovery Today, 2005. 10 (20): p. 1393-1402.
121. Schmidt, M.W., et al., General Atomic and Molecular Electronic-Structure System. Journal of Computational Chemistry, 1993.14 (11): p. 1347-1363.
122. Zhou, R. and B.J. Berne, A New Molecular Dynamics Method Combining the Reference System Propagator Algorithm with a Fast Multipole Method for Simulating Proteins and Other Complex Systems. J. Chem. Phys., 1995. 103 : p. 9444-9459.
123. Car, R. and M. Parrinello, Unified Approach for Molecular-Dynamics and Density-Functional Theory. Physical Review Letters, 1985. 55 (22): p. 2471-2474.
124. Galli G. and P. A., First Principles Molecular Dynamics . Computer Simulation in Chemical Physics, NATO ASI Series (Series C: Mathematical and Physical Sciences), ed. M.P. Allen and D.J. Tildesley. Vol. 397. 1993, Dordrecht: Springer.
125. Park, J.H. and A. Heyden, Solving the equations of motion for mixed atomistic and coarse-grained systems. Molecular Simulation, 2009.35 (10-11): p. 962-973.
126. Wijesinghe, H.S. and N.G. Hadjiconstantinou, A hybrid atomistic-continuum formulation for unsteady, viscous, incompressible flows. Cmes-Computer Modeling in Engineering & Sciences, 2004.5 (6): p. 515-526.
127. Hadjiconstantinou, N.G., Hybrid atomistic-continuum formulations and the moving contact-line problem. Journal of Computational Physics, 1999. 154 : p. 245-265.
128. Vitoshkin, H., et al., Nanoparticle stochastic motion in the inertial regime and hydrodynamic interactions close to a cylindrical wall. Phys Rev Fluids, 2016. 1 .
129. Hsiu-Yu Yu, D.M.E., Portovovo S. Ayyaswamy, Ravi Radhakrishnan,Effect of wall-mediated hydrodynamic fluctuations on the kinetics of a Brownian nanoparticle. Proceedings of the Royal Society of London. Series A, 2016. 472 : p. 20160397.
130. Yu, H.-Y., et al., Composite generalized Langevin equation for Brownian motion in different hydrodynamic and adhesion regimes.Physical Review E, 2015. 91 (5): p. 052303.
131. Farokhirad, S., et al., Stiffness can mediate balance between hydrodynamic forces and avidity to impact the targeting of flexible polymeric nanoparticles in flow. Nanoscale, 2019. 11 (14): p. 6916-6928.
132. Lee, M.J.a.A., S Ye and Gardino, Alexandra K and Heijink, Anne Margriet and Sorger, Peter K and MacBeath, Gavin and Yaffe, Michael B,Sequential application of anticancer drugs enhances cell death by rewiring apoptotic signaling networks. Cell, 2012. 149 (4): p. 780-794.
133. Janes, K.A., et al., A systems model of signaling identifies a molecular basis set for cytokine-induced apoptosis. Science, 2005.310 (5754): p. 1646-53.
134. Janes, K.A., et al., A high-throughput quantitative multiplex kinase assay for monitoring information flow in signaling networks: application to sepsis-apoptosis. Mol Cell Proteomics, 2003.2 (7): p. 463-73.
135. Sachs, K., et al., Causal Protein-Signaling Networks Derived from Multiparameter Single-Cell Data. Science, 2005.308 (5721): p. 523.
136. Jordan, E.J., et al., Computational algorithms for in silico profiling of activating mutations in cancer. Cell Mol Life Sci, 2019.76 (14): p. 2663-2679.
137. Agajanian, S., O. Oluyemi, and G.M. Verkhivker, Integration of Random Forest Classifiers and Deep Convolutional Neural Networks for Classification and Biomolecular Modeling of Cancer Driver Mutations.Frontiers in Molecular Biosciences, 2019. 6 : p. 44.
138. Peskin, C.S. and D.M. McQueen, A 3-dimensional computational method for blood-flow in the heart .1. Immersed elastic fibers in a viscous incompressible fluid. Journal of Computational Physics, 1989.81 (2): p. 372-405.
139. Wu, X.L., et al., Adaptive nonlinear finite elements for deformable body simulation using dynamic progressive meshes. Computer Graphics Forum, 2001. 20 (3): p. C349-C358.
140. Tompson, J., et al., Accelerating Eulerian Fluid Simulation With Convolutional Networks , in Proceedings of the 34 th International Conference on Machine
Learning . 2017: Sydney, Australia.
141. Balaprakash, P., et al., Autotuning in High-Performance Computing Applications. Proceedings of the IEEE, 2018.106 (11): p. 2068-2083.
142. Jordan, M.I. and T.M. Mitchell, Machine learning: Trends, perspectives, and prospects. Science, 2015. 349 (6245): p. 255-60.
143. Carlson, J.M. and J. Doyle, Complexity and robustness. Proc Natl Acad Sci U S A, 2002. 99 Suppl 1 : p. 2538-45.
144. Gelman, A., et al., Bayesian data analysis . 2013: Chapman Hall.
145. Alber, M., et al., Integrating machine learning and multiscale modeling-perspectives, challenges, and opportunities in the biological, biomedical, and behavioral sciences. NPJ Digit Med, 2019.2 : p. 115.
146. runton, S., B. Noack, and P. Koumoutsakos, Machine learning for fluid mechanics. arXiv preprint arXiv:1905.11075, 2019.
147. Lillicrap, T.P. and K.P. Kording, What does it mean to understand a neural network? arXiv:1907.06374, 2019.
148. Raissi, M., P. Perdikaris, and G.E. Karniadakis,Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational Physics, 2019.378 : p. 686-707.
149. Hornik, K., M. Stinchcombe, and H. White, Multilayer feedforward networks are universal approximators. Neural Networks, 1989. 2 (5): p. 359-366.
150. Baydin, A.G., et al., Automatic Differentiation in Machine Learning: a Survey. Journal of Machine Learning, 2018.18 (153): p. 1-43.
151. Lachmann, A., et al., ARACNe-AP: gene network reverse engineering through adaptive partitioning inference of mutual information. Bioinformatics, 2016. 32 (14): p. 2233-5.
152. Margolin, A.A., et al., ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinformatics, 2006. 7 Suppl 1 : p. S7.
153. Cover, T.M., Elements of information theory . 2012: John Wiley and Sons.
154. Watanabe, S., Algebraic geometry and statistical learning theory . Vol. 25. 2009: Cambridge University Press.
155. Amari, S.-i., Information geometry and its applications . Vol. 194. 2016: Springer.
156. Pratik Chaudhari, A.C., Stefano Soatto, Yann LeCun, Carlo Baldassi, Christian Borgs, Jennifer Chayes, Levent and a.R.Z. Sagun,Entropy-SGD: biasing gradient descent into wide valleys. In Proc. of International Conference of Learning and Representations,, 2016.
157. Pratik Chaudhari, A.O., Stanley Osher, Stefano Soatto, and Carlier Guillame, Deep Relaxation: partial differential equations for optimizing deep neural networks. Research in the Mathematical Sciences arXiv:1704.04932, 2018.
158. Pratik Chaudhari, C.B., Riccardo Zecchina, Stefano Soatto, Ameet Talwalkar, and Adam Oberman, Parle: parallelizing stochastic gradient descent. arXiv:1707.00424, 2017.
159. Chmiela, S., et al., Towards exact molecular dynamics simulations with machine-learned force fields. Nature Communications, 2018. 9 (1): p. 3887.
160. Batra, R. and S. Sankaranarayanan, Machine learning for multi-fidelity scale bridging and dynamical simulations of materials.Journal of Physics: Materials, 2020. 3 (3): p. 031002.
161. Tuckerman, M.E., Machine learning transforms how microstates are sampled. Science, 2019. 365 (6457): p. 982.
162. Rogal, J., E. Schneider, and M.E. Tuckerman,Neural-Network-Based Path Collective Variables for Enhanced Sampling of Phase Transformations. Phys Rev Lett, 2019.123 (24): p. 245701.
163. Chiavazzo, E., et al., Intrinsic map dynamics exploration for uncharted effective free-energy landscapes. Proc Natl Acad Sci U S A, 2017. 114 (28): p. E5494-E5503.
164. Zhang, J. and M. Chen, Unfolding Hidden Barriers by Active Enhanced Sampling. Phys Rev Lett, 2018. 121 (1): p. 010601.
165. Sultan, M.M. and V.S. Pande, Automated design of collective variables using supervised machine learning. The Journal of Chemical Physics, 2018. 149 (9): p. 094106.
166. Alom, Z.M., et al., A State-of-the-Art Survey on Deep Learning Theory and Architectures. Electronics, 2019. 8 (3).
167. Bonati, L., Y.-Y. Zhang, and M. Parrinello, Neural networks-based variationally enhanced sampling. Proceedings of the National Academy of Sciences, 2019. 116 (36): p. 17641.
168. Radhakrishnan, R. and T. Schlick, Biomolecular free energy profiles by a shooting/umbrella sampling protocol, ”BOLAS”. J Chem Phys, 2004. 121 (5): p. 2436-44.
169. Ma, H., M. Govoni, and G. Galli, Quantum simulations of materials on near-term quantum computers. Cond. mat. Arxiv, 2020: p. arXiv:2002.11173v1.
170. Sieck, G.C., Physiology in Perspective: Physiology is Everywhere. Physiology (Bethesda), 2019. 34 (3): p. 167-168.
171. Ellis, G.F.R. and J. Kopel, The Dynamical Emergence of Biology From Physics: Branching Causation via Biomolecules. Front Physiol, 2018. 9 : p. 1966.